Options for Mitigating Potential GPS Vulnerabilities

Size: px
Start display at page:

Download "Options for Mitigating Potential GPS Vulnerabilities"

Transcription

1 Options for Mitigating Potential GPS Vulnerabilities GPS receivers have been widely used in communications infrastructure to provide precise time and frequency required to synchronize wireless base stations to ensure seamless call handoff, quality streaming video and location based services such as car navigation systems and most notably E911 services in the US. However, recent events have shown that GPS is susceptible to interference from deliberate spoofing and jamming techniques which can seriously disrupt or even completely disable GPS dependent applications and natural outages as with urban canyons. GPS jamming is a deliberate attempt to disrupt GPS services. Service disruption can occur at local, regional and national levels. Locally, fleet truck drivers and car thieves often use jamming devices to avoid tracking and detection. One notable example of national level jamming occurred on March 5 th, 2011, when North Korea jammed South Korea s wireless communications infrastructure knocking out many base stations. GPS spoofing occurs when a GPS signal appears to the receivers to be a valid signal but the frequency, position, and/or Time of Day content is altered. Increased availability of low-cost, commercially available jamming and spoofing devices that can be purchased at local electronics stores has greatly increased GPS vulnerabilities. This white paper will discuss mitigation options for interference to GPS installations and introduce a new packetbased primary reference source from Symmetricom called TimeProvider 1500 as a viable alternative to protect from GPS vulnerabilities. Page 1 of 5

2 LightSquared The FCC recently approved use of satellite L-band spectrum ( MHz and MHz) for terrestrial mobile services. Due to the proximity of the L-band spectrum to the GPS band ( MHz), questions have been raised regarding potential interference to existing GPS Antenna installations. If a LightSquared L-band transmitter is installed at or near the location of an existing GPS antenna the GPS signal can be affected. Care must therefore be taken to assure that the GPS antenna is not in the direct beam of the L-band transmitter if located within 1200 meters. The potential impact is greatest for sites where the antennas are colocated such as base station sites. There are 3 mitigation options available to protect GPS vulnerabilities : 1. Locate the GPS antenna such that it is not in the direct beam of the LightSquared L-band transmitter, 2. Replace the GPS antenna with a model incorporating enhanced narrow band filtering (not available in all cases), or 3. Install a packet-based primary reference source (PRS) that has rubidium to guarantee holdover to deliver precise frequency and timing. GPS Antenna Relocation Option: Primary Reference Sources (PRS), which typically use GPS to distribute precise synchronization to all network elements, are typically located at telecom central offices or mobile switching centers. These locations are usually the primary synchronization source for those locations. For sites where near-proximity to a LightSquared transmitter is a major concern, there are a number of options to facilitate antenna placement in a location not in the direct beam of the LightSquared transmitter: Roof top antenna Wall-mount antenna Window antenna With flexible antenna mounting and location options, it is generally possible to select an antenna mounting location that is safe from potential near-proximity direct beam interference. However, this solution is viewed as temporary and the interference issue can reappear as new sites are installed by LightSquared. GPS Antenna Filtering Option: For sites where antenna relocation is not a viable option, some commercial GPS antenna manufacturers are offering special L1 antennas with enhanced filtering to mitigate potential L-Band interference. It must be noted that the filtering option may reduce but not necessarily eliminate potential interference with GPS signals as a result of close proximity to a LightSquared L-Band antenna. This is especially true in applications using wall-mount antennas, since there are no enhanced filtering capabilities available for these antennas. Packet PRS Option: The optical solution is the implementation of a packet-based PRS synchronization such as the TimeProvider 1500 (TP1500) which utilizes IEEE to deliver a Stratum 1 frequency and timing source without requiring a GPS antenna. The TimeProvider 1500 Packet PRS, is the first non-gps, non- Cesium primary reference source, combining the power of Rubidium holdover technology with advanced IEEE soft clock algorithms to provide a Stratum 1 PRS in compliance with industry PRS standards. TimeProvider 1500 meets or exceeds the most stringent test criteria required to claim Stratum 1 level PRS performance: it fully complies with the ITU-T G.811 Stratum 1 and GR 2830 PRS performance specifications and also meets the ITU-T G.8261 specification for providing precise timing over IP, packet-based networks. TimeProvider 1500 is ideal for situations where antenna relocation or filtering is not sufficient to eliminate the threat of GPS signal interference. The TP1500 Packet PRS locks to an IEEE grandmaster located at a primary reference clock site equipped with protected GPS and/or Cesium standards. Symmetricom s advanced IEEE 1588 locking algorithms and miniature atomic clock technologies combine to enable the TP1500 Packet PRS to deliver PRS level synchronization without the need for a GPS antenna. LTE Network Architecture Favors IEEE Mobile network architecture is undergoing changes to prepare for the deployment of 4G/LTE infrastructure to deliver higher bandwidth solutions and services to subscribers. First, backhaul networks are transitioning from to Ethernet to efficiently deliver higher bandwidth services and lower overall operating costs. With the transition to Ethernet, the physical layer synchronization chain is broken when access to the legacy reference inputs are removed. Secondly, 4G/LTE mobile infrastructure is shifting towards small cells/femtocells making it economically prohibitive to deploy GPS receivers at every base station. Lastly, with GPS known vulnerabilities to jamming and spoofing, networks require an alternative to deliver precise timing and synchronization to ensure service delivery across the network. Page 2 of 5

3 To future proof networks and ensure optimal reliability throughout the network, there is a compelling need for a stable, cost-effective, and robust packet PRS that will provide synchronization for packet networks. Until recently, there have only been two types of primary reference (PRS) available: Cesium GPS Cesium Primary Reference Sources Standalone Atomic PRC Fully autonomous Core Sites Pinnacle of sync hierarchy Frequency Accuracy ± 1 x Standalone Cesium PRS atomic clocks are simple to install and robust because they do not receive timing based on an external signal but generate it internally. However, they in practice are restricted to core sites of the network. GPS-based PRS on the other hand may be lower cost initially, but can have high set up costs because deployment requires the installation of a GPS receiver, an antenna, and cables, and requires roof and cable run access. GPS systems are also limited to locations with line of sight visibility to the satellites from which they derive timing, and so cannot operate in urban canyons. There is now a third PRS option from Symmetricom utilizing packet-based technology based on IEEE that does not use a GPS antenna. Based on a Precision Timing Protocol (PTP) reference derived from a centralized IEEE 1588 PTP grandmaster clock, Packet PRS provides Stratum 1 quality clock timing input over an Ethernet infrastructure to a Synchronization Supply Unit (SSU) and is ideal to use in core and colocation sites as standalone PRS or as a backup to GPS as displayed in the Primary Reference Source Hierarchy shown in Figure 1. Traditional Network Synchronization All nodes in a synchronized communications network must be referenced, or traceable, to a PRS that offers Stratum 1 performance in accordance with recognized industry standard ITU-T G.811. In traditional Time Division Multiplexed () digital communications networks, sync was maintained by employing two types of synchronization element, Primary Reference Clocks (PRC) and distribution clocks, over a physical circuit. The PRC or PRS (using either Cesium or GPS) provides the reference frequency signal for the synchronization of other clocks within a network, or section of a network. Distribution clocks (called BITS, SSU or SASE depending on configuration, region deployed, and the specific standards body) select one of the external synchronization links coming into a station as the active synchronization reference. The synchronization from a PRS site to the is carried over SONET/SDH networks using derived T1/E1 signals from the optical line rate. The high availability requirement of SDH-based networks mandates the use of multiple site PRS preferably located in different geographical regions. As displayed in the Current Network in Figure 2. GPS Packet-based IEEE 1588 PTP based PRS Standalone PRC or backup to GPS No external GPS antenna Requires PTP grandmaster Frequency Accuracy ± 1 x Figure 1: Primary Reference Source Hierarchy Master Site B OC-48 OC-192 Figure 2: Current Network SONET/SDH RING Line Timed DS1 SONET/SDH RING at the Remote Site C uses Derived T1/E1 input references line timed from SONET/SDH rings. OC-48 Delivered T1/E1 OC-192 Remote Site C GPS Flatten sync hierarchy Distributed in core and edge Requires GPS antenna installation Frequency Accuracy ± 1 x Page 3 of 5

4 The Synchronization of Packet Based Networks The migration of networks to packet-based Carrier Ethernet or IP/MPLS networks will cause the synchronization chain to break; the Ethernet network elements cannot deliver frequency synchronization when T1/E1 input references are removed. As displayed in New Ethernet Network in Figure 3, the can be front-ended with an IEEE 1588 PTP slave clock the Packet PRS which delivers PRS quality T1/E1 to the SSU clocks. The Packet PRS receives timing from one or more central IEEE 1588 grandmaster clocks co-located with a GPS or cesium PRS. When using such a Packet PRS the network should be setup to deploy IEEE 1588 grandmaster (or 1588 PTP grandmaster Blades in the ) in geographically redundant Central Offices (CO) for diversity based risk mitigation as displayed in PRS Distribution in Rubidium Performance in Packet PRS in Figure 4. How Packet PRS Works Using a rubidium miniature atomic clock combined with a state of the art Soft Clock 2.0 algorithm, Packet PRS reconstructs a PRS Stratum 1 quality clock from the IEEE 1588 PTP packets coming from a grandmaster in a central site, thus maintaining the synchronization chain that is otherwise missing in the packet network. The 1588 packets are converted into T1/E1 signals that meet the G.811/ST1 PRS mask. Figure 3: New Ethernet Network Metro Ethernet Ethernet Ethernet Metro Ethernet Remote Site C Problem Ethernet NE no longer requires Frequency Synchronization Loss of Derived T1/E1 Input reference to at Remote Site C Building restricts antenna installation Cesium too expensive, single reference solution To function in this capacity, Packet PRS must comply with industry standards and follow the specifications for a Stratum 1 clock as defined in ITU-G.811. Symmetricom test results show that even after losing PTP reference for up to 48 hours (bridging + holdover), the wander in output in the Packet PRS is still within the MTIE mask. These results meet and exceed Telcordia GR 2830 requirement section 6.4.2: Upon losing reference, output shall maintain PRS performance for at least 6 hours and unacceptable region should not be entered for the first 48 hours after the allowed impairment, as displayed in Rubidium Performance in Packet PRS in Figure 4. Figure 4: Rubidium Performance in Packet PRS Page 4 of 5

5 Packet PRS Benefits TimeProvider 1500 applications include, but are not limited to, GPS difficult sites with no roof access, sites with an unreliable GPS signal as in urban canyons or tunnels, sites vulnerable to GPS interference due to jamming and spoofing, and as a back-up to GPS supporting frequency and time services. The ability to synchronize to another non-colocated grandmaster clock over a packet-based network ensures 24/7/365 availability in the event of GPS service interruption. As Ethernet replaces, creating a hybrid network, some SSU/ BITS will lose their synchronization source. Front-ending these downstream clocks with TimeProvider 1500 Packet PRS will enable them to continue supplying synchronization to both SDH/ SONET and Synchronous Ethernet infrastructure environments in the hybrid network that will be the reality for most operators for a considerable time. Moreover, TimeProvider 1500 can serve as a tool for carriers seeking to provide accurate one-way Service Level Agreement (SLA) measurements to their enterprise account customers. The IEEE 1588 is a server/client time transfer protocol allowing client engines to be embedded in network endpoints for accurate time synchronization enabling accurate one-way SLA measurements. Both innovative and unique, the TimeProvider 1500 delivers the precise and accurate synchronization that networks require as they migrate from to next generation synchro nous-aware packetbased technologies, as displayed in the PRS Deployment Chart shown in Figure 5. Conclusion Packet PRS solutions, like the TimeProvider 1500, not only mitigate but totally eliminate potential GPS interference from LightSquared antenna sources since there is no GPS required at Packet PRS locations. Carriers now have a new choice for deployment and diversity of primary reference sources in their networks to overcome GPS vulnerabilities. The TimeProvider 1500 provides a secure and cost effective solution to support rapid migration to Carrier Ethernet in the core, and is immune to potential GPS antenna vulnerabilities such as interference or jamming. Symmetricom has combined the innovative technologies of its Rubidium oscillator and IEEE1588 PTP Soft Clock algorithm to deliver the stable robust timing required by today s evolving networks Type of Primary Reference Source Antenna Type Telecom Outputs Equipment Costs Install Complexity Main Applications Standalone Cesium Atomic Clock None 10MHz/1PPS High Low Pinnacle of the sync hierarchy; used in core sites Source of sync for SONET/SDH Hubs and ADMS class 5/End office GPS-Based Reference Clocks Window Wall Rooftop 10MHz/1PPS TOD Medium High Offices with line of sight visibility to satellite Decentralized synchronization nodes in a distributed sync network SONET/SDH Hubs and ADMS Synchronous Ethernet IEEE 1588 PTP Packet- Based Clock None 10MHz/1PPS TOD Low Medium Used in core and colocation sites as standalone PRS or as a backup to GPS-based PRS Provides sync input to an based on an external PTP reference from a GMC in a master site GPS difficult sites SONET/SDH Hubs and ADMS Synchronous Ethernet Figure 5: PRS Deployment Chart 2300 Orchard Parkway San Jose, California tel: fax: Symmetricom. Symmetricom and the Symmetricom logo are registered trademarks of Symmetricom, Inc. All specifications subject to change without notice. WP/MitigatingGPSVulnerabilities/051411

Packet-Based Primary Reference Source for Synchronizing Next Generation Networks

Packet-Based Primary Reference Source for Synchronizing Next Generation Networks Packet-Based Primary Reference Source for Synchronizing Next Generation Networks Responding to consumer demand, service providers are expanding and upgrading their telecommunications networks to add more

More information

Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER

Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) Grandmaster Hardware Redundancy

More information

Best Practices for IEEE 1588/ PTP Network Deployment

Best Practices for IEEE 1588/ PTP Network Deployment YOUR NETWORK. OPTIMIZED. Best Practices for IEEE 1588/ PTP Deployment WHITE PAPER IEEE 1588-2008 means that precise timing and synchronization over is now a reality but the solution is only as good as

More information

The TimeHub 5500 System

The TimeHub 5500 System TimeHub 5500 NEBS Level 3 Certified Building Integrated Timing Supply for Carrier-Grade Networks Key Features Next generation Building Integrated Timing Supply (BITS) Packet timing solutions for NGN applications

More information

PTP650 Synchronous Ethernet and IEEE1588 Primer

PTP650 Synchronous Ethernet and IEEE1588 Primer PTP650 Synchronous and IEEE1588 Primer Table of Contents 3 in Cellular Backhaul 3 Timing Options for Cellular Backhaul 4 Synchronous 4 What is Synchronous? 4 Synchronous on PTP 650 5 Precision Time Protocol

More information

Introduction...1 Timing in TDM Services...2 Timing in NGN Services...3 Traditional Synchronization...5. Evolution...6 Conclusion...

Introduction...1 Timing in TDM Services...2 Timing in NGN Services...3 Traditional Synchronization...5. Evolution...6 Conclusion... APPLICATION BRIEF NGN SERIES Table of Contents Introduction................1 in TDM Services......2 in NGN Services......3 Traditional Synchronization...5 and Synchronization Evolution..................6

More information

Testing Timing Over Packet With The Ixia Anue 3500

Testing Timing Over Packet With The Ixia Anue 3500 Testing Timing Over Packet With The Ixia Anue 3500 Testing according to ITU-T G.8261-2008 Appendix VI 1 Table of Contents Overview... 3 ITU-T G.8261... 3 MEF 18... 4 Acronyms and Definitions... 7 Test

More information

Wireless Backhaul Synchronization

Wireless Backhaul Synchronization Wireless Backhaul Synchronization Abstract This paper focuses on Next Generation Backhaul Networks Synchronization and the way it is implemented by Ceragon s high capacity, LTE Ready point to point microwave

More information

TimeSource Enhanced PRTC Enhanced Primary Reference Time Clock

TimeSource Enhanced PRTC Enhanced Primary Reference Time Clock TimeSource Enhanced PRTC (ETSI Form Factor) TimeSource Enhanced PRTC (ANSI Form Factor) Features Provides autonomous time scale for time, phase, and frequency that operates even without GNSS availability

More information

Circuit Emulation Service

Circuit Emulation Service Best in class Network Modernization Approach Circuit Emulation enables telecom operators to translate legacy systems using TDM signals such as E1/, E3/DS3, STM-n/OC-n to appropriate packet formats and

More information

Tales from the Base Station to the Substation. Delivering Phase ITSF 2013

Tales from the Base Station to the Substation. Delivering Phase ITSF 2013 Tales from the Base Station to the Substation Delivering Phase ITSF 2013 1 Phase delivery in Telecom Networks Telecom LTE networks rely on accurate phase synchronization Efficient and reliable use of spectrum

More information

Unified Synchronization Solution for Mobile Backhaul

Unified Synchronization Solution for Mobile Backhaul Unified Synchronization Solution for Mobile Backhaul This white paper is a joint collaboration between PMC and Symmetricom Issue No.1: March 6, 2013 PMC-Sierra, Inc. In today s mobile backhaul, a cell

More information

Synchronization for Next Generation Networks The PTP Telecom Profile

Synchronization for Next Generation Networks The PTP Telecom Profile Synchronization for Next Generation Networks The PTP Telecom Profile Abstract This paper is designed to help network engineers, network planners, and network operations understand how to deploy Precision

More information

Application Note. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals. Precision, Stability, Innovation, Support.

Application Note. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals. Precision, Stability, Innovation, Support. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals Application Note Number 14 TELECOM NETWORKS PROFESSIONAL MANUFACTURING POWER & UTILITIES DIGITAL BROADCASING TIME & FREQUENCY TIME

More information

Time Synchronization Trends for Critical Infrastructure. Randy Brudzinski Vice President Microsemi

Time Synchronization Trends for Critical Infrastructure. Randy Brudzinski Vice President Microsemi Time Synchronization Trends for Critical Infrastructure Randy Brudzinski Vice President Microsemi Power Matters. TM Microsemi Corporation Time Synchronization Trends for Critical Infrastructure Randy Brudzinski

More information

Small and Macro Cell deployment Mobile Operator- A case Study. Anil K Reddy Director BD APAC

Small and Macro Cell deployment Mobile Operator- A case Study. Anil K Reddy Director BD APAC Small and Macro Cell deployment Mobile Operator- A case Study Anil K Reddy Director BD APAC areddy@advaoptical.com Why Small cells? While Small cells are not new to mobile world, LTE is an indispensable

More information

PACKET MICROWAVE FOR METRO CELL BACKHAUL ENABLING A SEAMLESS EVOLUTION TO HETEROGENEOUS NETWORKS APPLICATION NOTE

PACKET MICROWAVE FOR METRO CELL BACKHAUL ENABLING A SEAMLESS EVOLUTION TO HETEROGENEOUS NETWORKS APPLICATION NOTE PACKET MICROWAVE FOR METRO CELL BACKHAUL ENABLING A SEAMLESS EVOLUTION TO HETEROGENEOUS NETWORKS APPLICATION NOTE TABLE OF CONTENTS Introduction / 1 Backhaul challenges for metro cells / 2 Getting wireless

More information

Synchronization Standards

Synchronization Standards Synchronization Standards Silvana Rodrigues IDT (silvana.rodrigues@idt.com) WSTS San Jose, June 2018 1 Agenda Standard Bodies ITU-T Frequency Profile ITU-T Time/phase Profiles IEEE 1588 SONET/PDH Standards

More information

Traditional Synchronization Standards Overview

Traditional Synchronization Standards Overview Traditional Synchronization Standards Overview Silvana Rodrigues Phone: +1 613 2707258 silvana.rodrigues@zarlink.com http://timing.zarlink.com/ AGENDA Telecom Synchronization International Telecommunication

More information

FibeAir IP-10 Series. Product Guide

FibeAir IP-10 Series. Product Guide FibeAir IP-10 Series Product Guide Ceragon s FibeAir IP-10 Series High Capacity Packet & Hybrid Wireless Backhaul FibeAir IP-10 is an innovative series of high-capacity wireless backhaul platforms. FibeAir

More information

Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets)

Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets) Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets) The Alcatel-Lucent 9500 Microwave Packet Radio (MPR) provides cost-effective IP transformation for seamless microwave transport of TDM, ATM, IP

More information

OSA 5548C BITS/TSG Timing Signal Generator

OSA 5548C BITS/TSG Timing Signal Generator OSA 5548C BITS/TSG Timing Signal Generator Features Unique design for Master, Expansion and Remote shelves Entirely new family of TSG with 3U and 6U shelves Adapts to all telecom node sizes, from a few

More information

Synchronization Network Migration with focus on coherent network Primary Reference Time Clocks (cnprtc)

Synchronization Network Migration with focus on coherent network Primary Reference Time Clocks (cnprtc) Deutsche Telekom @ITSF2014 hronization Network Migration with focus on coherent network Primary Reference Time Clocks (cnprtc) Helmut Imlau, 4.11.2014 ITSF 2014: hronization Network Migration Steps with

More information

G Telecom Profile

G Telecom Profile Why G.8275.1? More About G.8275.1 First Published: March 29, 2016 Precision Time Protocol (PTP) is a protocol for distributing precise time and frequency over packet networks. PTP is defined in the IEEE

More information

Ericsson ip transport nms

Ericsson ip transport nms Ericsson ip transport nms Ericsson IP Transport NMS is the fully integrated and complete end-to-end O&M management solution for the IP and transport products used in mobile backhaul, metro, core and fixed/mobile

More information

Packet synchronization deployment

Packet synchronization deployment Packet synchronization deployment and challenges to mobile operator Background Challenges 1. Network growth seek the transformation of services delivery mechanism. 2. Summary of previous setup: DESCRIPTION

More information

Shifting the Wireless Backhaul Paradigm

Shifting the Wireless Backhaul Paradigm High Throughput Meets Low TCO the tm E-Band Wireless Backhaul Shifting the Wireless Backhaul Paradigm Siklu s -1200 is a carrier-class, high-capacity E-band radio that dramatically lowers the cost of wireless

More information

Substation. Communications. Power Utilities. Application Brochure. Typical users: Transmission & distribution power utilities

Substation. Communications. Power Utilities. Application Brochure. Typical users: Transmission & distribution power utilities Power Utilities Application Brochure Communications Typical users: Transmission & distribution power utilities For more than 30 years, RAD has worked closely with its worldwide energy utility customers

More information

WECC Guideline Digital Circuits Synchronization

WECC Guideline Digital Circuits Synchronization WECC Guideline Digital Circuits Synchronization March 8, 2018 155 North 400 West, Suite 200 Salt Lake City, Utah 84103-1114 WECC Guideline: Digital Circuits Synchronization 2 Table of Contents I. Introduction...

More information

SONET/ SDH 10G. Core Packet Network SONET/ SDH SONET/ SDH 10G 3G/ LTE. Figure 1. Example Network with Mixed Synchronous and Asynchronous Equipment

SONET/ SDH 10G. Core Packet Network SONET/ SDH SONET/ SDH 10G 3G/ LTE. Figure 1. Example Network with Mixed Synchronous and Asynchronous Equipment SYNCE AND IEEE 1588: SYNC DISTRIBUTION FOR A UNIFIED NETWORK 1. Introduction Ethernet has become the preferred method of data transport over the last few decades because of its low operation cost and universal

More information

Delivering Time and Phase for LTE Networks

Delivering Time and Phase for LTE Networks Delivering Time and Phase for LTE Networks Simon Butcher 2016 Microsemi Corporation. Company Proprietary. Small Cell Deployments - And LTE-Advanced (LTE-A) at the Mobile Edge LTE-FDD requires frequency

More information

Double Migration of Packet Clocks

Double Migration of Packet Clocks Double Migration of Packet Clocks Kenneth Hann Principal Engineer Artwork:Tanja Hann November 1, 2011 1 Packet Clocks... the first migration Land of Phase Data Com Republic Legacy Land Packet Clocks...

More information

Alcatel-Lucent 1850 TSS Product Family. Seamlessly migrate from SDH/SONET to packet

Alcatel-Lucent 1850 TSS Product Family. Seamlessly migrate from SDH/SONET to packet Alcatel-Lucent 1850 TSS Product Family Seamlessly migrate from SDH/SONET to packet The Alcatel-Lucent 1850 Transport Service Switch (TSS) products are a family of Packet-Optical Transport switches that

More information

G Telecom Profile

G Telecom Profile Precision Time Protocol (PTP) is a protocol for distributing precise time and frequency over packet networks. PTP is defined in the IEEE Standard 1588. It defines an exchange of timed messages PTP allows

More information

ITSF 2007 overview of future sync applications and architecture challenges

ITSF 2007 overview of future sync applications and architecture challenges ITSF 2007 overview of future sync applications and architecture challenges Orange Labs Sébastien JOBERT, Research & Development 14/11/2007, presentation to ITSF 2007, London agenda section 1 section 2

More information

APPLIED SATELLITE ENGINEERING-MACHINE-TO-MACHINE. This resource is brought to you by ASE M2M. Contact information.

APPLIED SATELLITE ENGINEERING-MACHINE-TO-MACHINE. This resource is brought to you by ASE M2M. Contact information. APPLIED SATELLITE ENGINEERING-MACHINE-TO-MACHINE This resource is brought to you by ASE M2M. We provide the following for satellite machine-to-machine applications. Hardware Modems to fully operational

More information

Synchronization Standards

Synchronization Standards Synchronization Standards Silvana Rodrigues IDT (silvana.rodrigues@idt.com) WSTS San Jose, April 3-6, 2017 1 Agenda Standard Bodies SyncE/1588 Standards ITU-T Frequency Profile ITU-T Time/phase Profiles

More information

Satellite-Based Cellular Backhaul in the Era of LTE

Satellite-Based Cellular Backhaul in the Era of LTE Satellite-Based Cellular Backhaul in the Era of LTE Introduction 3 Essential Technologies for 3G/LTE Backhauling over Satellite 6 Gilat s Solution SkyEdge II-c Capricorn 7 Why Ultra-fast TDMA is the Only

More information

NETWORK SYNCHRONIZATION TRAINING COURSE

NETWORK SYNCHRONIZATION TRAINING COURSE NETWORK SYNCHRONIZATION TRAINING COURSE 2016 Network Synchronization Training program Network Synchronization Fundamentals Ref: NST-1 Planning managers, network planners, O&M experts, system Audience:

More information

Synchronization Networks Based on Synchronous Ethernet

Synchronization Networks Based on Synchronous Ethernet Application Note Number 20/2009 Created: December 14, 2009 Last modification: - ynchronization Networks Based on ynchronous thernet Oscilloquartz.A., CH-2002 Neuchâtel 2, witzerland, Tel. +41 32 722 5555,

More information

CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS

CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS 1 Agenda Sync 101: Frequency and phase synchronization basics Legacy sync : GPS and SDH/Sonet overview

More information

PHYSICAL LAYER TIMING

PHYSICAL LAYER TIMING PHYSICAL LAYER TIMING Physical Layer Timing Timing in TDM Networks Synchronous Multiplexing (TDM) Transferring Timing (Timing Distribution) Stratum Levels Slips Asynchronous Multiplexing (TDM) Timing in

More information

White paper Application note

White paper Application note Applications of the Stand-Alone Synchronization Equipment in optical networks and the Synchronous Digital Hierarchy (SDH) White paper Application note Number 07 TELECOM NETWORKS PROFESSIONAL MANUFACTURING

More information

Mobile Backhaul Synchronization

Mobile Backhaul Synchronization Mobile Backhaul Synchronization In Service Timing SLA Tools for Mobile Networks Gil Biran, ITSF 2012, Nice France Agenda Synchronization SLA tool requirements Description of Synchronization SLA tools Detailed

More information

PASS4TEST. IT Certification Guaranteed, The Easy Way! We offer free update service for one year

PASS4TEST. IT Certification Guaranteed, The Easy Way!  We offer free update service for one year PASS4TEST IT Certification Guaranteed, The Easy Way! \ http://www.pass4test.com We offer free update service for one year Exam : 4A0-M01 Title : Alcatel-Lucent IP/MPLS Mobile Backhaul Transport Vendors

More information

Timing in Packet Networks. Stefano RUffini 9 March 2015

Timing in Packet Networks. Stefano RUffini 9 March 2015 Timing in Packet Networks Stefano RUffini 9 March 2015 Giulio Bottari Contents Background Frequency sync via packets Two-Way Time Transfer NTP/PTP Details Impairments, Packet-based Metrics for frequency

More information

Synchronous Ethernet based mobile backhaul integrated transport and synchronization management

Synchronous Ethernet based mobile backhaul integrated transport and synchronization management Synchronous Ethernet based mobile backhaul integrated transport and synchronization management ITSF 2012 Jon Baldry Transmode Chris Roberts Chronos Technology Clock Synchronization Is Critical Synchronization

More information

TIME SYNCHRONIZATION TEST SOLUTION FROM VERYX TECHNOLOGIES

TIME SYNCHRONIZATION TEST SOLUTION FROM VERYX TECHNOLOGIES TIME SYNCHRONIZATION TEST SOLUTION FROM VERYX TECHNOLOGIES CONTENTS Introduction... 1 1588v2 Overview... 1 SyncE overview... 2 VERYX capability... 2 1588v2 Test Coverage... 2 Time Sync Application Test

More information

IEEE 1588 Packet Network Synchronization Solution

IEEE 1588 Packet Network Synchronization Solution Packet Network Synchronization Solution Peter Meyer System Architect peter.meyer@zarlink.com FTF 2011 Packet Network Synchronization Basics for Telecom Packet Networks Synchronization Solutions Deployment

More information

ATT-TELCO Common Systems, Synchronization: AT&T Global Network Synchronization Strategic Plan Abstract

ATT-TELCO Common Systems, Synchronization: AT&T Global Network Synchronization Strategic Plan Abstract ATT-TELCO-812-000-035 Common Systems, Synchronization: AT&T Global Network Synchronization Strategic Plan Abstract Presents a strategic plan for the AT&T synchronization network Audience: AT&T Global Engineering

More information

Synchronisation Requirements for Wireline and Wireless Convergence. Ghani Abbas ITSF 2006 Prague Nov.,2006

Synchronisation Requirements for Wireline and Wireless Convergence. Ghani Abbas ITSF 2006 Prague Nov.,2006 Synchronisation Requirements for Wireline and Wireless Convergence Ghani Abbas ITSF 2006 Prague 14-16 Nov.,2006 Topics Why do we need synchronisation? Market and Technology Trends Impacting Synchronisation

More information

Carrier Ethernet Synchronization. Technologies and Standards

Carrier Ethernet Synchronization. Technologies and Standards Carrier Ethernet Synchronization Technologies and Standards DataEdge, Dublin, May 19, 2010 Overview What and Where of Synchronization Synchronization Delivery Strategies o Synchronous Ethernet o IEEE 1588-2008

More information

THETARAY ANOMALY DETECTION

THETARAY ANOMALY DETECTION NEPTUNE 0100110001101111011100100110010101101101001000000110100101110 0000111001101110101011011010010000001100100011011110110110001 1011110111001000100000011100110110100101110100001000000110000 1011011010110010101110100001011000010000001100011011011110110

More information

Synchronization in Mobile Backhaul

Synchronization in Mobile Backhaul Synchronization in Mobile Backhaul Deployment Topologies & Synchronization Service Tools Anthony Magee, ITSF 2011, Edinburgh Agenda Deployment Topologies Managing Multiple Mobile Operators LTE Advanced

More information

ITU-T Q13/15activity and its relation with the leap second. Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions

ITU-T Q13/15activity and its relation with the leap second. Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions ITU-T Q13/15activity and its relation with the leap second Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions Q13/15 Network synchronization and time distribution performance Q13 has already studied

More information

White Paper: New Needs for Synchronization Testing in Next Generation Networks

White Paper: New Needs for Synchronization Testing in Next Generation Networks White Paper: New Needs for Synchronization Testing in Next Generation Networks Next generation networks (NGN) combine the traditional synchronous SDH/SONET networks with packet-based (IP/Ethernet) networks

More information

KillTest. Mejor calidad Mejor servicio. Renovación gratuita dentro de un año

KillTest. Mejor calidad Mejor servicio. Renovación gratuita dentro de un año KillTest Mejor calidad Mejor servicio Examen Renovación gratuita dentro de un año Exam : 4A0-M01 Title : Alcatel-Lucent IP/MPLS Mobile Backhaul Transport Version : Demo 1 / 8 1.When researching carrier-class

More information

OPTI-6100 Series Optical Access Multi-Service Provisioning Platform (MSPP)

OPTI-6100 Series Optical Access Multi-Service Provisioning Platform (MSPP) OPTI-6100 Series Optical Access Multi-Service Provisioning Platform (MSPP) OPTI-6100 Series A high-density, compact, multi-service optical access and aggregation platform. Service providers globally have

More information

Mobile Backhaul Business Class Ethernet Wave Division Multiplexing Aggregation Switching SERVICE PROVIDER

Mobile Backhaul Business Class Ethernet Wave Division Multiplexing Aggregation Switching SERVICE PROVIDER Mobile Backhaul Business Class Ethernet Wave Division Multiplexing Aggregation Switching SERVICE PROVIDER CARRIER GRADE SOLUTIONS FOR SERVICE PROVIDERS Transition s suite of carrier grade products are

More information

IEEE1588 profile development in ITU-T

IEEE1588 profile development in ITU-T IEEE1588 profile development in ITU-T Michael Mayer Ciena Corporation March, 2012 Ciena 2011 Outline -General approach to Profile development in ITU-T -Review of IEEE1588 -Telecom architecture: how it

More information

Best Practices for Implementing PTP in the Power Industry. Larry Thoma

Best Practices for Implementing PTP in the Power Industry. Larry Thoma Best Practices for Implementing PTP in the Power Industry Larry Thoma 2018 by Schweitzer Engineering Laboratories, Inc. All rights reserved. All brand or product names appearing in this document are the

More information

Synchronization in Microwave Networks

Synchronization in Microwave Networks T E C H N O L O G Y W H I T E P A P E R Synchronization in Microwave Networks Network transformation, driven by IP services and Ethernet technologies, presents multiple challenges. Equally important to

More information

Synchronous Ethernet A RAD White Paper

Synchronous Ethernet A RAD White Paper Synchronous Ethernet A RAD White Paper Yaakov (J) Stein, Chief Scientist, RAD Data Communications, Ltd. Alon Geva, Timing specialist, RAD Data Communications, Ltd. Abstract As more and more traffic is

More information

1588v2 Performance Validation for Mobile Backhaul May Executive Summary. Case Study

1588v2 Performance Validation for Mobile Backhaul May Executive Summary. Case Study Case Study 1588v2 Performance Validation for Mobile Backhaul May 2011 Executive Summary Many mobile operators are actively transforming their backhaul networks to a cost-effective IP-over- Ethernet paradigm.

More information

802.11n in the Outdoor Environment

802.11n in the Outdoor Environment POSITION PAPER 802.11n in the Outdoor Environment How Motorola is transforming outdoor mesh networks to leverage full n advantages Municipalities and large enterprise customers are deploying mesh networks

More information

ALCATEL-LUCENT 9500 MICROWAVE PACKET RADIO RELEASE 3 ANSI

ALCATEL-LUCENT 9500 MICROWAVE PACKET RADIO RELEASE 3 ANSI ALCATEL-LUCENT 9500 MICROWAVE PACKET RELEASE 3 ANSI The Alcatel-Lucent 9500 Microwave Packet Radio (MPR) addresses all microwave applications with a single product family for all traffic (TDM/IP/hybrid)

More information

NGN Standards. The 5th International Telecom Sync Forum, ITSF London, November Stefano Ruffini Ericsson

NGN Standards. The 5th International Telecom Sync Forum, ITSF London, November Stefano Ruffini Ericsson NGN Standards The 5th International Telecom Sync Forum, ITSF London, November - 2007 Stefano Ruffini Ericsson stefano.ruffini@ericsson.com Presentation outline Synchronization in the Standards: from Traditional

More information

Mission Critical MPLS in Utilities

Mission Critical MPLS in Utilities Mission Critical MPLS in Utilities The Technology to Support Evolving Networks Application Note February 2017 Mission Critical MPLS in Utilities The Technology to Support Evolving Networks Abstract This

More information

ITU-T G.8262/Y.1362 (08/2007) Timing characteristics of synchronous Ethernet equipment slave clock (EEC)

ITU-T G.8262/Y.1362 (08/2007) Timing characteristics of synchronous Ethernet equipment slave clock (EEC) International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8262/Y.1362 (08/2007) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Packet over Transport

More information

BUILDING BETTER BACKHAUL EVERYWHERE DRAGONWAVE BROCHURE

BUILDING BETTER BACKHAUL EVERYWHERE DRAGONWAVE BROCHURE BUILDING BETTER BACKHAUL EVERYWHERE DRAGONWAVE BROCHURE BUILDING BETTER BACKHAUL EVERYWHERE As service providers and enterprises scale their wireless access networks to enable powerful new applications

More information

CWDM CASE STUDY DESIGN GUIDE. Line Systems, Inc. uses iconverter CWDM Multiplexers to overlay Ethernet onto SONET rings

CWDM CASE STUDY DESIGN GUIDE. Line Systems, Inc. uses iconverter CWDM Multiplexers to overlay Ethernet onto SONET rings DESIGN GUIDE CWDM CASE STUDY Line Systems, Inc. uses iconverter CWDM Multiplexers to overlay Ethernet onto SONET rings 140 Technology Drive, Irvine, CA 92618 USA 800-675-8410 +1 949-250-6510 www.omnitron-systems.com

More information

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital networks Design objectives for digital networks

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital networks Design objectives for digital networks I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T G.811 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Amendment 1 (04/2016) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL

More information

KHUSHI COMMUNICATIONS

KHUSHI COMMUNICATIONS KHUSHI COMMUNICATIONS PVT. LTD. Empowering Innovative Solution NETWORK SYNCHRONIZATION EMBEDDED CLOCK FOR SMALL CELL ETHERNET & IP TESTING IP SECURITY & PERFORMANCE OPTICAL TESTING KHUSHI COMMUNICATIONS

More information

DELIVERING SCALABLE AND COST- EFFECTIVE HETNET BACKHAUL

DELIVERING SCALABLE AND COST- EFFECTIVE HETNET BACKHAUL Solution Brief DELIVERING SCALABLE AND COST- EFFECTIVE HETNET BACKHAUL NEC and Juniper Networks Help Mobile Operators and Wholesale Providers Deliver Next-Generation Macro and Small Cell Packet Backhaul

More information

Alcatel-Lucent 1675 LambdaUnite MultiService Switch

Alcatel-Lucent 1675 LambdaUnite MultiService Switch Alcatel-Lucent 1675 LambdaUnite MultiService Switch Versatile switching platform designed to meet today s network requirements and to drive future network trends LambdaUnite MultiService Switch (MSS) is

More information

Final draft ETSI EN V1.2.1 ( )

Final draft ETSI EN V1.2.1 ( ) Final draft EN 300 462-2-1 V1.2.1 (2002-01) European Standard (Telecommunications series) Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 2-1: Synchronization

More information

ITU-T G /Y

ITU-T G /Y I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8271.1/Y.1366.1 (08/2013) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL

More information

Alcatel-Lucent 1850 Transport Service Switch Product Portfolio. Seamlessly migrate to a Packet Transport Network

Alcatel-Lucent 1850 Transport Service Switch Product Portfolio. Seamlessly migrate to a Packet Transport Network Alcatel-Lucent 1850 Transport Service Switch Product Portfolio Seamlessly migrate to a Packet Transport Network The Alcatel-Lucent 1850 Transport Service Switch (TSS) products are a family of Packet Optical

More information

NetAnalyst Test Management Software Automated, Centralized Network Testing. NetComplete Service Assurance Solutions Portfolio

NetAnalyst Test Management Software Automated, Centralized Network Testing. NetComplete Service Assurance Solutions Portfolio NetAnalyst Test Management Software Automated, Centralized Network Testing NetComplete Service Assurance Solutions Portfolio Ensure High Quality of Service with NetAnalyst As telecommunications networks

More information

MOTOROLA EXPEDIENCE TECHNICAL OVERVIEW

MOTOROLA EXPEDIENCE TECHNICAL OVERVIEW MOTOROLA EXPEDIENCE TECHNICAL OVERVIEW EXPEDIENCE TECHNICAL OVERVIEW a) Introduction Motorola s EXPEDIENCE Platform is an Indoor NLOS (Non Line Of Sight) Wireless Broadband platform specifically optimized

More information

Planning for time - deploying Telecoms Boundary Clocks

Planning for time - deploying Telecoms Boundary Clocks Planning for time - deploying Telecoms Boundary Clocks ITSF 2012 Ken Hann Artwork: Tanja Hann Review of the Sync landscape Migration from Legacy Land Driven by cost and capacity Migration to Land of Phase

More information

Alcatel 1671 Service Connect

Alcatel 1671 Service Connect Alcatel 1671 Service Connect Service providers are looking for a solution that allows them to realize advanced capabilities today, while charting a clear migration strategy from traditional equipment to

More information

Phase Synchronisation the standards and beyond

Phase Synchronisation the standards and beyond Phase Synchronisation the standards and beyond Supporting Your Phase Network Chris Farrow Technical Services Manager Christian.Farrow@chronos.co.uk 3rd June 2015 Chronos Technology: COMPANY PROPRIETARY

More information

ITU-T G /Y

ITU-T G /Y I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8271.1/Y.1366.1 (10/2017) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL

More information

HigH THrougHpuT MeeTs Low TCo. THe etherhaul TM wireless BaCkHauL. 4Gon Tel: +44 (0) Fax: +44 (0)

HigH THrougHpuT MeeTs Low TCo. THe etherhaul TM wireless BaCkHauL. 4Gon   Tel: +44 (0) Fax: +44 (0) HigH THrougHpuT MeeTs Low TCo THe etherhaul TM e-band wireless BaCkHauL Shifting the Wireless Backhaul Paradigm Siklu s -1200 is a carrier-class, high-capacity E-band radio that dramatically lowers the

More information

Mobile Network Evolution

Mobile Network Evolution ANSI Mobile Network Evolution Eclipse Packet Node, enabling the 4G mobile broadband future The explosive demand for the next-generation mobile user experience is forcing operators to quickly implement

More information

LTE Stretches Synchronization to New Limits

LTE Stretches Synchronization to New Limits WHITE PAPER LTE Stretches Synchronization to New Limits This paper uses the term syntonization to refer to frequency alignment of network clocks. This functionality is also commonly called timing synchronization

More information

Adaptive Coding and Modulation: Enhance Operational Efficiency of Wireless Backhaul

Adaptive Coding and Modulation: Enhance Operational Efficiency of Wireless Backhaul Adaptive Coding and Modulation: Enhance Operational Efficiency of Wireless Backhaul WHITE PAPER With the advent of newer data services and increase in usage of smart phones, there is an increased demand

More information

White Paper. Defining the Future of Multi-Gigabit Wireless Communications. July 2010

White Paper. Defining the Future of Multi-Gigabit Wireless Communications. July 2010 White Paper Defining the Future of Multi-Gigabit Wireless Communications July 2010 2 Introduction The widespread availability and use of digital multimedia content has created a need for faster wireless

More information

WHITE PAPER. Expert Tips for Planning an Industrial Wireless Network. Mike Werning Field Application Engineer, Moxa Americas

WHITE PAPER. Expert Tips for Planning an Industrial Wireless Network. Mike Werning Field Application Engineer, Moxa Americas Expert Tips for Planning an Industrial Wireless Network Mike Werning Field Application Engineer, Moxa Americas Executive Summary Wi-Fi is now present everywhere and people have become comfortable using

More information

Gigabit Wireless Applications Using 60GHz Radios. White Paper

Gigabit Wireless Applications Using 60GHz Radios. White Paper Gigabit Wireless Applications Using 60GHz Radios INTRODUCTION The adoption of each successive generation of Ethernet technology has been driven by the rate at which the cost of the new generation has approached

More information

RME-V01. Digital Instruments. Time and Reference Measurement System

RME-V01. Digital Instruments. Time and Reference Measurement System Digital S.r.l. www.digital-instruments.com Ph. +39 02 66506250 Fax. +39 02 66506103 Introduction 1 is a Time & Reference measurement equipment for GPS or GLONASS based syncronization systems able to check

More information

Header Compression Capacity Calculations for Wireless Networks

Header Compression Capacity Calculations for Wireless Networks Header Compression Capacity Calculations for Wireless Networks Abstract Deployment of wireless transport in a data-centric world calls for a fresh network planning approach, requiring a balance between

More information

OSA 5410 Series. PTP grandmaster, GNSS receiver and sync probe. Your benefits

OSA 5410 Series. PTP grandmaster, GNSS receiver and sync probe. Your benefits OSA 5410 Series PTP grandmaster, GNSS receiver and sync probe Radio access network (RAN) technology is evolving. Reliable and highly precise delivery of phase, frequency and time-of-day synchronization

More information

Network Modernization: A TDM to IP Solution

Network Modernization: A TDM to IP Solution Independent market research and competitive analysis of next-generation business and technology solutions for service providers and vendors Network Modernization: A TDM to IP Solution A Heavy Reading white

More information

GPS Vulnerability Report

GPS Vulnerability Report GPS Vulnerability Report Prepared by Alliance of Telecommunications Industry Solutions Synchronization Committee March 19 th 2016 Table of Contents About ATIS Report Objective Timing Performance Requirements

More information

IEEE 1588 PTP clock synchronization over a WAN backbone

IEEE 1588 PTP clock synchronization over a WAN backbone Whitepaper IEEE 1588 PTP clock synchronization over a WAN backbone A field study comparing PTP clock synchronization accuracy against GPS external time reference in a live production WAN environment Contents

More information

NEXT GENERATION BACKHAUL NETWORKS

NEXT GENERATION BACKHAUL NETWORKS NEXT GENERATION BACKHAUL NETWORKS AVIAT NETWORKS Presented By Vishnu Sahay 1 Visionary Adaptive Agile 2 AVIAT NETWORKS May 18, 2010 By Your Side Evolving Backhaul Requirements Base Stations with 50 Mbit/s

More information

Timing and Synchronization Configuration Guide, Cisco IOS XE Everest (Cisco ASR 920 Routers)

Timing and Synchronization Configuration Guide, Cisco IOS XE Everest (Cisco ASR 920 Routers) Timing and Synchronization Configuration Guide, Cisco IOS XE Everest 16.5.1 (Cisco ASR 920 Routers) First Published: 2017-03-23 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose,

More information

building better backhaul Dragonwave Product Guide

building better backhaul Dragonwave Product Guide building better backhaul EVERywhere Dragonwave Product Guide building better backhaul EVERywhere As service providers and enterprises scale their wireless access networks to enable powerful new applications

More information