Figure 10.1 Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing.

Size: px
Start display at page:

Download "Figure 10.1 Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing."

Transcription

1 Figure. Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing. (a) PCI =,,, 4 4 PCI =, PCI = 6, Link/Port RT Link/Port RT Link/Port RT In Port PCI 4 Out Port PCI 4 6 Port In PCI 4 Out Port PCI In Port PCI 6 Out Port PCI 4 (b) VC VC VP VC VC 4 VP VP switch VP VP VC VC 4 VC 5 VC 6 PCI = protocol connection identifier RT = routing table VP = virtual path VC = virtual channel VC 5 VC 6 VP VP VC VC (c) VP VC VC VC switch VC VC VP VP VC VC VC VC 4 VP VP VC VC VC VC VP Pearson Education Limited

2 Figure. ATM cell formats: (a) user network segment; (b) within network, network network interface. (a) Bits (b) Header Payload 5 Octets PTI: user data, no congestion, SDU type user data, no congestion, SDU type user data, congestion, SDU type user data, congestion, SDU type Network control GFC = generic flow control VPI = virtual path identifier VCI = virtual channel identifier PTI = payload type identifier CLP = cell loss priority HEC = header error checksum Pearson Education Limited

3 Figure. ATM switch architectures: (a) general structure; (b) time-division bus schematic; (c) fully-connected matrix switch. (a) Input ports Output ports Input links Output links (b) IC = input controller OC = output controller N time (c) cell arrival time Matrix switch Routing addresses Pearson Education Limited

4 Figure.4 Delta switch matrix example. Pearson Education Limited

5 Figure.5 Batcher Banyan switch matrix. Pearson Education Limited

6 Figure.6 ATM protocol architecture. Pearson Education Limited

7 Figure.7 ATM adaption layer: (a) service class relationship; (b) sublayer protocols and their functions. Pearson Education Limited

8 Figure.8 SAR protocol data unit types: (a) AAL ; (b) AAL. Pearson Education Limited

9 Figure.9 CS and SAR PDU formats: (a) AAL/4; (b) AAL 5. Pearson Education Limited

10 Figure. Principle of operation of generic cell rate algorithm. Time, t T = /PCR CDVT (i) Cell Cell (ii) Cell Cell Cells meeting contract (iii) Cell Cell (iv) Cell Cell Cell violating contract t PCR = peak cell rate t + T CDVT = cell delay variation time Pearson Education Limited

11 Figure. ATM LAN schematic. Pearson Education Limited

12 Figure. ATM LAN routing example: (a) network segment; (b) example routing table entries. (a) 4 (b) In Out In Out RCU : Port VPI VCI Port VPI VCI Port VPI VCI Port VPI VCI SC CC CLS SC CC CLS Pearson Education Limited

13 Figure. Continued (b cont.) In Out In Out RCU : Port VPI VCI Port VPI VCI Port VPI VCI Port VPI VCI SC CC CLS SC CC CLS In Out In Out SW : Port VPI VCI Port VPI VCI Port VPI VCI Port VPI VCI SC CC CLS SC CC CLS = In Out In Out SW : Port VPI VCI Port VPI VCI Port VPI VCI Port VPI VCI SC CC CLS SC CC CLS CLS' Z 4 4 Y 4 Y 6 Z 4 4 Y 4 Y 6 Z Z = Y = /5 Z = 64 In Out In Out CLS: VPI VCI VPI VCI VPI VCI VPI VCI 6 Y Y Y Y 6 = Y = /5 SCP: Calls in progress Signaling channel VPI VCI Call channels In Out Port VPI VCI Port VPI VCI Call type details 4 5 Y Y SC = signaling channel CLS = workstation/cls channel CC = call channel CLS' = CLS/server channel Pearson Education Limited

14 Figure. LAN emulation: (a) terminology and networking components; (b) unicast protocol architecture; (c) multicast protocol architecture. Pearson Education Limited

15 Figure. Continued Pearson Education Limited

16 Figure.4 Protocol architecture to support classical IP over an ATM LAN. Pearson Education Limited

17 Figure.5 DQDB/MAN network architectures: (a) single-site MAN; (b) dual-site private network; (c) wide area multiple MAN network. (a) > 5 km ( miles) Looped bus MAN (4/45/4/55 Mbps) Dual contradirectional buses Access node/customer network interface unit = bridge/router (b) Main site IGW Subnetwork routers IGW Remote site Looped bus (4/55 Mbps) Interconnecting leased circuit (4/45 Mbps) Open bus (4/45 Mbps) = private branch exchange IGW = isochronous gateway (c) City/MAN A City/MAN B Intercity duplex circuits (4/45/4/55 Mbps) MSS = MAN switching system City/ MAN C Pearson Education Limited

18 Figure.6 DQDB architectures: (a) open bus; (b) looped bus; (c) example reconfigured looped bus networks. (a) Read Write Bus A Head of Bus A Head of Bus B Bus B Write Read (b) Head of Bus B Head of Bus A = slot generator = bus terminator Bus A Bus B Bus B (c) Bus A Bus A Head of Bus B Bus B Bus B Bus A Head of Bus B Head of Bus A Head of Bus A Bus A (i) Link failure (ii) Node failure Pearson Education Limited

19 Figure.7 DQDB protocol architecture: (a) layer functions; (b) example physical layer convergence function. Pearson Education Limited

20 Figure.8 DQDB access control principles: (a) request/busy bits; (b) request counters; (c) queuing mechanism. Pearson Education Limited

21 Figure.9 Flowchart of the algorithm used to control the transmission and reception of segments on busa of a dual bus DQDB subnetwork. Pearson Education Limited

22 Figure. Bandwidth balancing: (a) unfairness effect; (b) remedial actions; (c) effect on mean access delay. Pearson Education Limited

23 Figure. Priority access control: (a) no segments waiting; (b) segments queued at priority. Pearson Education Limited

24 Figure. Slot and segment formats: (a) slot header; (b) connectionless data segment format. Pearson Education Limited

25 Figure. SMDS internetworking protocol architectures: (a) bridges; (b) routers. Pearson Education Limited

26 Figure.4 Frame transmission overheads: (a) initial MAC PDU format; (b) frame segmentation. Pearson Education Limited

27 Figure.5 Connectionless working over wide area ATM networks: (a) ATM MAN switching network; (b) broadband ISDN. Pearson Education Limited

28 Summary Figure.6 Broadband ATM networks, chapter summary. Broadband ATM networks Cells Cell switching Statistical multiplexing Asynchronous transfer mode (ATM) Cell format Switch architectures Non-blocking/blocking Self-routing Protocol architecture ATM adaptation layer (AAL) (AAL,, /4, 5) ATM layer (CBR, VBR(RT/NRT), ABR, UBR) ATM LANs ATM MANs (DQDB) Architecture Call processing (LAN emulation, IP-over-ATM) MAC protocol Protocol architecture (SMDS/CBDS) ATM WANs Pearson Education Limited

29 Example. A segment of an ATM network is shown in Figure.(a). The numbers alongside each RCU/switch are the port identifiers. Assume that semipermanent VCs are to be set up by network management between stations A, B, C and D, firstly, to the SCP for on-demand calls for both signaling and information transfer and secondly, to the CLS/LES for the cell streams relating to connectionless calls. Also, assume that a separate VC is required to connect the server to the CLS/LES. Derive typical routing table entries for RCU and RCU and SW and SW to provide these connections assuming VP-only switching is used within the network switches and, within the RCUs, the VPI/VCI field is used to identify specific calls/stations. Answer: A suitable set of routing table entries is given in Figure.(b). Note the following points when interpreting the entries: The SCP, CLS, and server are all connected to their switches by separate transmission lines. For on-demand calls, two separate VCs are shown: one between each workstation and the SCP for the signaling messages associated with a call the signaling channel (SC) and the other for the cell streams associated with the call the call channel (CC). Since the latter are to be semipermanent, they are shown set up between each workstation and SW. Alternatively, they could be set up on demand by the SCP between each pair of workstations involved in a call. For connectionless traffic, a separate VC is required between each workstation and the CLS and also between the CLS and the server. The SCP, CLS, and server all use the combined VPI/VCI in the cell header to identify the cells relating to specific calls/server transactions. Pearson Education Limited

30 . Continued On the station side of each RCU, the VCI field identifies the port number and hence station within each virtual path. Also, in this example, only three virtual paths are required per RCU rather than per station. This allows the approach to be scaled to large installations. Within the network, all switching is carried out using VPIs only. To set up an on-demand call, the SCP creates entries in the routing table of SW to link the port/vci of the calling party to that of the called party. For connectionless traffic, when relaying the cell streams received from each station to the server, the CLS assigns a new VPI/VCI. Also, in order to relay the cell streams in the reverse direction, it maintains a table that maps the incoming VPI/VCI from the stations to those used for communicating with the server. When responding to a request, the server uses the same VPI/VCI values for the cells making up the response as were used in the request. Pearson Education Limited

31 Example. Derive a flowchart showing the steps taken by the queued arbitrated function to effect the transmission of a set of queued segments produced by the MAC convergence function on a single bus of a dual-bus DQDB subnetwork. Answer: A flowchart showing the steps to control the transmission of segments on bus A is given in Figure.9. Consider the following points when interpreting the figure: On receipt of a full slot on either bus, the queued arbitrated function simply passes the contents of the slot payload directly to the MAC convergence function. This function determines whether the segment is intended for this node. Only a single segment can be queued for transmission by the queued arbitrated function at one time. Hence only after this function has transmitted a segment does it return to the output queue of the MAC convergence function to determine whether another segment is awaiting transmission. Pearson Education Limited

32 Example. A 5-octet MAC frame is to be transferred across an SMDS/DQDB subnetwork. Stating clearly any assumptions you make, derive the number of queued arbitrated slots that are required to carry out the transfer and hence the total number of overhead octets involved. Answer: With reference to Figure.4(b): MAC convergence protocol: adds octets to make the frame 5 octets which is an integral multiple of 4 octets; assuming a header extension and CRC are not used, a 4-octet header and a 4-octet trailer are added to create a ( ) 54-octet IMPDU; total overheads = = octets; after segmentation, the IMPDU requires DMPDUs: containing a full complement of 44 octets and one with octets; total overheads are 4 for each of the DMPDUs (= 5) plus for the part-full EOM DMPDU. Queued arbitrated (QA) sublayer: a further 5 octets are added to each 48-octet DMPDU to create QA slots; total overheads = 5 = 65 octets. Pearson Education Limited

33 . Continued Physical layer: a further 4-octet header is added to each QA slot; total overheads = 4 = 5 octets. In summary: QA slots required = ; total overheads = = octets. Pearson Education Limited

Asynchronous Transfer Mode

Asynchronous Transfer Mode ATM Asynchronous Transfer Mode CS420/520 Axel Krings Page 1 Protocol Architecture (diag) CS420/520 Axel Krings Page 2 1 Reference Model Planes User plane Provides for user information transfer Control

More information

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching.

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching. Asynchronous Transfer Mode (ATM) Networks! All source media is first broken down into a stream of fixed sized units known as cells.! Cell streams relating to different media types are multiplexed together

More information

Chapter 10. Circuits Switching and Packet Switching 10-1

Chapter 10. Circuits Switching and Packet Switching 10-1 Chapter 10 Circuits Switching and Packet Switching 10-1 Content Switched communication networks Circuit switching networks Circuit-switching concepts Packet-switching principles X.25 (mentioned but not

More information

A T M. Cell Switched Technology. not SMDS. Defacto Standard Multimedia capable Use with SONET or SDH. Fixed Length - 53 bytes. DigiPoints Volume 1

A T M. Cell Switched Technology. not SMDS. Defacto Standard Multimedia capable Use with SONET or SDH. Fixed Length - 53 bytes. DigiPoints Volume 1 A T M Cell Switched Technology Fixed Length - 53 bytes not SMDS Defacto Standard Multimedia capable Use with SONET or SDH SCTE VA 12.1 SONET Optical Carrier (OC) Rates and SDH Synchronous Transport Module

More information

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline ATM Asynchronous Transfer Mode these slides are based on USP ATM slides from Tereza Carvalho 1 ATM Networks Outline ATM technology designed as a support for ISDN Definitions: STM and ATM Standardization

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS INTRODUCTION ATM stands for Asynchronous Transfer Mode ATM is a flexible high bandwidth, low delay network technology that is: Capable of handling voice, video and data

More information

Module 10 Frame Relay and ATM

Module 10 Frame Relay and ATM Module 10 Frame Relay and ATM Lesson 34 ATM: Concepts And Header 10.2.1 INTRODUCTION IP has a varying packet size which causes no problem while multiplexing but makes switching difficult. ATM uses a fixed

More information

ATM Logical Connections: VCC. ATM Logical Connections: VPC

ATM Logical Connections: VCC. ATM Logical Connections: VPC ATM Logical Connections: VCC Logical Connections in ATM are referred to as virtual channel connections (VCCs). Virtual channel (VC) is a generic term used to describe unidirectional transport of ATM cells

More information

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets Cell Switching (ATM) Connection-oriented packet-switched network Used in both WAN and LAN settings Signaling (connection setup) Protocol: Q2931 Specified by ATM forum Packets are called cells 5-byte header

More information

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy)

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy) ATM Asynchronous Transfer Mode (and some SDH) (Synchronous Digital Hierarchy) Why use ATM? Circuit switched connections: After initial setup no processing in network nodes Fixed bit rates, fixed time delay

More information

ATM Technology in Detail. Objectives. Presentation Outline

ATM Technology in Detail. Objectives. Presentation Outline ATM Technology in Detail Professor Richard Harris Objectives You should be able to: Discuss the ATM protocol stack Identify the different layers and their purpose Explain the ATM Adaptation Layer Discuss

More information

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis Broadband ISDN 3BA33 David Lewis 3BA33 D.Lewis 2007 1 B-ISDN Model has 3 planes User Control Management 3BA33 D.Lewis 2007 3 Broadband ISDN Was Expected to be the Universal Network of the future Takes

More information

Wireless Networks. Communication Networks

Wireless Networks. Communication Networks Wireless Networks Communication Networks Types of Communication Networks Traditional Traditional local area network (LAN) Traditional wide area network (WAN) Higher-speed High-speed local area network

More information

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections 168 430 Computer Networks Chapter 11 Asynchronous Transfer Mode Protocol Architecture Similarities between ATM and packet switching Transfer of data in discrete chunks Multiple logical connections over

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode William Stallings Data and Computer Communications 7 th Edition Chapter 11 Asynchronous Transfer Mode Protocol Architecture Similarities between ATM and packet switching Transfer of data in discrete chunks

More information

Asynchronous. nous Transfer Mode. Networks: ATM 1

Asynchronous. nous Transfer Mode. Networks: ATM 1 Asynchronous nous Transfer Mode (ATM) Networks: ATM 1 Issues Driving LAN Changes Traffic Integration Voice, video and data traffic Multimedia became the buzz word One-way batch Two-way batch One-way interactive

More information

Switched Multimegabit Data Service (SMDS)

Switched Multimegabit Data Service (SMDS) CHAPTER 14 Switched Multimegabit Data Service (SMDS) Background Switched Multimegabit Data Service (SMDS) is a high-speed, packet-switched, datagram-based WAN networking technology used for communication

More information

Module 10 Frame Relay and ATM

Module 10 Frame Relay and ATM Module 10 Frame Relay and ATM Lesson 35 ATM: Virtual Path, Virtual Channel. ATM Adaptation Layer (AAL) 10.3.1 VIRTUAL PATH AND VIRTUAL CHANNEL Connection between two endpoints is accomplished through virtual

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS ATM SWITCHING ATM is a connection-oriented transport concept An end-to-end connection (virtual channel) established prior to transfer of cells Signaling used for connection

More information

CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514

CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514 Lecture 11 Asynchronous Transfer Mode () Outline Introduction Virtual Circuit Setup PVC vs. SVC Quality of Service and Congestion Control IP over and Frame Relay interworking Network (integrated voice,

More information

Communication Networks

Communication Networks Communication Networks Chapter 3 Multiplexing Frequency Division Multiplexing (FDM) Useful bandwidth of medium exceeds required bandwidth of channel Each signal is modulated to a different carrier frequency

More information

Asynchronous Transfer Mode (ATM) ATM concepts

Asynchronous Transfer Mode (ATM) ATM concepts Asynchronous Transfer Mode (ATM) Asynchronous Transfer Mode (ATM) is a switching technique for telecommunication networks. It uses asynchronous time-division multiplexing,[1][2] and it encodes data into

More information

Switched Multimegabit Data Service

Switched Multimegabit Data Service CHAPTER 14 Chapter Goals Tell how SMDS works, and describe its components. Describe the operational elements of the SMDS environment, and outline its underlying protocol. Discuss related technologies.

More information

Cell Format. Housekeeping. Segmentation and Reassembly AAL 3/4

Cell Format. Housekeeping. Segmentation and Reassembly AAL 3/4 Housekeeping 1 st Project Handout ue Friday Oct 5 Quiz: Friday Sept 21 Material covered so far 1 st Test October 12 Cell Format User-Network Interface (UNI) 4 8 16 3 1 GFC VPI VCI Type CLP 8 HEC (CRC-8)

More information

ATM Networks. Raj Jain

ATM Networks. Raj Jain ATM Networks Professor of Computer and Information Sciences The Ohio State University Columbus, OH 43210-1277 http://www.cis.ohio-state.edu/~jain/ 1 Overview ATM: Overview ATM Protocol Layers Network Interfaces

More information

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM CISC452 Telecommunications Systems Lesson 6 Frame Relay and ATM 1 Technology Comparison Private Line X.25 SMDS Frame Relay ATM IP Speed 56K - 622M 9.6K - 2.048M 56K - 34M Dial - 45M 1.5M - 622M Dial -

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

Packet Switching. Hongwei Zhang Nature seems to reach her ends by long circuitous routes.

Packet Switching. Hongwei Zhang  Nature seems to reach her ends by long circuitous routes. Problem: not all networks are directly connected Limitations of directly connected networks: limit on the number of hosts supportable limit on the geographic span of the network Packet Switching Hongwei

More information

DQDB. Distributed Queue Dual Bus (DQDB) DQDB is a MAN. Unlike FDDI, DQDB is an IEEE standard: 802.6

DQDB. Distributed Queue Dual Bus (DQDB) DQDB is a MAN. Unlike FDDI, DQDB is an IEEE standard: 802.6 DQDB Distributed Queue Dual Bus (DQDB) DQDB is a MAN. Unlike FDDI, DQDB is an IEEE standard: 802.6 1 Topology: Dual Bus DQDB (cont d) Head End Host Host Host Host Head End 2 DQDB Frame Format 53-byte frame

More information

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites Asynchronous Transfer Mode Page 12.i DigiPoints Volume 1 Module 12 Asynchronous Transfer Mode Summary This last module of, covers ATM, and provides an end-to-end data communications model that draws on

More information

ATM Networks: An Overview

ATM Networks: An Overview ATM Networks: An Overview Professor of Computer and Information Sciences Columbus, OH 43210-1277 http://www.cis.ohio-state.edu/~jain/ 2-1 MBone Instructions Handouts for the class are available on-line:

More information

HWP2 Application level query routing HWP1 Each peer knows about every other beacon B1 B3

HWP2 Application level query routing HWP1 Each peer knows about every other beacon B1 B3 HWP2 Application level query routing HWP1 Each peer knows about every other beacon B2 B1 B3 B4 B5 B6 11-Feb-02 Computer Networks 1 HWP2 Query routing searchget(searchkey, hopcount) Rget(host, port, key)

More information

ATM Asynchronous Transfer Mode revisited

ATM Asynchronous Transfer Mode revisited ATM Asynchronous Transfer Mode revisited ACN 2007 1 ATM GOAL To establish connections between an arbitrary number of hosts...... over channels that fulfills a certain QoS level. -> ATM networks make it

More information

1997, Scott F. Midkiff 1

1997, Scott F. Midkiff 1 Welcome to! Loooooooooooooooots of acronyms! By Scott Midkiff ECpE/CS 5516, VPI Spring 1997 (modified by Marc Abrams for Spring 1998) A lot of what s in came from the phone and ing worlds, not the LAN

More information

Lecture 03 Chapter 11 Asynchronous Transfer Mode

Lecture 03 Chapter 11 Asynchronous Transfer Mode NET 456 High Speed Networks Lecture 03 Chapter 11 Asynchronous Transfer Mode Dr. Anis Koubaa Reformatted slides from textbook Data and Computer Communications, Ninth Edition by William Stallings, 1 (c)

More information

Packet Switching Techniques

Packet Switching Techniques Packet Switching Techniques 188lecture3.ppt Pasi Lassila 1 Problem Aim: Build larger networks connecting more users also spanning different network technologies Shared media networks limited number of

More information

This Lecture. BUS Computer Facilities Network Management X.25. X.25 Packet Switch. Wide Area Network (WAN) Technologies. X.

This Lecture. BUS Computer Facilities Network Management X.25. X.25 Packet Switch. Wide Area Network (WAN) Technologies. X. This ecture BUS350 - Computer Facilities Network Management Wide rea Network (WN) Technologies. X.5 Frame Relay TM Faculty of Information Technology Monash University Faculty of Information Technology

More information

ATM networks. C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory

ATM networks. C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory ATM networks C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Issues Driving LAN Changes Traffic Integration Voice, video and data

More information

Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN)

Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN) Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN) Petr Grygárek rek 1 ATM basic characteristics Integrates transfer of voice, video, data and other media using statistical al multiplexing ing multiplexes

More information

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross Part 5: Link Layer Technologies CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross 1 Outline PPP ATM X.25 Frame Relay 2 Point to Point Data Link Control One sender, one receiver,

More information

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction Areas for Discussion Packet Switching - Asynchronous Transfer Mode 3.3 Cell Switching (ATM) Introduction Cells Joseph Spring School of Computer Science BSc - Computer Network Protocols & Arch s Based on

More information

Administrivia. Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook

Administrivia. Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook Administrivia Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook Project Discussion class_ gotcha Reading finally on webpage

More information

Introduction. ATM Technology. What is ATM? Agenda

Introduction. ATM Technology. What is ATM? Agenda Introduction Technology Asynchronous Transfer Mode Principles, ing, AAL, Signaling In 1986 the CCITT (now ITU-T) adopted as background technology for B-ISDN B-ISDN intended to replace several widespread

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

Appendix 5 - ATM Technology in Detail

Appendix 5 - ATM Technology in Detail Technology Asynchronous Transfer Mode Principles, Layering, AAL, Signaling Agenda Introduction Reference Model Physical Layer Layer Switching Details Adaptation Layer Signaling and Addressing Technology,

More information

WAN Technologies (to interconnect IP routers) Mario Baldi

WAN Technologies (to interconnect IP routers) Mario Baldi WAN Technologies (to interconnect IP routers) Mario Baldi www.baldi.info WAN_Technologies - 1 Copyright: see page 2 Copyright Notice This set of transparencies, hereinafter referred to as slides, is protected

More information

Advanced Internet Technologies

Advanced Internet Technologies Advanced Internet Technologies Chapter 2 ATM Dr.-Ing. Falko Dressler Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/

More information

Ethernet Switches (more)

Ethernet Switches (more) Ethernet Switches layer 2 (frame) forwarding, filtering using LAN addresses Switching: A-to-B and A - to-b simultaneously, no collisions large number of interfaces often: individual hosts, star-connected

More information

Configuring ATM QoS or Shaping

Configuring ATM QoS or Shaping Configuring ATM QoS or Shaping M7i, M1i, M4e, M12, and M32 routers with 4-port channelized OC3/STM1 Circuit Emulation PICs and 12-port T1/E1 Circuit Emulation PICs support ATM pseudowire service with QoS

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SEED NETWORKS LAYERS The function and associated information of the planes is as follows: The reference model is composed of the following planes: Control lane manages the call and connection.

More information

PRODUCT SUMMARY. SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION

PRODUCT SUMMARY. SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION PRODUCT SUMMARY SARA-Lite ATM AAL0/5 Segmentation and Reassembly Product TheTranSwitchSARA-Lite product provides

More information

Metropolitan Area Networks

Metropolitan Area Networks Metropolitan Area Networks Bridge larger distances than a LAN, usage e.g. within the city range or on a campus Only one or two cables, no switching elements. Thus a simple network design is achieved All

More information

ATM Introduction. The Grand Unification 2005/03/11. (C) Herbert Haas

ATM Introduction. The Grand Unification 2005/03/11. (C) Herbert Haas ATM Introduction The Grand Unification Agenda What is it? Who wants it? Who did it? Header and Switching ATM Layer Hypercube Adaptation Layers Signaling Addresses 2 What is ATM? High-Speed Virtual Circuits

More information

06/02/ Metropolitan Area Networks. Local & Metropolitan Area Networks. 0. Overview. 1. Internetworking ACOE322. Lecture 4

06/02/ Metropolitan Area Networks. Local & Metropolitan Area Networks. 0. Overview. 1. Internetworking ACOE322. Lecture 4 1 Local & Metropolitan Area Networks ACOE322 Lecture 4 Metropolitan Area Networks Dr. L. Christofi 1 0. Overview In this section the following topics will be covered: 1. Internetworking devices 2. Wide

More information

Asynchronous_Transfer_Mode_Switching

Asynchronous_Transfer_Mode_Switching Asynchronous Transfer Mode (ATM) is an International Telecommunication Union-Telecommunications Standards Section (ITU-T) standard for cell relay wherein information for multiple service types, such as

More information

NETWORK PARADIGMS. Bandwidth (Mbps) ATM LANS Gigabit Ethernet ATM. Voice, Image, Video, Data. Fast Ethernet FDDI SMDS (DQDB)

NETWORK PARADIGMS. Bandwidth (Mbps) ATM LANS Gigabit Ethernet ATM. Voice, Image, Video, Data. Fast Ethernet FDDI SMDS (DQDB) 1. INTRODUCTION NETWORK PARADIGMS Bandwidth (Mbps) 1000 ATM LANS Gigabit Ethernet ATM 100 10 Fast Ethernet FDDI SMDS (DQDB) Voice, Image, Video, Data 1 Ethernet/ Token Ring/ Token Bus Frame Relay X.25

More information

Lesson 3 Network technologies - Controlling

Lesson 3 Network technologies - Controlling Lesson 3 Network technologies - Controlling Objectives : Network control or traffic engineering is one of the important techniques in the network. Understanding QoS control, traffic engineering and OAM

More information

Computer Communications and Network Basics p. 1 Overview of Computer Communications and Networking p. 2 What Does Computer Communications and

Computer Communications and Network Basics p. 1 Overview of Computer Communications and Networking p. 2 What Does Computer Communications and Computer Communications and Network Basics p. 1 Overview of Computer Communications and Networking p. 2 What Does Computer Communications and Networking Technologies Mean? p. 3 What Is a Computer Network?

More information

Vanguard Managed Solutions

Vanguard Managed Solutions Vanguard Managed Solutions Vanguard Applications Ware IP and LAN Feature Protocols Asynchronous Transfer Mode Notice 2005 Vanguard Managed Solutions, LLC 575 West Street Mansfield, Massachusetts 02048

More information

Lecture 4 Wide Area Networks - Asynchronous Transfer Mode

Lecture 4 Wide Area Networks - Asynchronous Transfer Mode DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Asynchronous Transfer Mode Mei Yang Based on Lecture slides by William Stallings 1 ATM a streamlined packet transfer interface similarities

More information

Communication Networks

Communication Networks Communication Networks Chapter 7 Connection Oriented Packet Data Networks Communication Networks - 7. Connection Oriented PDNs 236 Overview 1. Fundamentals of Connection-Oriented Packet Switching 2. X.25

More information

SDH. Protected monitoring point or dedicated monitor access

SDH. Protected monitoring point or dedicated monitor access CMA 3000 ATM Test Options SPECIFICATIONS Testing ATM connections has never been easier CMA 3000 is Anritsu s next-generation portable and futureproof field tester for the installation and maintenance of

More information

ITU-T I.150. B-ISDN asynchronous transfer mode functional characteristics

ITU-T I.150. B-ISDN asynchronous transfer mode functional characteristics INTERNATIONAL TELECOMMUNICATION UNION ITU-T I.150 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (02/99) SERIES I: INTEGRATED SERVICES DIGITAL NETWORK General structure General description of asynchronous

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213 UNIT I HIGH SPEED NETWORKS Part A (2 Marks) 1. Differentiate Frame relay and X.25 packet-switching service. -> Call control signaling is carried on

More information

Introduction to ATM Traffic Management on the Cisco 7200 Series Routers

Introduction to ATM Traffic Management on the Cisco 7200 Series Routers CHAPTER 1 Introduction to ATM Traffic Management on the Cisco 7200 Series Routers In the latest generation of IP networks, with the growing implementation of Voice over IP (VoIP) and multimedia applications,

More information

Unspecified Bit Rate Plus and ATM Enhancements

Unspecified Bit Rate Plus and ATM Enhancements Unspecified Bit Rate Plus and ATM Enhancements Last Updated: December 4, 2012 Feature History Release 12.2(2)XB 12.2(8)T Modification The UBR+ and ATM Enhancements for Service Provider Integrated Access

More information

Network Working Group Request for Comments: 2761 Category: Informational February 2000

Network Working Group Request for Comments: 2761 Category: Informational February 2000 Network Working Group Request for Comments: 2761 Category: Informational J. Dunn C. Martin ANC, Inc. February 2000 Terminology for ATM Benchmarking Status of this Memo This memo provides information for

More information

Distributed Queue Dual Bus

Distributed Queue Dual Bus Distributed Queue Dual Bus IEEE 802.3 to 802.5 protocols are only suited for small LANs. They cannot be used for very large but non-wide area networks. IEEE 802.6 DQDB is designed for MANs It can cover

More information

Lecture 22 Overview. Last Lecture. This Lecture. Next Lecture. Internet Applications. ADSL, ATM Source: chapter 14

Lecture 22 Overview. Last Lecture. This Lecture. Next Lecture. Internet Applications. ADSL, ATM Source: chapter 14 Last Lecture Lecture 22 Overview Internet Applications This Lecture ADSL, ATM Source: chapter 14 Next Lecture Wireless Networking Source: chapter 15 COSC244 & TELE202 Lecture 22 - ADSL, ATM 1 Modem Enable

More information

Computer Facilities and Network Management BUS3150 Tutorial - Week 13

Computer Facilities and Network Management BUS3150 Tutorial - Week 13 Computer Facilities and Network Management BUS3150 Tutorial - Week 13 *** FOR TUTORS ONLY *** The answers provided here are only brief guides. If you have any comments or suggestions for improvement to

More information

Configuring Frame Relay-ATM Interworking

Configuring Frame Relay-ATM Interworking Configuring -ATM Interworking The -ATM Interworking features enable and ATM networks to exchange data, despite differing network protocols. There are two types of -ATM Interworking: FRF.5 -ATM Network

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS ATM SERVICE CATEGORIES Service Categories : represent particular combinations of traffic parameters and QoS parameters. These parameters are determined by users for a

More information

ATM Switches. Switching Technology S ATM switches

ATM Switches. Switching Technology S ATM switches ATM Switches Switching Technology S38.65 http://www.netlab.hut.fi/opetus/s3865 9 - ATM switches General of ATM switching Structure of an ATM switch Example switch implementations Knockout switch Abacus

More information

ATM Quality of Service (QoS)

ATM Quality of Service (QoS) ATM Quality of Service (QoS) Traffic/Service Classes, Call Admission Control Usage Parameter Control, ABR Agenda Introduction Service Classes and Traffic Attributes Traffic Control Flow Control Special

More information

Chapter 3 Packet Switching

Chapter 3 Packet Switching Chapter 3 Packet Switching Self-learning bridges: Bridge maintains a forwarding table with each entry contains the destination MAC address and the output port, together with a TTL for this entry Destination

More information

NAME: (Exam :SECTION A) Notes: Any script without a name will receive no points. You must show the calculations for the descriptive questions.

NAME: (Exam :SECTION A) Notes: Any script without a name will receive no points. You must show the calculations for the descriptive questions. SAMPLE TEST from past EXAMS Exam3 Chapters: 14, 19, 21, 23, 24. Type of questions: multiple choices, Fill in the gaps, short answer questions YOU MUST BRING SCANTRON sheets for the multiple choices (4.5

More information

EUROPEAN ETS TELECOMMUNICATION August 1995 STANDARD

EUROPEAN ETS TELECOMMUNICATION August 1995 STANDARD EUROPEAN ETS 300 354 TELECOMMUNICATION August 1995 STANDARD Source: ETSI TC-NA Reference: DE/NA-052729 ICS: 33.040 Key words: Broadband, ISDN, PRM Broadband Integrated Services Digital Network (B-ISDN);

More information

PRACTICES FNC Guide to ATM GUIDE TO ATM CROSS PRODUCT DOCUMENTATION ISSUE 1, JANUARY 2002 FUJITSU NETWORK COMMUNICATIONS, INC.

PRACTICES FNC Guide to ATM GUIDE TO ATM CROSS PRODUCT DOCUMENTATION ISSUE 1, JANUARY 2002 FUJITSU NETWORK COMMUNICATIONS, INC. PRACTICES GUIDE TO ATM CROSS PRODUCT DOCUMENTATION ISSUE 1, JANUARY 2002 FUJITSU NETWORK COMMUNICATIONS, INC. Copyrights, Trademarks, and Disclaimers All products or services mentioned in this document

More information

A comparison of DQDB and FDDI for the interconnection of LANs

A comparison of DQDB and FDDI for the interconnection of LANs Distributed Systems Engineering A comparison of DQDB and FDDI for the interconnection of LANs To cite this article: R Ahmad and F Halsall 1994 Distrib. Syst. Engng. 1 127 View the article online for updates

More information

Teldat Router ATM Doc. DM740-I Rev June, 2003

Teldat Router ATM Doc. DM740-I Rev June, 2003 Teldat Router ATM Doc. DM740-I Rev. 10.10 June, 2003 INDEX Chapter 1 The ATM protocol...1 1. Introduction... 2 2. General Overview of ATM protocol... 3 2.1. Reference Model... 4 2.2. Physical Layer...

More information

Chapter 4 ATM VP-Based Ring Network

Chapter 4 ATM VP-Based Ring Network ATM VP-based network architecture is essentially a compromise of the SONET/STM and ATM network architectures: it takes a system simplicity concept from the SONET/STM network and keeps the flexibility of

More information

Computer Networks (Introduction to TCP/IP Protocols)

Computer Networks (Introduction to TCP/IP Protocols) Network Security(CP33925) Computer Networks (Introduction to TCP/IP Protocols) 부산대학교공과대학정보컴퓨터공학부 Network Type Elements of Protocol OSI Reference Model OSI Layers What we ll learn today 2 Definition of

More information

11. Traffic management in ATM. lect11.ppt S Introduction to Teletraffic Theory Spring 2003

11. Traffic management in ATM. lect11.ppt S Introduction to Teletraffic Theory Spring 2003 lect11.ppt S-38.145 - Introduction to Teletraffic Theory Spring 2003 1 Contents Introduction ATM technique Service categories and traffic contract Traffic and congestion control in ATM Connection Admission

More information

Asynchronous Transfer Mode

Asynchronous Transfer Mode CHAPTER 20 This chapter describes the level of support that Cisco ANA provides for ATM, as follows: Technology Description, page 20-1 Information Model Objects (IMOs), page 20-3 Vendor-Specific Inventory

More information

11. Traffic management in ATM

11. Traffic management in ATM lect11.ppt S-38.145 - Introduction to Teletraffic Theory - Fall 2000 1 Contents Introduction ATM technique Service categories Traffic contract Traffic and congestion control in ATM Connection Admission

More information

Basic concept of ATM communication

Basic concept of ATM communication Lesson 3 AM Network (2days) Basic concept of AM communication Protocol structure of AM network Hardware routing OSI reference model AM network protocols Objectives : AM concepts are typical connection

More information

ASYNCHRONOUS TRANSFER MODE

ASYNCHRONOUS TRANSFER MODE Fundamentals of Telecommunications. Roger L. Freeman Copyright 1999 Roger L. Freeman Published by John Wiley & Sons, Inc. ISBNs: 0-471-29699-6 (Hardback); 0-471-22416-2 (Electronic) 18 ASYNCHRONOUS TRANSFER

More information

Understanding the Variable Bit Rate Real Time (VBR rt) Service Category for ATM VCs

Understanding the Variable Bit Rate Real Time (VBR rt) Service Category for ATM VCs Understanding the Variable Bit Rate Real Time (VBR rt) Service Category for ATM VCs Document ID: 10414 Contents Introduction Prerequisites Requirements Components Used Conventions What is Variable Bit

More information

Appendix 10. Asynchronous Transfer Mode (ATM) The technique of cell relay

Appendix 10. Asynchronous Transfer Mode (ATM) The technique of cell relay Appendix 10 Asynchronous Transfer Mode (ATM) ATM (asynchronous transfer mode) networks were designed to be able to support: usage by multiple users simultaneously; different reat-time (RT) and non-real-time

More information

CN-100 Network Analyzer Product Overview

CN-100 Network Analyzer Product Overview CN-100 Network Analyzer Product Overview CN-100 network analyzers offer an extremely powerful yet cost effective solution for today s complex networking requirements. Test Ethernet or ATM networks with

More information

Intermediate Traffic Management

Intermediate Traffic Management Intermediate Traffic Management This presentation has been generated by the ATM Forum for the purpose of educating the public on ATM Technology and the ATM Forum s activities. This presentation is the

More information

Packet Switching. Guevara Noubir Fundamentals of Computer Networks. Computer Networks: A Systems Approach, L. Peterson, B. Davie, Morgan Kaufmann

Packet Switching. Guevara Noubir Fundamentals of Computer Networks. Computer Networks: A Systems Approach, L. Peterson, B. Davie, Morgan Kaufmann Guevara Noubir Textbook: Chapter 3. Computer Networks: A Systems Approach, L. Peterson, B. Davie, Morgan Kaufmann Outline Store- and- Forward Switches Cell Switching Segmenta?on and Reassembly Bridges

More information

Evaluation of Broadband Networking Technologies: Phase I Report

Evaluation of Broadband Networking Technologies: Phase I Report Evaluation of Broadband Networking Technologies: Phase I Report Sponsor: Sprint David W. Petr Victor S. Frost Lynn A. Neir Ann Demirtjis Cameron Braun Technical Report TISL-9750-1 Telecommunications and

More information

Configuring Frame Relay-ATM Interworking

Configuring Frame Relay-ATM Interworking The Frame Relay-ATM Interworking features enable Frame Relay and ATM networks to exchange data, despite differing network protocols. There are two types of Frame Relay-ATM Interworking: FRF.5 Frame Relay-ATM

More information

Unit_2 The Telephone Network. Shikha Sharma RCET,Bhilai 1

Unit_2 The Telephone Network. Shikha Sharma RCET,Bhilai 1 Unit_2 The Telephone Network Shikha Sharma RCET,Bhilai 1 Is it a computer network? Specialized to carry voice Also carries telemetry video fax modem calls Internally, uses digital samples Switches and

More information

Chapter 3. Underlying Technology. TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3. Underlying Technology. TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 Underlying Technology TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. OBJECTIVES: To briefly discuss the technology of dominant

More information

LANE, CES, and VBR PVCs in Shaped VP Tunnels

LANE, CES, and VBR PVCs in Shaped VP Tunnels LANE, CES, and VBR PVCs in Shaped VP Tunnels Document ID: 10493 Contents Introduction Prerequisites Requirements Components Used Conventions Assumptions Configure Network Diagram Configurations Troubleshoot

More information

and Networks Data Communications Second Edition Tata McGraw Hill Education Private Limited Managing Director SoftExcel Services Limited, Mumbai

and Networks Data Communications Second Edition Tata McGraw Hill Education Private Limited Managing Director SoftExcel Services Limited, Mumbai Data Communications and Networks Second Edition ACHYUT S GODBOLE Managing Director SoftExcel Services Limited, Mumbai ATUL KAHATE Senior Consultant Oracle Financial Services Software Limited, Pune Tata

More information

Chapter 15 Computer and Multimedia Networks

Chapter 15 Computer and Multimedia Networks Chapter 15 Computer and Multimedia Networks 15.1 Basics of Computer and Multimedia Networks 15.2 Multiplexing Technologies 15.3 LAN and WAN 15.4 Access Networks 15.5 Common Peripheral Interfaces 15.6 Further

More information

Hubs. Interconnecting LANs. Q: Why not just one big LAN?

Hubs. Interconnecting LANs. Q: Why not just one big LAN? Interconnecting LANs Q: Why not just one big LAN? Limited amount of supportable traffic: on single LAN, all stations must share bandwidth limited length: 802.3 specifies maximum cable length large collision

More information