Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 27, at NOON

Size: px
Start display at page:

Download "Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 27, at NOON"

Transcription

1 Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 27, at NOON Team Code Name: _Magic Wand Group No. 5 Team Member Completing This Homework: Michelle Zhang Address of Team Member: purdue.edu NOTE: This is the third in a series of four design component homework assignments, each of which is to be completed by one team member. The body of the report should be 3-5 pages, not including this cover sheet, references, attachments or appendices. Evaluation: SCORE DESCRIPTION Excellent among the best papers submitted for this assignment. Very few 10 corrections needed for version submitted in Final Report. Very good all requirements aptly met. Minor additions/corrections needed for 9 version submitted in Final Report. Good all requirements considered and addressed. Several noteworthy 8 additions/corrections needed for version submitted in Final Report. Average all requirements basically met, but some revisions in content should 7 be made for the version submitted in the Final Report. Marginal all requirements met at a nominal level. Significant revisions in 6 content should be made for the version submitted in the Final Report. Below the passing threshold major revisions required to meet report * requirements at a nominal level. Revise and resubmit. * Resubmissions are due within one week of the date of return, and will be awarded a score of 6 provided all report requirements have been met at a nominal level. Comments:

2 1.0 Introduction The Magic Wand is a hand writing recognition tool that uses acceleration to detect pen motion and displays the interpreted character to an LCD. The Magic Wand will consist of two main sections: the external attachment to a pen and the base station that analyze the acceleration data and displays the result. The pen attachment contains a PIC18LF2320 microcontroller, a MRF24J40MA transceiver, and an ADXL330 accelerometer. These devices work together to gather pen movement data and transmit the information to the base station for analysis. The base station uses a dspic33fj128gp204 microcontroller along with a MRF24J40MA transceiver to receive the transmitted acceleration data from the pen. The pen is constantly monitoring the incoming data to look for patterns related to character recognition. When a character is recognized, it is displayed on a LCD. 2.0 PCB Layout Design Considerations Overall While designing the PCBs, the major technical issue is the physical size of the PCB for the pen. In order to create a moderately user friendly and aesthetically pleasing device, the PCB on the pen needs to be narrow enough to allow a user to write and short enough as to not extended off the back of the writing device. The PCB for the base station is a simplistic design with little emphasis on special considerations and more emphasis on proper routing. The pen and the base station both use a wireless transceiver that require that no traces be routed underneath certain parts of the module and no metal devices be located within a certain region of the antenna. These constraints have forced the transceivers to be mounted on the edges of the PCBs: on the top of the pen PCB and on the side of the base station PCB. The only analog signals in the overall design reside on the pen, and come from the accelerometer. There are three analog signals for the three sensing directions of the accelerometer. The accelerometer itself is to be placed near the bottom of the PCB simply to eliminate extra movement that would be detected if the accelerometer were mounted up higher on the pen (due to an individual s typical writing style). With the accelerometer on the bottom of the PCB, the microcontroller was moved down towards the accelerometer to shorten the traces and thus eliminate the noise that would be present on longer analog signal traces. -1-

3 The standard width of power and ground traces on the pen and base station PCB will be 50 mills in width. The recommended width of 50 mills will be adequate for both traces due to the small power requirements of both boards. See the table below for the estimated current consumption [1 5]. Component Part #. Current Consumption Operating Voltage (V) Description (ma) Transceiver MRF24J40MA Microcontroller(pen) PIC18LF Microcontroller(base dspic33fj128gp station) Accelerometer ADXL LCD Display LCD16x4BL 4 5 Table 2.1 Current Consumption and Operating Voltage of major components 3.0 PCB Layout Design Considerations - Microcontroller The microcontroller on the pen is a Microchip PIC18LF2320. In order to reduce noise, the microcontroller is placed closer to the accelerometer with analog signals so the trace length between the two is minimized. Ideally, the decoupling capacitor for the microcontroller will be placed right next to the device itself on the same board layer. However, the physical size of the capacitor limits the amount of space near the microcontroller for other traces and components. As a compromise, the decoupling capacitor is placed underneath the device on the bottom layer and is connected to the pin using a via. The microcontroller on the base station is a Microchip dspic33fj128gp204. The size limitation on the pen does not apply to the base station. Bypass capacitors have enough room to be placed right next to the device on the same layer without using any via. There are no analog devices on the base station, so the microcontroller is placed right next to the transceiver and LCD header on the left side of the board. All power management related components are grouped together on the right side of the board. 4.0 PCB Layout Design Considerations - Power Supply The pen is powered using two AA batteries. All major components on the pen have an input voltage of 3.3V. The power management components are grouped together and located in the center of the board away from the analog device to reduce noise. The positive and negative -2-

4 terminals, from the battery, are wired to the board through 1 pin headers. The current passes through a 0.1 ohm current sensing resistor (used by the fuel gauge) and goes to the boost [6]. The boost outputs 3.3V [7] and powers the fuel gauge. A 50 mils power rail is on top of the board to supply the input voltage of all the major components. All power and ground traces are placed first since they are the most important and difficult to deal with. As the power traces travel down to the microcontroller and the accelerometer, the traces are running at 15 mils and 12 mils respectively due to the smaller size of the pads. All other signal traces are running at 12 mils as suggested by the fabrication house. The base station is powered using either a 3.7V Li-Ion battery or 5V unregulated voltage coming from the wall wart. The current from the battery goes through a 0.1 ohms current sensing resistor [6] and a Schottky diode that acts as a switch between battery and wall wart. When plugged in, a 5V unregulated voltage that comes from the wall wart is passed through a linear voltage regulator that steps it down to 4V [8] and powers the battery charger before passing through another Schottky diode. The two anodes of the two Schottky diodes are connected, and they direct the current to a 5V boost and a 3.3V buck/boost connected in parallel [7, 9]. The outputs of both converters are connected to inversely biased Zener diodes to help attenuate the voltage peaks generated by the switching actions inside the chips. The LCD is powered at 5V, and it is placed right beneath the 5V boost [7], a 50 mils trace could run almost straight down to the LCD header, as illustrated in Figure 1.1. All other components are powered at 3.3V, a power rail of 50 mils will run on the top of the board to supply the input voltage, as illustrated in Figure Summary In conclusion, the magic wand will have two PCB boards: one small and narrow 4.1 in. x 1.2 in. board for the pen and another 4.1 in. x 1.5 in. board for the base station. With noise reduction, analog and digital components separation, proper trace routing and bypass capacitor placement all taken into consideration, the resulting PCB board should be reliable and manageable. ALL TEAM MEMBERS should read Motorola Application Note AN1259 (posted on course web site) before you begin your PCB layout. -3-

5 List of References [1] Microchip, MRF24J40MA Data Sheet, [Online Document], Available: [cited: February 26, 2009] [2] Microchip, PIC18F2220/2320/4220/4320 Datasheet, [Online Document], Available: [cited: February 26, 2009] [3] Microchip, dspic33fj32gp302/304, dspic33fj64gpx02/x04, and dspic33fj128gpx02/x04 Data Sheet, [Online Document], Available: [cited: February 26, 2009] [4] Analog Devices, ADXL330 Data Sheet Rev A, 09/2006, [Online Document], Available: [cited: February 26, 2009] [5] Futurlec, LED Display LCD16x4BL, [Online Document], Available: [cited: February 26, 2009] [6] Linear Technology, LTC4150 Coulomb Counter / Battery Gas Gauge, [Online Document], Available: 4,D1556 [cited: February 26, 2009] [7] Linear Technology, LT1302/LT Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters, [Online Document], Available: 60,P1029,D3678 [cited: February 26, 2009] [8] Texas Instruments, Fast-Transient Response 3-A Low Dropout Voltage Regulators, [Online Document], Available: [cited: February 26, 2009] [9] Texas instruments, High Efficient Single Inductor Buck-Boost Converter w/1-a Switches, [Online Document], Available: [cited: February 26, 2009] IMPORTANT: Use standard IEEE format for references, and CITE ALL REFERENCES listed in the body of your report. Provide live links to all data sheets utilized. -4-

6 Appendix A: LT V boost P o w e r LCD header Figure 1.1 Base Station 5V Power Rail 3.3 V Power Rail TPS Figures 1.1 Base Station 3.3 V Power Rail -5-

7 3.3 V Boost 5V Boost Microchip Transceiver dspic uc Battery Charger Voltage Regulator Fuel Gauge ICD 2 Header LCD header Battery Figure 1.3 Base Station Layout Transceiver 3.3V Boost Fuel Gauge Microcontroller accelero meter Battery Figure 1.4 Pen Layout -6-

8 Figure 1.5 Pen semi-routed top layer Figure 1.6 Pen semi-routed bottom layer -7-

Homework 4: Packaging Specifications and Design Due: Friday, February 13, at NOON

Homework 4: Packaging Specifications and Design Due: Friday, February 13, at NOON Homework 4: Packaging Specifications and Design Due: Friday, February 13, at NOON Team Code Name: _Magic Wand Group No. 5 Team Member Completing This Homework: Zac Greenawalt E-mail Address of Team Member:

More information

Homework 3: Design Constraint Analysis and Component Selection Rationale Due: Friday, February 6, at NOON

Homework 3: Design Constraint Analysis and Component Selection Rationale Due: Friday, February 6, at NOON Homework 3: Design Constraint Analysis and Component Selection Rationale Due: Friday, February 6, at NOON Team Code Name: The_Magic_Wand Group No. 5 Team Member Completing This Homework: Michelle Zhang

More information

Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 22, at NOON

Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 22, at NOON Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 22, at NOON Team Code Name: RoboRubik Group No. _11 Team Member Completing This Homework: Erik Carron e-mail Address of Team

More information

Homework 6: Printed Circuit Board Layout Design Narrative

Homework 6: Printed Circuit Board Layout Design Narrative Homework 6: Printed Circuit Board Layout Design Narrative Team Code Name: Home Kinection Group No. 1 Team Member Completing This Homework: Stephen Larew E-mail Address of Team Member: sglarew @ purdue.edu

More information

Homework 13: User Manual Due: Friday, April 24, at NOON

Homework 13: User Manual Due: Friday, April 24, at NOON Homework 13: User Manual Due: Friday, April 24, at NOON Team Code Name: The Magic Wand Group No. 5 NOTE: This is one of the last sections needed to finish the Final Report. This homework will count toward

More information

Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, February 15, at NOON

Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, February 15, at NOON Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, February 15, at NOON Team Code Name: _Agatha Group No. _4 Team Member Completing This Homework: _Eric Yee e-mail Address of Team

More information

Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, October 3, at NOON

Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, October 3, at NOON Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, October 3, at NOON Team Code Name: ECE Grande Group No. 3 Team Member Completing This Homework: Ashley Callaway e-mail Address

More information

Homework 6: Printed Circuit Board Layout Design Narrative

Homework 6: Printed Circuit Board Layout Design Narrative Homework 6: Printed Circuit Board Layout Design Narrative Team Code Name: Treasure Chess Group No. 2 Team Member Completing This Homework: Sidharth Malik E-mail Address of Team Member: malik @ purdue.edu

More information

Homework 11: Reliability and Safety Analysis

Homework 11: Reliability and Safety Analysis ECE 477 Digital Systems Senior Design Project Rev 8/09 Homework 11: Reliability and Safety Analysis Team Code Name: ATV Group No. _3 Team Member Completing This Homework: Sebastian Hening E-mail Address

More information

Homework 11: Reliability and Safety Analysis Due: Friday, November 14, at NOON

Homework 11: Reliability and Safety Analysis Due: Friday, November 14, at NOON Fall 2008 Homework 11: Reliability and Safety Analysis Due: Friday, November 14, at NOON Team Code Name: ECE Grand Group No. 3 Team Member Completing This Homework: Leo Romanovsky E-mail Address of Team

More information

Homework 3: Design Constraint Analysis and Component Selection Rationale

Homework 3: Design Constraint Analysis and Component Selection Rationale Homework 3: Design Constraint Analysis and Component Selection Rationale Team Code Name: 2D-MPR Group No. 12 Team Member Completing This Homework: James Phillips E-mail Address of Team Member: jephilli@

More information

Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON

Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON Team Code Name: Motion Tracking Laser Platform Group No.: 9 Team Member Completing This Homework: David Kristof NOTE:

More information

Variable Power Supply Digital Control Circuit Diagram Using Lm317

Variable Power Supply Digital Control Circuit Diagram Using Lm317 Variable Power Supply Digital Control Circuit Diagram Using Lm317 DIGITAL POWER SUPPLY USING LM317 A Major Project Report Submitted partial fulfillment of the requirement for the award of the Degree of

More information

Homework 9: Software Design Considerations

Homework 9: Software Design Considerations ECE 477 Digital Systems Senior Design Project Rev 8/09 Homework 9: Software Design Considerations Team Code Name: 2D-MPR Group No. _12_ Team Member Completing This Homework: _Alex Bridge E-mail Address

More information

Homework 3: Design Constraint Analysis and Component Selection Rationale

Homework 3: Design Constraint Analysis and Component Selection Rationale ECE 477 Digital Systems Senior Design Project Rev 811 Homework 3: Design Constraint Analysis and Component Selection Rationale Team Code Name: Home Kinection Group No. 1 Team Member Completing This Homework:

More information

Homework 13: User Manual

Homework 13: User Manual Homework 13: User Manual Team Code Name: Autonomous Targeting Vehicle Group No. 3 User Manual Outline: Brief (marketing-style) product description Product illustration annotated with callouts for each

More information

AN USB332x Transceiver Layout Guidelines

AN USB332x Transceiver Layout Guidelines AN 17.19 USB332x Transceiver Layout Guidelines 1 Introduction SMSC s USB332x comes in a 25 ball Wafer-Level Chip-Scale Package (WLCSP) lead-free RoHS compliant package; (1.95 mm X 1.95 mm, 0.4mm pitch

More information

Homework 3: Design Constraint Analysis and Component Selection Rationale Due: Friday, February 6, at NOON

Homework 3: Design Constraint Analysis and Component Selection Rationale Due: Friday, February 6, at NOON Homework 3: Design Constraint Analysis and Component Selection Rationale Due: Friday, February 6, at NOON Team Code Name: Digi-iGuide Group No. 11 Team Member Completing This Homework: E-mail Address of

More information

Homework 5: Theory of Operation and Hardware Design Narrative

Homework 5: Theory of Operation and Hardware Design Narrative ECE 477 Digital Systems Senior Design Project Rev 9/12 Homework 5: Theory of Operation and Hardware Design Narrative Team Code Name: Hackers of Catron Group No. 03 Team Member Completing This Homework:

More information

CV Arpeggiator Rev 2 Build Documentation.

CV Arpeggiator Rev 2 Build Documentation. CV Arpeggiator Rev Build Documentation. Last updated 8-0-03 The CV Arpeggiator is a modular synth project used for creating arpeggios of control voltage. It utilizes a custom programmed PIC 6F685 micro

More information

Accelerometer Mouse: Hardware Description

Accelerometer Mouse: Hardware Description Accelerometer Mouse: Hardware Description Chris Wittmier ET474 Professor Todd Morton Western Washington University 04/19/2005 Introduction The accelerometer mouse is a wireless USB mouse that operates

More information

CSE 466 Exam 1 Winter, 2010

CSE 466 Exam 1 Winter, 2010 This take-home exam has 100 points and is due at the beginning of class on Friday, Feb. 13. (!!!) Please submit printed output if possible. Otherwise, write legibly. Both the Word document and the PDF

More information

Introduction to MATLABs Data Acquisition Toolbox, the USB DAQ, and accelerometers

Introduction to MATLABs Data Acquisition Toolbox, the USB DAQ, and accelerometers Introduction to MATLABs Data Acquisition Toolbox, the USB DAQ, and accelerometers This week we will start to learn the software that we will use through the course, MATLAB s Data Acquisition Toolbox. This

More information

LTC4089/-5 DESCRIPTION

LTC4089/-5 DESCRIPTION LTC4089/-5 DESCRIPTION Demonstration circuit DC929A-A/B is a monolithic high voltage (6V-36V) switching buck regulator, USB Powerpath controller, and Li-Ion battery charger. It is based on the LTC4089/-5

More information

Assembly Instructions (8/14/2014) Your kit should contain the following items. If you find a part missing, please contact NeoLoch for a replacement.

Assembly Instructions (8/14/2014) Your kit should contain the following items. If you find a part missing, please contact NeoLoch for a replacement. NeoLoch NLT-28P-LCD-5S Assembly Instructions (8/14/2014) Your kit should contain the following items. If you find a part missing, please contact NeoLoch for a replacement. Kit contents: 1 Printed circuit

More information

G5111 PCB Layout Guide

G5111 PCB Layout Guide G PCB Layout Guide AN-00 Description G is a step-up (boost) DC/DC converter, using constant peak inductor current and minimum OFF time PFM topology. It could output up to 8V and drive 0mA from a.v ~.V

More information

DSP Filter System. Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, Doc Number: AIGO-009

DSP Filter System. Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, Doc Number: AIGO-009 DSP Filter System Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, 2007 Doc Number: AIGO-009 2-13 Table of Contents Introduction...3 Overview...3 A2D Input Filter Board...4 Overview...4 Input

More information

VLSI AppNote: VSx053 Simple DSP Board

VLSI AppNote: VSx053 Simple DSP Board : VSx053 Simple DSP Board Description This document describes the VS1053 / VS8053 Simple DPS Board and the VSx053 Simple DSP Host Board. Schematics, layouts and pinouts of both cards are included. The

More information

Embedded Systems and Software

Embedded Systems and Software Embedded Systems and Software Lecture 12 Some Hardware Considerations Hardware Considerations Slide 1 Logic States Digital signals may be in one of three states State 1: High, or 1. Using positive logic

More information

Enabling IoT with OSD335x using Wi-Fi and Bluetooth Rev.1 3/07/18

Enabling IoT with OSD335x using Wi-Fi and Bluetooth Rev.1 3/07/18 1 Introduction Wi-Fi is a set of wireless communication technologies developed in the 1990s and 2000s that enables millions of devices to be connected together wirelessly. This has enabled the Internet-of-Things

More information

Homework 3: Design Constraint Analysis and Component Selection Rationale

Homework 3: Design Constraint Analysis and Component Selection Rationale Homework 3: Design Constraint Analysis and Component Selection Rationale Team Code Name: _Digijock Home Security Group No. 7 Team Member Completing This Homework: Linda Stefanutti E-mail Address of Team

More information

Adaptive Fast Charger and Power Pack

Adaptive Fast Charger and Power Pack Adaptive Fast Charger and Power Pack Final Paper Group #25 Team Members: Brian Uznanski Dalton Hite Nikhil Kamath Teaching Assistant: Jackson Lenz University of Illinois at Urbana-Champaign ECE 445 Spring

More information

CoaXPress HSMC Board Detailed Design Rev.A

CoaXPress HSMC Board Detailed Design Rev.A CoaXPress HSMC Board Detailed Design Rev.A Author: Lennard Streat, Computer Engineering, RIT Multi-Disciplinary Senior Design I RIT Ruggedized Camera Encoder (P14571) 1 P a g e rit-d3-camera-module@googlegroups.com

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1142A-A/B USB POWER MANAGER WITH Li-ION CHARGER AND THREE STEP-DOWN REGULATORS

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1142A-A/B USB POWER MANAGER WITH Li-ION CHARGER AND THREE STEP-DOWN REGULATORS DESCRIPTION The DC1142A-A/B contains the LTC3557/LTC3557-1 Power Management Integrated Circuit (PMIC) plus the LT3480EDD high voltage buck controller. The LTC3557/LTC3557-1 is a highly integrated power

More information

Button Code Kit. Assembly Instructions and User Guide. Single Button Code Entry System

Button Code Kit. Assembly Instructions and User Guide. Single Button Code Entry System Button Code Kit Single Button Code Entry System Assembly Instructions and User Guide Rev 1.0 December 2009 www.alan-parekh.com Copyright 2009 Alan Electronic Projects Inc. 1. Introduction... 4 1.1 Concept

More information

Application Suggestions for X2Y Technology

Application Suggestions for X2Y Technology Application Suggestions for X2Y Technology The following slides show applications that would benefit from balanced, low inductance X2Y devices. X2Y devices can offer a significant performance improvement

More information

Propeller Project Board USB (#32810)

Propeller Project Board USB (#32810) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

Sierra Radio Systems. Making a Keyer with the. HamStack. Project Platform

Sierra Radio Systems. Making a Keyer with the. HamStack. Project Platform Sierra Radio Systems Making a Keyer with the HamStack Project Platform Introduction The HamStack Project Board includes primary interface elements needed to make a high quality CW keyer. Using the LCD

More information

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front Arduino Uno Arduino Uno R3 Front Arduino Uno R2 Front Arduino Uno SMD Arduino Uno R3 Back Arduino Uno Front Arduino Uno Back Overview The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet).

More information

HX4002 HX1001. White LED Backlighting Li-Ion Battery Backup Supplies Local 3V to 5V Conversion Smart Card Readers PCMCIA Local 5V Supplies

HX4002 HX1001. White LED Backlighting Li-Ion Battery Backup Supplies Local 3V to 5V Conversion Smart Card Readers PCMCIA Local 5V Supplies HX1001 Low Noise, Regulated Charge Pump DC/DC Converter Features Fixed 5V±4% Output VIN Range: 2.7V ~ 5V Output Current: up to 250mA (V IN =4.5V) Low Noise Constant Frequency Operation Shutdown Current:

More information

PICado Alpha Development Board V1.0

PICado Alpha Development Board V1.0 V1.0 Bluetooth Transceiver Module HC-05 Four onboard FET power output stage 34 freely assignable I/O pins ICSP interface 2015 Jan Ritschard, All rights reserved. V1.0 Table of Contents 1. Introduction...

More information

Agilent 1GC GHz Integrated Diode Limiter TC231P Data Sheet

Agilent 1GC GHz Integrated Diode Limiter TC231P Data Sheet Agilent 1GC1-8235 0-20 GHz Integrated Diode Limiter TC231P Data Sheet Features Two Independent Limiters for Single ended or Differential Signals Can be Biased for Adjustable Limit Level and Signal Detection

More information

T100MD (Rev D-1) PLC Installation Guide

T100MD (Rev D-1) PLC Installation Guide T100MD-1616+ (Rev D-1) PLC Installation Guide LCD Display Module 1N4007 (optional) + - 12 to 24V DC Power Supply for PLC EEPROM Write-Protection when J2 at WP 14-pin LCD Display Port Two-wire RS485 + -

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1068A DUAL INPUT LI-ION BATTERY CHARGER WITH SYNCHRONOUS BUCK REGULATOR

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1068A DUAL INPUT LI-ION BATTERY CHARGER WITH SYNCHRONOUS BUCK REGULATOR Demonstration circuit 1068A is a complete single cell Lithium-Ion battery charger and a synchronous buck voltage regulator with adjustable output voltage. Operating at a frequency of 1.5MHz, the regulator

More information

ARDUINO MEGA 2560 REV3 Code: A000067

ARDUINO MEGA 2560 REV3 Code: A000067 ARDUINO MEGA 2560 REV3 Code: A000067 The MEGA 2560 is designed for more complex projects. With 54 digital I/O pins, 16 analog inputs and a larger space for your sketch it is the recommended board for 3D

More information

Accelerometer-Based Musical Instrument

Accelerometer-Based Musical Instrument Accelerometer Music Instrument University of Texas at Austin TI Innovation Challenge 2015 Project Report Team Leader: Team Members: Advising Professor: Video Texas Instruments Mentor (if applicable): Date:12/13/2014

More information

10/100 Application Note General PCB Design and Layout Guidelines AN111

10/100 Application Note General PCB Design and Layout Guidelines AN111 10/100 Application Note General PCB Design and Layout Guidelines AN111 Introduction This application note provides recommended guidelines in designing a product that complies with both EMI and ESD standards

More information

DAC348x PCB Layout Guidelines for the Multi-Row QFN package

DAC348x PCB Layout Guidelines for the Multi-Row QFN package Texas Instruments Application Report DAC348x PCB Layout Guidelines for the Multi-Row QFN package Russell Hoppenstein Revision 1.0 Abstract This document provides additional information related to the multi-row

More information

AP3156 Evaluation Module

AP3156 Evaluation Module Features V IN Range: 2.7V to 5.5V Fully Programmable Current with Single Wire - 32-Step Logarithmic Scale - 20/25mA Max Current per Channel - Four Low Current Settings Down to 50μA - Low IQ (50μA) for

More information

BASIC Stamp 1 Project Board (#27112) Development / Education Platform for the BASIC Stamp 1

BASIC Stamp 1 Project Board (#27112) Development / Education Platform for the BASIC Stamp 1 599 Menlo Drive, Suite 100 Rocklin, California 95765, USA Office: (916) 624-8333 Fax: (916) 624-8003 General: info@parallax.com Technical: support@parallax.com Web Site: www.parallax.com Educational: www.stampsinclass.com

More information

AL3159 Evaluation Module

AL3159 Evaluation Module Device Features Description V IN Range: 2.7V to 5.5V Up to 93% Max Power Efficiency 1% Current Matching Accuracy Between Channels Three Simple Logic Decoding LED On/Off Control Inputs Low Transition Threshold

More information

PCB Layout and Power Supply Design Recommendations for HDMI RX Products

PCB Layout and Power Supply Design Recommendations for HDMI RX Products PCB Layout and Power Supply Design Recommendations for HDMI RX Products Digital Video Group Analog Devices April 2011 Rev. A Table of Contents Table of Contents... 2 Revision History... 2 Introduction...

More information

LED Knight Rider. Yanbu College of Applied Technology. Project Description

LED Knight Rider. Yanbu College of Applied Technology. Project Description LED Knight Rider Yanbu College of Applied Technology Project Description This simple circuit functions as a 12 LED chaser. A single illuminated LED 'walks' left and right in a repeating sequence, similar

More information

1, 2, 4 and 8-Channel Very Low Capacitance ESD Protectors

1, 2, 4 and 8-Channel Very Low Capacitance ESD Protectors 1, 2, 4 and 8-Channel Very Low Capacitance ESD Protectors CM1210 Features 1,2,4 and 8 channels of ESD protection Very low loading capacitance (1.0pF typical) ±6 kv ESD protection per channel (IEC 61000-4-2

More information

2 AA Cell to 3.3V USB On-The-Go Devices White LED Drivers Handheld Devices. The HM3200B is available in the 6-pin SOT23-6.

2 AA Cell to 3.3V USB On-The-Go Devices White LED Drivers Handheld Devices. The HM3200B is available in the 6-pin SOT23-6. Low Noise, Regulated Charge Pump DC/DC Converter Features Fixed 3.3V ± 4% Output VIN Range: 1.8V to 5V Output Current: 100mA Constant Frequency Operation at All Loads Low Noise Constant Frequency (1.2MHz)

More information

Homework 11: Reliability and Safety Analysis Due: Friday, April14, at NOON

Homework 11: Reliability and Safety Analysis Due: Friday, April14, at NOON Homework 11: Reliability and Safety Analysis Due: Friday, April14, at NOON Team Code Name: Motion Tracking Camera Platform Group No. 9 Team Member Completing This Homework: Craig Noble E-mail Address of

More information

ASH Transceiver 10 mw Power Amplifier Circuit Board

ASH Transceiver 10 mw Power Amplifier Circuit Board ETSI SRD regulations allow up to 10 mw of transmitter power at 33.92 MHz, and up to 25 mw of transmitter power at 868.35 MHz. For those applications where maximum range is of primary important and low

More information

2015 edition FT TYPE: Utility madbeanpedals. Previous version of the Road Rage:

2015 edition FT TYPE: Utility madbeanpedals. Previous version of the Road Rage: Road Rage 2015 edition FT TYPE: Utility madbeanpedals Previous version of the Road Rage: http://www.madbeanpedals.com/projects/roadrage/docs/roadrage.zip 1.25 W x 0.825 H 2015 change-log: Removed 10R current

More information

DWYER INSTRUMENTS, INC. Series AVUL Air Velocity Transmitter. Specifications - Installation and Operating Instructions.

DWYER INSTRUMENTS, INC. Series AVUL Air Velocity Transmitter. Specifications - Installation and Operating Instructions. Series AVUL Air Velocity Transmitter Specifications - Installation and Operating Instructions Bulletin P-AVUL 3-49/64 [95.71] 2-43/64 [67.92] 1/2 NPS 3-3/16 [80.81] 1-19/32 [40.59] 31/32 24.58 3-33/64

More information

Board Of Education USB (#28850)

Board Of Education USB (#28850) 599 Menlo Drive, Suite 100 Rocklin, California 95765, USA Office: (916) 624-8333 Fax: (916) 624-8003 Sales: sales@parallax.com 1-888-512-1024 Tech Support: support@parallax.com 1-888-99-STAMP Web Site:

More information

KPIC-0818P (V050919) Devices Included in this Data sheet: KPIC-0818P

KPIC-0818P (V050919) Devices Included in this Data sheet: KPIC-0818P Devices Included in this Data sheet: KPIC-0818P Features: Carefully designed prototyping area Accepts 8 pin PIC12 series micro-controllers Accepts 14 and 18 Pin PIC16 series Accepts some 8,14 and 18 pin

More information

MAX17048/MAX17049 Evaluation Kits Evaluate: MAX17048/ MAX17049

MAX17048/MAX17049 Evaluation Kits Evaluate: MAX17048/ MAX17049 19-6239; Rev 0; 3/12 General Description The MAX17048/MAX17049 evaluation kits (EV kits) consist of the MAX17048/MAX17049 evaluation kit (EV kit) and the Maxim DS91230+ command module. A Windows XP M -,

More information

12v Power Controller Project Board

12v Power Controller Project Board 12v Power Controller Project Board 12 Volt Power Controller Introduction This board provides three functions... DC power gate Low voltage disconnect Voltage / current display The typical usage for this

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 740 TRACKER/SEQUENCER DEMO BOARD

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 740 TRACKER/SEQUENCER DEMO BOARD DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 740 LTC2922 Demonstration circuit 740 is a tracker/sequencer demo board featuring the LTC2922 that monitors up to five external power supplies and

More information

Efficient HVAC System

Efficient HVAC System Efficient HVAC System Group 6 Sponsored by AC3 Development Group LLC Derick Holzmacher Cory Glass Andrew Mertens Joshua New Motivation HVAC systems are one of the leading energy consuming appliances in

More information

Q22 DATRAN II excel Owners Manual

Q22 DATRAN II excel Owners Manual Q22 DATRAN II excel Owners Manual Manual Revision No. 1.03 Dated November 2001 Copyright 2000 to QTech Data Systems Limited Christchurch, NEW ZEALAND All rights reserved The circuit details and know how

More information

YB1300S Switched Capacitor Boost Converter 5V/4.5V

YB1300S Switched Capacitor Boost Converter 5V/4.5V Description The YB1300S is a switched capacitor DC/DC boost converter that produces a regulated 5V output. The input voltage range is from 2.7V to 5.0V that makes the YB1300S ideally for a single cell

More information

D115 The Fast Optimal Servo Amplifier For Brush, Brushless, Voice Coil Servo Motors

D115 The Fast Optimal Servo Amplifier For Brush, Brushless, Voice Coil Servo Motors D115 The Fast Optimal Servo Amplifier For Brush, Brushless, Voice Coil Servo Motors Ron Boe 5/15/2014 This user guide details the servo drives capabilities and physical interfaces. Users will be able to

More information

PCB Design for Capacitance Rain Sensor

PCB Design for Capacitance Rain Sensor PCB Design for Capacitance Rain Sensor Danny Kang April 14, 2010 EXECUTIVE SUMMARY The definition of sensor is a device that measures a physical quantity and converts it into a signal which can be read

More information

LOW ENERGY ANDROID GAMEPAD. Project Proposal

LOW ENERGY ANDROID GAMEPAD. Project Proposal LOW ENERGY ANDROID GAMEPAD Project Proposal Marty Lewis Andrzej Forys Table of Contents Introduction 3 Implementation 4 Target Platform and Wireless Medium 4 Hardware.. 5 Software... 7 Interface Specifications

More information

MAX17116Q Evaluation Kit Evaluates: MAX17116 in a 24-Pin TQFN Package

MAX17116Q Evaluation Kit Evaluates: MAX17116 in a 24-Pin TQFN Package 19-5846; Rev 0; 5/11 MAX17116Q Evaluation Kit General Description The MAX17116Q evaluation kit (EV kit) is a fully assembled and tested surface-mount PCB that evaluates the MAX17116 dual-output DC/DC power

More information

EVALUATION KIT AVAILABLE 28V Linear Li+ Battery Charger with Smart Autoboot Assistant OFF

EVALUATION KIT AVAILABLE 28V Linear Li+ Battery Charger with Smart Autoboot Assistant OFF 19-994; Rev 2; 3/8 EVALUATION KIT AVAILABLE 28V Linear Li+ Battery Charger with General Description The intelligent, stand-alone constant-current, constant-voltage (CCCV), thermally regulated linear charger

More information

SMT-FMC211. Quad DAC FMC. Sundance Multiprocessor Technology Limited

SMT-FMC211. Quad DAC FMC. Sundance Multiprocessor Technology Limited Sundance Multiprocessor Technology Limited Form : QCF51 Template Date : 10 November 2010 Unit / Module Description: Quad DAC FMC Unit / Module Number: Document Issue Number: 1.1 Original Issue Date: 11

More information

Homework 4: Packaging Specifications and Design Due: Friday, February 13, at NOON

Homework 4: Packaging Specifications and Design Due: Friday, February 13, at NOON Homework 4: Packaging Specifications and Design Due: Friday, February 13, at NOON Team Code Name: FlacTrac Group No. 9 Team Member Completing This Homework: Greg McCoy E-mail Address of Team Member: gmccoy@purdue.edu

More information

Design Document. May Logging DC Wattmeter. Team Member: Advisor : Ailing Mei. Collin Christy. Andrew Kom. Client: Chongli Cai

Design Document. May Logging DC Wattmeter. Team Member: Advisor : Ailing Mei. Collin Christy. Andrew Kom. Client: Chongli Cai Design Document May13-06 Logging DC Wattmeter Team Member: Ailing Mei Andrew Kom Chongli Cai David Hoffman Advisor : Collin Christy Client: Garmin International Qiaoya Cui 0 Table of Contents EXECUTIVE

More information

Evaluation Board LX1752 EVALUATION BOARD USER GUIDE

Evaluation Board LX1752 EVALUATION BOARD USER GUIDE LX1752 Dual Interleaving PWM Controller Evaluation Board TM Page 1 CONTENTS INTRODUCTION TO PRODUCT... 3 FEATURES:... 3 OPERATION... 3 TEST POINTS... 4 INPUT AND OUTPUT CONNECTION POINTS... 4 LX1752 EVALUATION

More information

Lecture 14: Prototyping and Schematics

Lecture 14: Prototyping and Schematics Lecture 14: Prototyping and Schematics Breadboards have some limitations They have high parasitic inductance and capacitance, limiting high frequency signal transfer to about 50MHz. Wire connections

More information

SGM mA, Ultra Low Dropout, Low Power, RF Linear Regulators

SGM mA, Ultra Low Dropout, Low Power, RF Linear Regulators GENERAL DESCRIPTION The is a low-power, low-noise, low-dropout, CMOS linear voltage regulator that operates from a 2.5V to 5.5V input voltage. It is the perfect choice for low voltage, low power applications.

More information

Dwarf Boards. DB021 : L298 dual motor driver

Dwarf Boards. DB021 : L298 dual motor driver Dwarf Boards DB021 : L298 dual motor driver (c) Van Ooijen Technische Informatica version 1.0 PICmicro, In-Circuit Serial Programming and ICSP are registerd trademarks of Microchip Technology Inc. Introduction

More information

TECHNICAL NOTE. VS1000: Evaluation Kit EVBA_2.0. Contents. EVBA_2.0 is a plug and play Evaluation Kit for Colibrys VS1000 accelerometers line.

TECHNICAL NOTE. VS1000: Evaluation Kit EVBA_2.0. Contents. EVBA_2.0 is a plug and play Evaluation Kit for Colibrys VS1000 accelerometers line. VS1000: Evaluation Kit EVBA_2.0 EVBA_2.0 is a plug and play Evaluation Kit for Colibrys VS1000 accelerometers line. To facilitate the integration in user environment and easily verify the excellent performances

More information

ARDUINO MEGA ADK REV3 Code: A000069

ARDUINO MEGA ADK REV3 Code: A000069 ARDUINO MEGA ADK REV3 Code: A000069 OVERVIEW The Arduino MEGA ADK is a microcontroller board based on the ATmega2560. It has a USB host interface to connect with Android based phones, based on the MAX3421e

More information

HM9708 HM9708. Battery-Powered Equipment Motherboard USB Power Switch USB Device Power Switch Hot-Plug Power Supplies Battery-Charger Circuits DC+ VIN

HM9708 HM9708. Battery-Powered Equipment Motherboard USB Power Switch USB Device Power Switch Hot-Plug Power Supplies Battery-Charger Circuits DC+ VIN 200mΩ Power Distribution Switches Features 200mΩ Typ. High-Side MOSFET 0.8A Current Limit (V IN =3.0V) Wide Input Voltage Range: 2V ~ 5.5V Soft Start Thermal Protection Small SOT-23-5 Package Minimizes

More information

Read Me First. Engine Dynamics

Read Me First. Engine Dynamics Read Me First This document should act as a starting point for the continuation of P09222. The issues experienced by P09222, the changes made from the previous iteration and concepts developed that should

More information

AOZ8900. Ultra-Low Capacitance TVS Diode Array PRELIMINARY. Features. General Description. Applications. Typical Application

AOZ8900. Ultra-Low Capacitance TVS Diode Array PRELIMINARY. Features. General Description. Applications. Typical Application Ultra-Low Capacitance TS Diode Array General Description The is a transient voltage suppressor array designed to protect high speed data lines from Electro Static Discharge (ESD) and lightning. This device

More information

PIC DESIGN (version 1) 2/11/2009

PIC DESIGN (version 1) 2/11/2009 PIC DESIGN (version 1) 2/11/2009 The decision to design and construct a custom microcontroller was dictated by both practical and educational reasons. Although microcontroller development boards are readily

More information

Mark Schutzer December 9, 2007 (updated fix for older rev B and C ProCabs)

Mark Schutzer December 9, 2007 (updated fix for older rev B and C ProCabs) Turning on radio ProCabs / PowerCabs Mark Schutzer December 9, 2007 (updated fix for older rev B and C ProCabs) Overview This paper will look into and explain why radio ProCabs / PowerCabs are hard to

More information

Flash Core Voltage Supply Requirements and Considerations

Flash Core Voltage Supply Requirements and Considerations Freescale Semiconductor Application Note Document Number: AN4758 Rev. 1, 6/2013 Flash Core Voltage Supply Requirements and Considerations by: David Paterson 1 Introduction The voltage supply for Freescale

More information

3PRR. FX TYPE: Utility 2015 madbeanpedals W x 1.11 H change-log: Removed 10R current limiting resistor.

3PRR. FX TYPE: Utility 2015 madbeanpedals W x 1.11 H change-log: Removed 10R current limiting resistor. 3PRR FX TYPE: Utility 2015 madbeanpedals 1.815 W x 1.11 H 2015 change-log: Removed 10R current limiting resistor. This PCB is designed for the typical BLUE 3PDT footswitch. Other footswitches may or may

More information

Two-wire. Jumper for 12V. J2 Enable Adjust D/A1. Super PLC Warning: Warranty Void if this label is damaged 62256LP-12 CMOS RAM 4.

Two-wire. Jumper for 12V. J2 Enable Adjust D/A1. Super PLC Warning: Warranty Void if this label is damaged 62256LP-12 CMOS RAM 4. T100MD-888+ PLC Installation Guide LCD Display Module 1N4007 (optional) + - 12 to 24V DC Power Supply for PLC Contrast Adjust 14-pin LCD Display port Two-wire RS485 + - Jumper for 12V 1000µ F 5 E.Cap (Optional)

More information

SGM2031 Low Power, Low Dropout, RF - Linear Regulators

SGM2031 Low Power, Low Dropout, RF - Linear Regulators RF - Linear Regulators GENERAL DESCRIPTION The series low-power, low-dropout, CMOS linear voltage regulators operate from a 2.5V to 5.5V input voltage in an ultra small package. They are the perfect choice

More information

LM48555 Evaluation Board

LM48555 Evaluation Board LM48555 Evaluation Board Quick Start Guide 1) Apply power supply voltage to positive terminal of JU4, and source ground to the negative terminal. 2) Short the terminals of JU1 to release the device from

More information

SHARP PC-1600 Custom Barcode Reader

SHARP PC-1600 Custom Barcode Reader SHARP PC-1600 Custom Barcode Reader by Tom Stahl This hack is about building a custom CE-1601N substitute including driver software for the SHARP PC-1600. Hardware Datalogic P51 dumb wand (reader pen)

More information

Arduino ADK Rev.3 Board A000069

Arduino ADK Rev.3 Board A000069 Arduino ADK Rev.3 Board A000069 Overview The Arduino ADK is a microcontroller board based on the ATmega2560 (datasheet). It has a USB host interface to connect with Android based phones, based on the MAX3421e

More information

Operating Manual for uflex (V1.01)

Operating Manual for uflex (V1.01) Operating Manual for uflex (V1.01) 1 Introduction The heart of the uflex board is a Microcontroller (uc) that contains the firmware to implement the following features: High efficiency Buck mode (step

More information

LDD M SERIES INSTRUCTION MANUAL LDD M SERIES

LDD M SERIES INSTRUCTION MANUAL LDD M SERIES TM LDD M SERIES LDD M SERIES INSTRUCTION MANUAL P O Box Bozeman, MT 9 Phone (0) -90 Fax (0) -9 email sales@wavelengthelectronics.com www.wavelengthelectronics.com TABLE OF CONTENTS Features... Customer

More information

Technical Note. Design Considerations when using NOR Flash on PCBs. Introduction and Definitions

Technical Note. Design Considerations when using NOR Flash on PCBs. Introduction and Definitions Technical Note Design Considerations when using NOR Flash on PCBs Introduction and Definitions TN-13-30: NOR Flash Memory: PCB Design Considerations Introduction and Definitions Table 1: Definitions Term

More information

Schematic Diagram: R2,R3,R4,R7 are ¼ Watt; R5,R6 are 220 Ohm ½ Watt (or two 470 Ohm ¼ Watt in parallel)

Schematic Diagram: R2,R3,R4,R7 are ¼ Watt; R5,R6 are 220 Ohm ½ Watt (or two 470 Ohm ¼ Watt in parallel) Nano DDS VFO Rev_2 Assembly Manual Farrukh Zia, K2ZIA, 2016_0130 Featured in ARRL QST March 2016 Issue Nano DDS VFO is a modification of the original VFO design in Arduino Projects for Amateur Radio by

More information

UF-3701 Power Board Construction Guide

UF-3701 Power Board Construction Guide Page 1/5 Soldering and Part Placement See the Chapter 3 of the MIT 6270 Manual for information on electronic assembly, including soldering techniques and component mounting. Construction Information All

More information

Efficient HVAC Control System

Efficient HVAC Control System Efficient HVAC Control System Group 6 Derick Holzmacher Cory Glass Andrew Mertens Joshua New Sponsored by: HVAC Development Group 1 Motivation Create a system to reduce the user s monthly energy consumption

More information

PANDORA HACKER GUIDE

PANDORA HACKER GUIDE PANDORA HACKER GUIDE WARNING: Modifying your PCB is not covered by your warranty and any damage caused as a result will be the sole responsibility of the owner to fix or to have fixed at a fee set by the

More information