Smart cards and smart objects communication protocols: Looking to the future. ABSTRACT KEYWORDS

Size: px
Start display at page:

Download "Smart cards and smart objects communication protocols: Looking to the future. ABSTRACT KEYWORDS"

Transcription

1 Smart cards and smart objects communication protocols: Looking to the future. Denis PRACA Hardware research manager, Gemplus research Lab, France Anne-Marie PRADEN Silicon design program manager, Gemplus Lab, France ABSTRACT There is a lot of noise made around communication protocols and smart cards over the last few months. We will discuss about existing protocols and their adaptation to smart cards, limitations of ISO protocol and the way to improve it. Finally, we will talk about security problems linked to some long-range wireless protocols. The protocols we will move on are the following: ISO standard and enhanced USB MMC ISO Bluetooth Improved communication with smart cards is useful if you consider applications such as biometrics on card, multimedia storage with copyright management, secure data storage KEYWORDS ISO7816-3, ISO14443, USB, MultiMediaCard, Bluetooth, JINI, SmartObject

2 1- INTRODUCTION In this paper, we will first discuss about the need to improve the low level communication protocol to smart card and the different way to do that. We will first take a look at the existing ISO standard and then see how to improve it or change it to another existing standard. The applications for which we have to improve the performance are: Use of biometrics patterns in the card to replace PIN code Large memory cards used to securely stored personal or corporate information (Address book, price list, ) Smart card used to store multimedia content (Pictures, MP3, video, ) Card active in a network environment (The card must be able to be a master to query information over a network) Considering this list of applications, we will concentrate on 3 parameters while analyzing the protocols: Net Bandwidth The ability for the card to initiate a transaction The possibility to open multiple channels for multi-application purpose The last parameter is more related to high level protocol such as TCP/IP, but some elements in the lower level can help implementation. 2- ISO The performance of ISO7816 protocol is given by the elementary time unit (etu) value derived from D and F parameters. Accepted parameters by the card are sent by the card with the ATR (Answer to reset). F is the clock rate conversion factor, and D the baud rate adjustment factor. The formula that gives the etu value is: 1 etu = F/D * (1/f) where f is the clock frequency Tables are given in the standard; these tables give on one hand, the value of F for each FI coding and the corresponding f max allowed, on the other hand the D value for each DI coding. The corresponding bandwidth is given by the formula: Gross Bandwidth (Kb/s) = 1/etu =(D/F )*f * The bandwidth depends mainly on D value and not on F or f as the ratio F/f in the ISO tables is a constant value (except for F=0001). That is to say that the card clock may be high (max 20MHz) but the bandwidth is not increased accordingly. The protocol is basically an asynchronous protocol. It needs some extra bits to synchronize, in T=0 protocol, the physical layer overhead is as follow: 1 start bit 1 parity bit 2 guard time bit inter characters. For one character (8 bits), the protocol adds 4 bits, then the ratio to apply on the gross bandwidth is then 2/3 and defines the net bandwidth: Net bandwidth = 2/3 * Gross bandwidth In T=1 protocol, the overhead is reduced by 1 bit because the minimum guard time is 1 bit. In the case: Net bandwidth = 8/11 * Gross bandwidth The real bandwidth must take into account the T=1 block structure overhead, inter block guard time and data structure overhead: Block structure overhead: 5 bytes Block guarding time overhead: 22 bits Data structure overhead: 5 bytes

3 The total overhead is then Block overhead + Guarding time + Data overhead = /8 + 5 = 12,75 bytes for 254 bytes of real data. Real bandwidth = Net bandwidth * 254/266,75 Conclusions: Clock frequency Gross bandwidth Real bandwidth Timing for 64Mo downloading (1 hour of MP3 Music file) 5 MHz 430 Kbits/s 305 Kbits/s (1720s) This protocol is basically a master/slave protocol where the card is always the slave. This problem is bypass by GSM standard at an application level, the mobile phone must periodically pool the card to allow it to be master in a transaction. T=1 protocol can be considered as a multi-channel protocol with addressing capabilities. 3- ENHENCED ISO ISO limitations comes from several issues in the standard: Electrical interface rising and falling edges gives a Max bandwidth of 500 khz. We have to redefine the I/O circuit in order to use a tri-state instead of open drain F/D ratio gives the number of clock cycles within an etu. A minimum number is needed in order to synchronize. 4 clock cycles seems to be acceptable. With a clock frequency of 20 Mhz, the gross bandwidth could be 1/etu = (D/F)*fmax = fmax/4 = 5 Mbit/s. Using an internal PLL, the minimum F/D ration can be decreased down to 1, giving a real bandwidth of 13,85 Mbit/s with a 20 Mhz clock signal. Clock frequency can be increased. The EMC radiation and power consumption in the card may dictate limitation of the frequency, but it seems that a frequency of 80MHz is conceivable in consideration of design care. In conclusion to enhance the ISO7816 standard in term of bandwidth we may: Change the electrical characteristics to the IO pin from open-drain to push-pull Change the F/D factor to the minimum (ex: 4) (new D factor : D=465) Increase the fmax to 80MHz for example (new F factor : 40Mhz, 80MHz) Advantages of this solution are: New smart-card readers may keep compatibility with existing cards New cards may be used with existing readers (if the RFU factors are ignored in the reader) Disadvantage: Increasing clock frequency will have impact on power consumption in the card, and then in mobile s battery life. With these changes in the standard the bandwidth would be: Clock frequency Gross bandwidth Real bandwidth Timing for 64Mo downloading (1 hour of MP3 Music file) 20 MHz 5 Mbits/s 3,46 Mbits/s 2 28 (148 s) 40 MHz 10 Mbits/s 6,92 Mbits/s 1 14 (74s) 80 MHz 20 Mbits/s 13,85 Mbits/s 37s 20 MHz with PLL 20 Mbits/s 13,85 Mbits/s 37s 40 MHz with PLL 40 Mbits/s 27,70 Mbits/s 18,5 80 MHz with PLL 80 Mbits/s 55,40 Mbits/s 9,25

4 Another way to improve this standard is to use a synchronous protocol, but problem of compatibility may occur. These enhancements don t solve the master/slave problem. 4- USB USB seems to be well adopted in the PC world and commonly used. USB smart card seems to be a good concept in this area. A USB smart card would be a mean to adapt the smart card to the PC world and not the opposite. This new solution consists of replacing ISO7816 transport layers by USB protocol in the smart card. Advantages of this solution are:! Reduce the Reader to the minimum : just an adaptation connector! Ease the Smart-Card penetration in the PC world! Use a high speed bus But what about GSM mobiles world? Has the USB Smart-Card an interest in this area? What is the performance gain? What is the incremental cost for the mobile? Example of Music is taken also in this part of the report. Performances: The use an USB bus for downloading of music gives these theoretical results (considering that the bandwidth is not shared with other devices). (The download of music uses a bulk transfer for full and high speed and interrupts transfer in low speed). Speed bus Real bandwidth Timing for 64Mo downloading (1 hour of MP3 Music file) Low speed 375 Kbits/s (1400s) Full speed 9,5 Mbits/s 54 High speed 416 Mbits/s 1,23 These figures assume that there are no bottlenecks in the smart-card system and any other peripherals requiring bandwidth on the bus. Complexity: Complexity of USB hardware is essentially located in the host side. Host function hardware is around 5 times more complex in term of number of gates than the hardware device function (4 endpoints without double buffering). The device hardware function complexity depends of the number of endpoints managed, on the double buffering function which speeds-up the exchanges (for bulk of isochronous mode) and on the width of the buffers. Here are for different functions the hardware complexities in term of number of gates. For a low speed device interface with an 8 bytes block size, it requires about 4k gates. For a full speed device interface, it requires between 14k to 20k gates, depending the numbers of end point and the size of the fifos. We have no figures for a high interface. For the host side, the hardware complexity is about 30k gates. For comparison, an 8 bits microcomputer currently used in a smart card requires about 15k gates. The software complexity for a device is relatively low, few Kbytes of code are needed. For the host side, this is more complex, the host must support all types of transfer and be aware of all types of peripherals supported. On PC hardware, USB drivers require about 100 Kbytes of code. Clock recovery:

5 5- MMC The clock recovery internally in the card itself seems to be a technological challenge. Solutions are: Embed an oscillator in the card (difficult to package), practically only feasible with low speed because of precision requirements of high speed. External oscillator: needs a coupler between Card and GSM or PC. Decrease interest of this technology for the card. Use of USB like bus with an added clock pin coming from the GSM: no compliance with real USB bus. Recovery of clock with D+ and D- signals: need experiments, seems to be a real technological challenge, need mixed technology (Analog PLL, with a fast locking and very precise). Conclusions: USB seems to be a good candidate for the PC world, the bandwidth may reach 10 Mb/s with some possibility to enhance to USB2.0 high speed capability. But USB is too complex for low cost mobile equipment and some technical issues like clock recovery are to be solved. The master/slave problem is not directly solved by USB, but the standard includes an interrupt mode of transfer, allowing the slave device to be periodically pooled by the master. This capability is driven by the low-level protocol stack and is transparent for the application. An association grouping together the major silicon memory providers, mobile phone and multimedia device manufacturers drives the MultiMediaCard specifications. The basic protocols characteristics are: Variable clock rate 0-20 Mhz No explicit reset signal. Power-on reset circuitry on the card 3 wires serial data bus (Clock, Command, Data) Up to 64k cards addressable by the bus protocol Up to 30 cards stackable on a physical bus Error protected data transfer Easy card identification Sequential and single/multiple block oriented data transfer Synchronous transfer relative to the clock signal On the CMD line, Command and response tokens are transferred serially from the host to cards or from the cards to host respectively. On DATA line, data are transferred from the card to the host or vice-versa. After a power-on reset the host initializes the cards in assigning a session address for each. Each card has a Card Identification number (CID) unique whose MID field (Manufacturer Identification) is assigned by MMCA. Two types of data transfer commands: Sequential commands: these commands initiate a continuous data stream on data line which is stopped when a stop command follows on the CMD line Block-oriented commands: these commands send a data block succeeded by CRC bits. Single or multiple blocks are possible. Multiple block transmission is terminated when a stop command is sent on CMD line. For block write operation, a busy signaling is used on data line. As data id transfer on a specific line and commands or status on an another line, there is no overhead in the protocol if you use the sequential mode (No error protection in this case). The bandwidth is then directly related to the clock frequency and can be up to 20 Mbit/s. The drawbacks of this protocol are: The card is always slave No card insertion detection, the initialization procedure has to be done each time a card is inserted.

6 Conclusions: This protocol is very simple to implement, the bandwidth is very interesting and the possibility to stack multiple cards is important in many applications. But some improvement concerning hot insertion and extraction have to be considered as well as a way to make the card master of a transaction, either at the lower level of protocol or by the system driver. Work is done in the MultiMediaCard association around a secure MMC card that will probably use WIM specifications as a basis. 6- ISO ISO is the new standard for wireless close coupling smart cards. Its used a Mhz magnetic field produced by the reader to power supply the card. The communication from the reader to the card is done by an amplitude modulation of this magnetic field. The return path use an impedance modulation of secondary coil located in the card, seen by the reader as a current modulation in the primary coil. Basic bandwidth is 115 kbit/s but can be upgraded up to 800 kbit/s. The standard integrate some features to detect multiple cards present in the field and to select one. The higher protocol level use a ISO T=1 derivative. 7- BLUETOOTH Bluetooth is a wireless communication protocol design for the last 10 meters. Its primary goal is to replace cables between portable devices such as mobile phones, computers, PDA s with a maximum gross bandwidth of 1 MBit/s. In many of these devices, a smart card is used for security and user authentication. The idea to use to the same protocol to share a same security device is interesting but some limitation to the integration in smart card may be found: Power requirement bluetooth is too high for the existing or short coming battery compatible with smart card thickness. An efficient multidirectional antenna requires some volume But wireless communication accommodates to new form factor, as the device doesn t need to be plugged in a reader. This open a new range a devices we called smart objects WIRELESS SECURITY PROBLEMS When the cable is suppressed, the link to a secure device is open to any kind of observation from a hostile device. Bluetooth is well protected against this type of attack by the use of strong encryption algorithm and by the fast frequency hopping used by the radio link. But the main problem is the pairing of devices: to be able to communicate, 2 devices must share a secret. The user of the devices has to enter this secret like a PIN code on the 2 devices he wants to connect. The management of this PIN code is complex: On devices without keyboard like headsets, the PIN code is hard coded You have to remember as many PIN code as pair of devices you want to connect or make them permanent but with security problems How to lend a device to a friend for a limited period of time? We think that to solve this problem, we must use a trusted device acting as an authorization center. 8- CONCLUSIONS There is no ideal candidate to succeed to ISO7816-3, but some good features must be kept: Synchronous data transfer Separate DATA and COMMAND line USB interrupt mode to avoid collision management Stackable cards Electrical insertion and removal detection like in USB to simplify connectors

7 1- The implementation must be simple both in the card and in the device using the card Another important issue is the global system performance. There is no need to improve the bandwidth if the system is unable to process the data at full speed. Most today smart card use 8 bit microcomputers, the amount of processing capabilities seems not to be able to process more than several hundreds of kbit/s. DMA capabilities must be added for fast transfer of data to memory and new memory architectures will be studied. Today large Flash silicon memories write cycles are limited and pipelining of multiple flash is mandatory. 9- REFERENCES ISO/IEC : Information technology-identification cards-integrated circuit(s) cards with contacts- Part 3: Electronics signals and transmission protocols MultiMediaCard System Specification, Version 2.2 Universal Serial Bus Specification: Revision 1.1

More on IO: The Universal Serial Bus (USB)

More on IO: The Universal Serial Bus (USB) ecture 37 Computer Science 61C Spring 2017 April 21st, 2017 More on IO: The Universal Serial Bus (USB) 1 Administrivia Project 5 is: USB Programming (read from a mouse) Optional (helps you to catch up

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

Microprocessors LCD Parallel Port USB Port

Microprocessors LCD Parallel Port USB Port Microprocessors LCD Parallel Port USB Port H. Abdoli Bu-Ali Sina University 1 New LCDs Interfacing Lower prices Display numbers, characters, graphics Integrated refreshing controller Ease of programming

More information

Digital Circuits Part 2 - Communication

Digital Circuits Part 2 - Communication Introductory Medical Device Prototyping Digital Circuits Part 2 - Communication, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Microcontrollers Memory

More information

Chapter 11: Input/Output Organisation. Lesson 17: Standard I/O buses USB (Universal Serial Bus) and IEEE1394 FireWire Buses

Chapter 11: Input/Output Organisation. Lesson 17: Standard I/O buses USB (Universal Serial Bus) and IEEE1394 FireWire Buses Chapter 11: Input/Output Organisation Lesson 17: Standard I/O buses USB (Universal Serial Bus) and IEEE1394 FireWire Buses Objective Familiarize with a standard I/O interface synchronous serial buses USB

More information

Hello, and welcome to this presentation of the STM32 Universal Synchronous/Asynchronous Receiver/Transmitter Interface. It covers the main features

Hello, and welcome to this presentation of the STM32 Universal Synchronous/Asynchronous Receiver/Transmitter Interface. It covers the main features Hello, and welcome to this presentation of the STM32 Universal Synchronous/Asynchronous Receiver/Transmitter Interface. It covers the main features of this USART interface, which is widely used for serial

More information

Data sheet VIPA CPU 115DP (115-6BL22)

Data sheet VIPA CPU 115DP (115-6BL22) Data sheet VIPA CPU 115DP (115-6BL22) Technical data Order no. Type 115-6BL22 VIPA CPU 115DP General information Note - Features Work memory [KB]: 16 Load memory [KB]: 24 Onboard 16x DI / 12x DO / 4x DIO

More information

Accessing I/O Devices Interface to CPU and Memory Interface to one or more peripherals Generic Model of IO Module Interface for an IO Device: CPU checks I/O module device status I/O module returns status

More information

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1 M68HC08 Microcontroller The MC68HC908GP32 Babak Kia Adjunct Professor Boston University College of Engineering Email: bkia -at- bu.edu ENG SC757 - Advanced Microprocessor Design General Description The

More information

Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used

Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used to connect devices such as microcontrollers, sensors,

More information

CAN protocol enhancement

CAN protocol enhancement Protocols CAN protocol enhancement This article describes the enhanced CAN protocol called CAN-HG and the features of the IC circuitry from Canis that implement it. CAN-HG has been designed to meet two

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 135 Serial Communication Simplex Half-Duplex Duplex 136 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

Raspberry Pi - I/O Interfaces

Raspberry Pi - I/O Interfaces ECE 1160/2160 Embedded Systems Design Raspberry Pi - I/O Interfaces Wei Gao ECE 1160/2160 Embedded Systems Design 1 I/O Interfaces Parallel I/O and Serial I/O Parallel I/O: multiple input/output simultaneously

More information

SERIAL BUS COMMUNICATION PROTOCOLS USB

SERIAL BUS COMMUNICATION PROTOCOLS USB DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK Lesson-20: SERIAL BUS COMMUNICATION PROTOCOLS USB 1 USB Host Applications Connecting flash memory cards, pen-like memory devices, digital camera, printer,

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

Arduino Uno R3 INTRODUCTION

Arduino Uno R3 INTRODUCTION Arduino Uno R3 INTRODUCTION Arduino is used for building different types of electronic circuits easily using of both a physical programmable circuit board usually microcontroller and piece of code running

More information

BlueSerial. Bluetooth Serial RS232 Port Adapters. User Manual HANTZ + PARTNER. The Upgrade Company!

BlueSerial. Bluetooth Serial RS232 Port Adapters. User Manual HANTZ + PARTNER. The Upgrade Company! Bluetooth Serial RS232 Port Adapters User Manual HANTZ + PARTNER The Upgrade Company! www.hantz.com Deutschland: Tel.: 0761 / 59 21 00 Fax: 0761 / 58 52 28 Schweiz: Tel.: 061 / 27 311-31 Fax: 061 / 27

More information

System Summary Based On System Specification Version 3.31 MMCA Technical Committee

System Summary Based On System Specification Version 3.31 MMCA Technical Committee The MultiMediaCard System Summary Based On System Specification Version 3.31 MMCA Technical Committee You acknowledge that the attached standard (the Standard ) is provided to you on an AS IS basis. MULTIMEDIACARD

More information

Concepts of Serial Communication

Concepts of Serial Communication Section 6. Serial Communication Communication Using Serial Interfaces: UART and SPI Concepts of Serial Communication Limitations of Parallel Bus Clock skew becomes a serious issue for high speed and long

More information

Part 1 Using Serial EEPROMs

Part 1 Using Serial EEPROMs Part 1 Using Serial EEPROMs copyright 1997, 1999 by Jan Axelson If you have a project that needs a modest amount of nonvolatile, read/write memory, serial EEPROM may be the answer. These tiny and inexpensive

More information

System Specification Version 3.31 MMCA Technical Committee

System Specification Version 3.31 MMCA Technical Committee The MultiMediaCard System Specification Version 3.31 MMCA Technical Committee Revision History Version Date Section/ Page Changes compared to previous issue 1.0 09-09-96 all Initial version of system specification

More information

Data sheet CPU 115 (115-6BL02)

Data sheet CPU 115 (115-6BL02) Data sheet CPU 115 (115-6BL02) Technical data Order no. 115-6BL02 Type CPU 115 General information Note - Features 16 (20) inputs 16 (12) outputs from which are 2 PWM 50 khz outputs 16 kb work memory,

More information

UART TO SPI SPECIFICATION

UART TO SPI SPECIFICATION UART TO SPI SPECIFICATION Author: Dinesh Annayya dinesha@opencores.org Table of Contents Preface... 3 Scope... 3 Revision History... 3 Abbreviations... 3 Introduction... 3 Architecture... 4 Baud-rate generator

More information

System Specification Version 3.31 MMCA Technical Committee

System Specification Version 3.31 MMCA Technical Committee The MultiMediaCard System Specification. Version 3.31 MMCA Technical Committee Revision History Version Date Section/ Page Changes compared to previous issue 1.0 09-09-96 all Initial version of system

More information

Data sheet CC 03, Commander Compact (603-1CC21)

Data sheet CC 03, Commander Compact (603-1CC21) Data sheet CC 03, Commander Compact (603-1CC21) Technical data Order. Type 603-1CC21 CC 03, Commander Compact General information Note - Features Display: 2 x 20 characters Interface: MP²I User memory:

More information

Title: Using low-power dual-port for inter processor communication in next generation mobile handsets

Title: Using low-power dual-port for inter processor communication in next generation mobile handsets Title: Using low-power dual-port for inter processor communication in next generation mobile handsets Abstract: The convergence of mobile phones and other consumer-driven devices such as PDAs, MP3 players,

More information

Module 6: INPUT - OUTPUT (I/O)

Module 6: INPUT - OUTPUT (I/O) Module 6: INPUT - OUTPUT (I/O) Introduction Computers communicate with the outside world via I/O devices Input devices supply computers with data to operate on E.g: Keyboard, Mouse, Voice recognition hardware,

More information

ARDUINO MEGA INTRODUCTION

ARDUINO MEGA INTRODUCTION ARDUINO MEGA INTRODUCTION The Arduino MEGA 2560 is designed for projects that require more I/O llines, more sketch memory and more RAM. With 54 digital I/O pins, 16 analog inputs so it is suitable for

More information

Serial Communication. Spring, 2018 Prof. Jungkeun Park

Serial Communication. Spring, 2018 Prof. Jungkeun Park Serial Communication Spring, 2018 Prof. Jungkeun Park Serial Communication Serial communication Transfer of data over a single wire for each direction (send / receive) Process of sending data one bit at

More information

David Harrison, Design Engineer for Model Sounds Inc.

David Harrison, Design Engineer for Model Sounds Inc. David Harrison, Design Engineer for Model Sounds Inc. 1 History -1 In 1994 an alliance of four industry partners (Compaq, Intel, Microsoft and NEC) started to specify the Universal Serial Bus (USB). The

More information

Intel Research mote. Ralph Kling Intel Corporation Research Santa Clara, CA

Intel Research mote. Ralph Kling Intel Corporation Research Santa Clara, CA Intel Research mote Ralph Kling Intel Corporation Research Santa Clara, CA Overview Intel mote project goals Project status and direction Intel mote hardware Intel mote software Summary and outlook Intel

More information

Remote Keyless Entry In a Body Controller Unit Application

Remote Keyless Entry In a Body Controller Unit Application 38 Petr Cholasta Remote Keyless Entry In a Body Controller Unit Application Many of us know this situation. When we leave the car, with a single click of a remote control we lock and secure it until we

More information

Introduction to I2C & SPI. Chapter 22

Introduction to I2C & SPI. Chapter 22 Introduction to I2C & SPI Chapter 22 Issues with Asynch. Communication Protocols Asynchronous Communications Devices must agree ahead of time on a data rate The two devices must also have clocks that are

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 128 Serial Communication Simplex Half-Duplex Duplex 129 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

I2C a learn.sparkfun.com tutorial

I2C a learn.sparkfun.com tutorial I2C a learn.sparkfun.com tutorial Available online at: http://sfe.io/t82 Contents Introduction Why Use I2C? I2C at the Hardware Level Protocol Resources and Going Further Introduction In this tutorial,

More information

CompuScope 3200 product introduction

CompuScope 3200 product introduction CompuScope 3200 product introduction CompuScope 3200 is a PCI bus based board-level product that allows the user to capture up to 32 bits of singleended CMOS/TTL or differential ECL/PECL digital data into

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Microcontroller It is essentially a small computer on a chip Like any computer, it has memory,

More information

Architecture of Computers and Parallel Systems Part 6: Microcomputers

Architecture of Computers and Parallel Systems Part 6: Microcomputers Architecture of Computers and Parallel Systems Part 6: Microcomputers Ing. Petr Olivka petr.olivka@vsb.cz Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part

More information

W25X05CL/10CL/20CL 2.5 / 3 / 3.3 V 512K / 1M / 2M-BIT SERIAL FLASH MEMORY WITH 4KB SECTORS AND DUAL I/O SPI

W25X05CL/10CL/20CL 2.5 / 3 / 3.3 V 512K / 1M / 2M-BIT SERIAL FLASH MEMORY WITH 4KB SECTORS AND DUAL I/O SPI 2.5 / 3 / 3.3 V 512K / 1M / 2M-BIT SERIAL FLASH MEMORY WITH 4KB SECTORS AND DUAL I/O SPI - 1 - Revision B Table of Contents 1. GENERAL DESCRIPTION...4 2. FEATURES...4 3. PIN CONFIGURATION SOIC 150-MIL,

More information

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Presented by Paul Ruggieri

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Presented by Paul Ruggieri TinySec: A Link Layer Security Architecture for Wireless Sensor Networks Chris Karlof, Naveen Sastry,, David Wagner Presented by Paul Ruggieri 1 Introduction What is TinySec? Link-layer security architecture

More information

AT90SO36 Summary Datasheet

AT90SO36 Summary Datasheet AT90SO Summary Datasheet Features General High-performance, Low-power -/-bit Enhanced RISC Architecture Microcontroller - Powerful Instructions (Most Executed in a Single Clock Cycle) Low Power Idle and

More information

Interfacing Techniques in Embedded Systems

Interfacing Techniques in Embedded Systems Interfacing Techniques in Embedded Systems Hassan M. Bayram Training & Development Department training@uruktech.com www.uruktech.com Introduction Serial and Parallel Communication Serial Vs. Parallel Asynchronous

More information

Introduction to Wireless Networking ECE 401WN Spring 2009

Introduction to Wireless Networking ECE 401WN Spring 2009 I. Overview of Bluetooth Introduction to Wireless Networking ECE 401WN Spring 2009 Lecture 6: Bluetooth and IEEE 802.15 Chapter 15 Bluetooth and IEEE 802.15 What is Bluetooth? An always-on, short-range

More information

UNC20C01R 1Kbyte EEPROM Contactless Card IC

UNC20C01R 1Kbyte EEPROM Contactless Card IC UNC20C01R 1Kbyte EEPROM Contactless Card IC Application The UNC20C01R is intended for use in contactless payment cards for ticketing, communications, etc. systems. A single IC card may support multiple

More information

< W3150A+ / W5100 Application Note for SPI >

< W3150A+ / W5100 Application Note for SPI > < W3150A+ / W5100 Application Note for SPI > Introduction This application note describes how to set up the SPI in W3150A+ or W5100. Both the W3150A+ and W5100 have same architecture. W5100 is operated

More information

Smart Card meets Connectivity New Opportunities in Mobile Business with NFC Technology. Smart Card Alliance2005 Fall Annual Conference Martin Bührlen

Smart Card meets Connectivity New Opportunities in Mobile Business with NFC Technology. Smart Card Alliance2005 Fall Annual Conference Martin Bührlen Smart Card meets Connectivity New Opportunities in Mobile Business with NFC Technology Smart Card Alliance2005 Fall Annual Conference Martin Bührlen Agenda NFC Technology Use Cases Implications for the

More information

Reading and References. Input / Output. Why Input and Output? A typical organization. CSE 410, Spring 2004 Computer Systems

Reading and References. Input / Output. Why Input and Output? A typical organization. CSE 410, Spring 2004 Computer Systems Reading and References Input / Output Reading» Section 8.1-8.5, Computer Organization and Design, Patterson and Hennessy CSE 410, Spring 2004 Computer Systems http://www.cs.washington.edu/education/courses/410/04sp/

More information

Universität Dortmund. IO and Peripheral Interfaces

Universität Dortmund. IO and Peripheral Interfaces IO and Peripheral Interfaces Microcontroller System Architecture Each MCU (micro-controller unit) is characterized by: Microprocessor 8,16,32 bit architecture Usually simple in-order microarchitecture,

More information

CHAPTER 1 Introduction of the tnano Board CHAPTER 2 tnano Board Architecture CHAPTER 3 Using the tnano Board... 8

CHAPTER 1 Introduction of the tnano Board CHAPTER 2 tnano Board Architecture CHAPTER 3 Using the tnano Board... 8 CONTENTS CHAPTER 1 Introduction of the tnano Board... 2 1.1 Features...2 1.2 About the KIT...4 1.3 Getting Help...4 CHAPTER 2 tnano Board Architecture... 5 2.1 Layout and Components...5 2.2 Block Diagram

More information

Basics of UART Communication

Basics of UART Communication Basics of UART Communication From: Circuit Basics UART stands for Universal Asynchronous Receiver/Transmitter. It s not a communication protocol like SPI and I2C, but a physical circuit in a microcontroller,

More information

Amarjeet Singh. January 30, 2012

Amarjeet Singh. January 30, 2012 Amarjeet Singh January 30, 2012 Website updated - https://sites.google.com/a/iiitd.ac.in/emsys2012/ Lecture slides, audio from last class Assignment-2 How many of you have already finished it? Final deadline

More information

AT88RF1354 SPI User Guide For CryptoRF

AT88RF1354 SPI User Guide For CryptoRF AT88RF1354 SPI User Guide For CryptoRF Table of Contents Section 1 Introduction... 1-1 1.1 Product Description... 1-1 1.2 System Diagram... 1-1 1.3 Scope...1-2 1.4 Conventions... 1-2 Section 2 AT88RF1354

More information

INTEGRATED CIRCUITS MF RC531. ISO Reader IC. Short Form Specification Revision 3.2. April Philips Semiconductors

INTEGRATED CIRCUITS MF RC531. ISO Reader IC. Short Form Specification Revision 3.2. April Philips Semiconductors INTEGRATED CIRCUITS ISO 14443 Reader IC Short Form Specification Revision 3.2 April 2005 Philips Semiconductors CONTENTS 1 INTRODUCTION...3 1.1 Scope...3 1.2 Features...3 1.3 Applications...3 2 BLOCK DIAGRAM...4

More information

ALTERA FPGAs Architecture & Design

ALTERA FPGAs Architecture & Design ALTERA FPGAs Architecture & Design Course Description This course provides all theoretical and practical know-how to design programmable devices of ALTERA with QUARTUS-II design software. The course combines

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

How to Choose the Right Bus for Your Measurement System

How to Choose the Right Bus for Your Measurement System 1 How to Choose the Right Bus for Your Measurement System Overview When you have hundreds of different data acquisition (DAQ) devices to choose from on a wide variety of buses, it can be difficult to select

More information

Security of Wireless Networks in Intelligent Vehicle Systems

Security of Wireless Networks in Intelligent Vehicle Systems Security of Wireless Networks in Intelligent Vehicle Systems Syed M. Mahmud and Shobhit Shanker Electrical and Computer Engg. Dept. Wayne State University Detroit, MI 48202 Email: smahmud@eng.wayne.edu

More information

VendaCard MF1ICS50. major cities have adopted MIFARE as their e-ticketing solution of choice.

VendaCard MF1ICS50. major cities have adopted MIFARE as their e-ticketing solution of choice. 1. General description VendaCard MF1ICS50 Rev.. 5.3?29 January 2008 Product data sheet 001053 PUBLIC NXP has developed for VENDAPIN LLC the MIFARE MF1ICS50 to be used in a contactless smart card applications

More information

General information. Engineering with. Supply voltage. Load voltage L+ Input current. Power losses. Memory. Work memory.

General information. Engineering with. Supply voltage. Load voltage L+ Input current. Power losses. Memory. Work memory. Product data sheet SIMATIC S7-300, CPU 314C-2DP COMPACT CPU WITH MPI, 24 DI/16 DO, 4AI, 2AO, 1 PT100, 4 FAST COUNTERS (60 KHZ), INTEGRATED DP INTERFACE, INTEGRATED 24V DC POWER SUPPLY, 64 KBYTE WORKING

More information

Computer Systems. Communication (networks, radio links) Meatware (people, users don t forget them)

Computer Systems. Communication (networks, radio links) Meatware (people, users don t forget them) Computers are useful machines, but they are generally useless by themselves. Computers are usually part of a system a computer system includes: Hardware (machines) Software (programs, applications) Communication

More information

Buses. Disks PCI RDRAM RDRAM LAN. Some slides adapted from lecture by David Culler. Pentium 4 Processor. Memory Controller Hub.

Buses. Disks PCI RDRAM RDRAM LAN. Some slides adapted from lecture by David Culler. Pentium 4 Processor. Memory Controller Hub. es > 100 MB/sec Pentium 4 Processor L1 and L2 caches Some slides adapted from lecture by David Culler 3.2 GB/sec Display Memory Controller Hub RDRAM RDRAM Dual Ultra ATA/100 24 Mbit/sec Disks LAN I/O Controller

More information

EE251: Tuesday December 4

EE251: Tuesday December 4 EE251: Tuesday December 4 Memory Subsystem continued Timing requirements Adding memory beyond 4 Gbyte Time Allowing: Begin Review for Final Exam Homework #9 due Thursday at beginning of class Friday is

More information

STM32 MICROCONTROLLER

STM32 MICROCONTROLLER STM32 MICROCONTROLLER Lecture 2 Prof. Yasser Mostafa Kadah Harvard and von Neumann Architectures Harvard Architecture a type of computer architecture where the instructions (program code) and data are

More information

AT90SO72 Summary Datasheet

AT90SO72 Summary Datasheet AT90SO Summary Datasheet Features General High-performance, Low-power -/-bit Enhanced RISC Architecture Microcontroller - Powerful Instructions (Most Executed in a Single Clock Cycle) Low Power Idle and

More information

Product Specification

Product Specification Product Specification Description The BT233/224 Bluetooth USB Adapter is an evaluation platform for the BT33 and BT24 module series. This adaptor allows a developer to quickly utilize the embedded AT command

More information

Introduction to computer networking

Introduction to computer networking edge core Introduction to computer networking Comp Sci 3600 Security Outline edge core 1 2 edge 3 core 4 5 6 The edge core Outline edge core 1 2 edge 3 core 4 5 6 edge core Billions of connected computing

More information

W25X40CL 2.5/3/3.3 V 4M-BIT SERIAL FLASH MEMORY WITH 4KB SECTORS AND DUAL I/O SPI. Publication Release Date: October 15, Revision E

W25X40CL 2.5/3/3.3 V 4M-BIT SERIAL FLASH MEMORY WITH 4KB SECTORS AND DUAL I/O SPI. Publication Release Date: October 15, Revision E 2.5/3/3.3 V 4M-BIT SERIAL FLASH MEMORY WITH 4KB SECTORS AND DUAL I/O SPI - 1 - Revision E Table of Contents 1. GENERAL DESCRIPTION... 4 2. FEATURES... 4 3. PIN CONFIGURATION SOIC 208-MIL, SOIC 150-MIL

More information

Guide to Wireless Communications, 3 rd Edition. Objectives

Guide to Wireless Communications, 3 rd Edition. Objectives Guide to Wireless Communications, 3 rd Edition Chapter 5 Wireless Personal Area Networks Objectives Describe a wireless personal area network (WPAN) List the different WPAN standards and their applications

More information

App Note Application Note: Addressing Multiple FPAAs Using a SPI Interface

App Note Application Note: Addressing Multiple FPAAs Using a SPI Interface Rev: 1.0.0 Date: 23 rd Jan 2015 App Note - 310 Application Note: Addressing Multiple FPAAs Using a SPI Interface TABLE OF CONTENTS 1 PURPOSE... 2 2 THE SPI INTERFACE... 3 2.1 OVERVIEW... 3 2.2 DETAILED

More information

Buses, Video, and Upgrades

Buses, Video, and Upgrades Unit 9 Buses, Video, and Upgrades Copyright 2005 Heathkit Company, Inc. All rights reserved. CPU Parallel Port Memory Keyboard Controller Video Adapter The Data Bus System Controller 2 CPU Memory Keyboard

More information

Informatics for industrial applications

Informatics for industrial applications Informatics for industrial applications Lecture 5 - Peripherals: USART and DMA Martino Migliavacca martino.migliavacca@gmail.com October 20, 2011 Outline 1 Introduction to USART Introduction Synchronous

More information

1 The Attractions of Soft Modems

1 The Attractions of Soft Modems Application Note AN2451/D Rev. 0, 1/2003 Interfacing a Low Data Rate Soft Modem to the MCF5407 Microprocessor The traditional modem has been a box or an add-on card with a phone connection on one end and

More information

ZigBee Compliant Platform 2.4G RF Low Power Transceiver Module for IEEE Standard. DATA SHEET Version B

ZigBee Compliant Platform 2.4G RF Low Power Transceiver Module for IEEE Standard. DATA SHEET Version B ZMD400-A01 ZigBee Compliant Platform 2.4G RF Low Power Transceiver Module for IEEE 802.15.4 Standard DATA SHEET Version B Quan International Co., Ltd., ZMD400 Features Fully compliant 802.15.4 Standard

More information

Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of

Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of this interface, which is widely used for serial communications.

More information

Product type designation. General information. Supply voltage

Product type designation. General information. Supply voltage Data sheet SIMATIC S7-300, CPU 313C-2DP COMPACT CPU WITH MPI, 16 DI/16 DO, 3 FAST COUNTERS (30 KHZ), INTEGRATED DP INTERFACE, INTEGRATED 24V DC POWER SUPPLY, 128 KBYTE WORKING MEMORY, FRONT CONNECTOR (1

More information

The S6000 Family of Processors

The S6000 Family of Processors The S6000 Family of Processors Today s Design Challenges The advent of software configurable processors In recent years, the widespread adoption of digital technologies has revolutionized the way in which

More information

Agriculture Wireless Temperature and Humidity Sensor Network Based on ZigBee Technology

Agriculture Wireless Temperature and Humidity Sensor Network Based on ZigBee Technology Agriculture Wireless Temperature and Humidity Sensor Network Based on ZigBee Technology Xi Wang 1 and Hui Gao 2 1 Heilongjiang Bayi Agricultural Reclamation University, Daqing 163319, China 2 Lanzhou Jiaotong

More information

A+ Guide to Hardware: Managing, Maintaining, and Troubleshooting, 5e. Chapter 6 Supporting Hard Drives

A+ Guide to Hardware: Managing, Maintaining, and Troubleshooting, 5e. Chapter 6 Supporting Hard Drives A+ Guide to Hardware: Managing, Maintaining, and Troubleshooting, 5e Chapter 6 Supporting Hard Drives Objectives Learn about the technologies used inside a hard drive and how data is organized on the drive

More information

IS23SC4439 Preliminary. 1K bytes EEPROM Contactless Smart Card Conform to ISO/IEC 14443A Standard. Table of contents

IS23SC4439 Preliminary. 1K bytes EEPROM Contactless Smart Card Conform to ISO/IEC 14443A Standard. Table of contents 1K bytes EEPROM Contactless Smart Card Conform to ISO/IEC 14443A Standard Table of contents 1 Features 2 2 General Description 2 3 Typical Transaction Time 2 4 Functional Description 2 41 Block Description

More information

Logitech Advanced 2.4 GHz Technology With Unifying Technology

Logitech Advanced 2.4 GHz Technology With Unifying Technology Logitech Advanced 2.4 GHz Technology Revision 070709 December 8, 2009 TABLE OF CONTENTS 1 INTRODUCTION: THE MOVE TO WIRELESS PERIPHERALS IN BUSINESS... 3 2 SYSTEM OVERVIEW... 4 2.1 NETWORK TOPOLOGY...4

More information

Data sheet VIPA CPU 214PG (214-2BE03)

Data sheet VIPA CPU 214PG (214-2BE03) Data sheet VIPA CPU 214PG (214-2BE03) Technical data Order. General information Note - 214-2BE03 VIPA CPU 214PG Features Work memory [KB]: 96 Interface [RJ45]: Ethernet PG/OP communication Interface [RS485]:

More information

AT-501 Cortex-A5 System On Module Product Brief

AT-501 Cortex-A5 System On Module Product Brief AT-501 Cortex-A5 System On Module Product Brief 1. Scope The following document provides a brief description of the AT-501 System on Module (SOM) its features and ordering options. For more details please

More information

Cisco Series Internet Router Architecture: Packet Switching

Cisco Series Internet Router Architecture: Packet Switching Cisco 12000 Series Internet Router Architecture: Packet Switching Document ID: 47320 Contents Introduction Prerequisites Requirements Components Used Conventions Background Information Packet Switching:

More information

WIRELESS RECEIVER WRM-TS. Rev. 1.0c

WIRELESS RECEIVER WRM-TS. Rev. 1.0c WIRELESS RECEIVER WRM-TS U S E R M A N U A L Rev. 1.0c TABLE OF CONTENTS 1. General information 3 2. Technical parameters 4 3. Normal mode of operation 4 4. Command reference 5 4.1. Command get 6 4.2.

More information

Universal Serial Bus Host Interface on an FPGA

Universal Serial Bus Host Interface on an FPGA Universal Serial Bus Host Interface on an FPGA Application Note For many years, designers have yearned for a general-purpose, high-performance serial communication protocol. The RS-232 and its derivatives

More information

mifare DESFire Contactless Multi-Application IC with DES and 3DES Security MF3 IC D40 INTEGRATED CIRCUITS Objective Short Form Specification

mifare DESFire Contactless Multi-Application IC with DES and 3DES Security MF3 IC D40 INTEGRATED CIRCUITS Objective Short Form Specification INTEGRATED CIRCUITS mifare DESFire Contactless Multi-Application IC with DES and 3DES Security MF3 IC D4 Objective January 23 Revision 1.1 PUBLIC Philips Semiconductors CONTENTS 1 FEATURES...3 1.1 RF Interface:

More information

MOS INTEGRATED CIRCUIT

MOS INTEGRATED CIRCUIT DATA SHEET MOS INTEGRATED CIRCUIT µpd6708 IEBus (Inter Equipment Bus ) PROTOCOL CONTROL LSI DESCRIPTION The µpd6708 is a peripheral LSI for microcontrollers that controls the protocol of the IEBus. This

More information

Data sheet CPU 315SB/DPM (315-2AG12)

Data sheet CPU 315SB/DPM (315-2AG12) Data sheet CPU 315SB/DPM (315-2AG12) Technical data Order no. 315-2AG12 CPU 315SB/DPM General information Note - Features SPEED-Bus - SPEED7 technology 1 MB work memory Memory extension (max. ) PROFIBUS-DP

More information

BM2001 (Bluetooth USB Adapter) User s Guide

BM2001 (Bluetooth USB Adapter) User s Guide BTWIN is a Trademark of BTNetworks. BM2001 (Bluetooth USB Adapter) User s Guide BTNetworks Co., LTD 2005 08.30 Ver 3.0 1 Table of Contents 1 Introduction (Model: BM2001) 4 2 Bluetooth USB Adapter & Bluetooth

More information

Input/Output Management

Input/Output Management Chapter 11 Input/Output Management This could be the messiest aspect of an operating system. There are just too much stuff involved, it is difficult to develop a uniform and consistent theory to cover

More information

Data sheet VIPA CPU 214NET PG (214-2BT13)

Data sheet VIPA CPU 214NET PG (214-2BT13) Data sheet VIPA CPU 214NET PG (214-2BT13) Technical data Order. 214-2BT13 VIPA CPU 214NET PG General information Note - Features Work memory [KB]: 96 Integrated Ethernet CP 243 Interface [RJ45]: active

More information

ECE 1160/2160 Embedded Systems Design. Midterm Review. Wei Gao. ECE 1160/2160 Embedded Systems Design

ECE 1160/2160 Embedded Systems Design. Midterm Review. Wei Gao. ECE 1160/2160 Embedded Systems Design ECE 1160/2160 Embedded Systems Design Midterm Review Wei Gao ECE 1160/2160 Embedded Systems Design 1 Midterm Exam When: next Monday (10/16) 4:30-5:45pm Where: Benedum G26 15% of your final grade What about:

More information

CM5000 DATASHEET v0.1

CM5000 DATASHEET v0.1 CM5000 DATASHEET - 2 - http://www.advanticsys.com/cm5000.html v0.1 Table of Contents 1. INTRODUCTION... 5 2. HARDWARE CHARACTERISTICS... 6 2.1 CM5000 DIAGRAMS... 6 2.2 MICROCONTROLLER DESCRIPTION - TI

More information

The Future of Smart Cards: Bigger, Faster and More Secure

The Future of Smart Cards: Bigger, Faster and More Secure The Future of Smart Cards: Bigger, Faster and More Secure Joerg Borchert, Vice President, Secure Mobile Solutions July 16, 2003 Page 1 N e v e r s t o p t h i n k i n g. Infineon Technologies: Overview

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Lecture Computer Networks Networks for Multimedia

More information

Architecture of Computers and Parallel Systems Part 2: Communication with Devices

Architecture of Computers and Parallel Systems Part 2: Communication with Devices Architecture of Computers and Parallel Systems Part 2: Communication with Devices Ing. Petr Olivka petr.olivka@vsb.cz Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems

More information

Transporting audio-video data

Transporting audio-video data Transporting audio-video data A particular use case in embedded system networks is the delivery of audiovideo data Specific requirements: Higher datarates dictated by the volume of information that has

More information

Presentation of the Interoperability specification for ICCs and Personal Computer Systems, Revision 2.0

Presentation of the Interoperability specification for ICCs and Personal Computer Systems, Revision 2.0 PC/SC Workgroup White Paper Presentation of the Interoperability specification for ICCs and Personal Computer Systems, Revision 2.0 Abstract This document presents the upcoming revision 2.0 of the Interoperability

More information

Interconnection Structures. Patrick Happ Raul Queiroz Feitosa

Interconnection Structures. Patrick Happ Raul Queiroz Feitosa Interconnection Structures Patrick Happ Raul Queiroz Feitosa Objective To present key issues that affect interconnection design. Interconnection Structures 2 Outline Introduction Computer Busses Bus Types

More information

Digital Input and Output

Digital Input and Output Digital Input and Output Topics: Parallel Digital I/O Simple Input (example) Parallel I/O I/O Scheduling Techniques Programmed Interrupt Driven Direct Memory Access Serial I/O Asynchronous Synchronous

More information