Chapter 6. Digital Components

Size: px
Start display at page:

Download "Chapter 6. Digital Components"

Transcription

1 1 1. Introduction. 2. Integrated Circuits 3. Decoders: 4. NAND gate Decoder : 5. Decoder Expansion : 6. Encoder 7. Memory Units Random-Access Memory Read Only Memory 8. Types of ROMs Chapter 6 Digital Components

2 2 Chapter 6 Digital Components 6.1 Introduction. An electronic component is a basic electronic element usually packaged in a discrete form with two or more connecting leads or metallic pads. Components are intended to be connected together, usually by soldering to a printed circuit board, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Components may be packaged singly (resistor, capacitor, transistor, diode etc.) or in more or less complex groups as integrated circuits (operational amplifier, resistor array, logic gate etc.) Components Very often electronic components are mechanically stabilized, improved in insulation properties and protected from environmental influence by being enclosed in synthetic resin Components may be passive or active. Resistors:-Components used to resist current. Capacitors:- Components that store electrical charge in an electrical field. Capacitors are used for filtration in the electronic circuits. Capacitors in general pass changing (e.g. AC) and block unchanging (e.g. DC) voltage levels. Transistor:- At its core, a transistor is an electronic component used in a circuit to control a large amount of current or voltage with a small amount of voltage or current 6.3 Integrated Circuits Integrated circuits were made possible by experimental discoveries which showed that semiconductor devices could perform the functions of vacuum tubes, and by mid-20thcentury technology advancements in semiconductor device fabrication. The integration of large numbers of tiny transistors into a small chip was an enormous improvement over the manual assembly of circuits using discrete electronic components. The integrated circuit's mass production capability, reliability, and building-block approach to circuit design ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. There are two main advantages of ICs over discrete (Separate) circuits cost and performance. Cost is low because the chips, with all their components, are printed as a unit by photolithography and not constructed one transistor at a time. Furthermore, much less material is used to construct a circuit as a packaged IC die than as a discrete circuit. Performance is high since the components switch quickly and consume little power (compared to their discrete counterparts) because the components are small and close together. As of 2006, chip areas range from a few square millimeters to around 350 mm, with up to 1 million transistors per mm.

3 3 SSI: The first integrated circuits contained only a few transistors. Called "Small-Scale Integration" (SSI), digital circuits containing transistors numbering in the tens provided a few logic gates for example, while early linear ICs such as the Plessey SL201 or the Philips TAA320 had as few as two transistors. MSI: The next step in the development of integrated circuits, taken in the late 1960s, introduced devices which contained hundreds of transistors on each chip, called "Medium- Scale Integration" (MSI).They were attractive economically because while they cost little more to produce than SSI devices, they allowed more complex systems to be produced using smaller circuit boards, less assembly work (because of fewer separate components), and a number of other advantages. LSI: Further development, driven by the same economic factors, led to "Large-Scale Integration" (LSI) in the mid 1970s, with 10,000 of transistors per chip. Integrated circuits such as 1K-bit RAM, calculator chips, and the first microprocessors, that began to be manufactured in moderate quantities in the early 1970s, had under 4000 transistors. True LSI circuits, approaching transistors, began to be produced around 1974, for computer main memories and second-generation microprocessors. VLSI: The next step in the development process, starting in the 1980s and continuing through the present, was "very large-scale integration" (VLSI). The development started with hundreds of thousands of transistors in the early 1980s, and continues beyond several billion transistors as of Digital integrated circuits are classified not only by their logic operation but also by the specific circuit technology to which they belong. The circuit technology is referred to as a digital logic family. Each logic family has its own basic electronic circuit upon which more complex digital circuits and functions are developed. The basic circuit in each technology is either a NAND, a NOR, or an inverter gate. The electronic components that are employed in the construction of the basic circuit are usually used for the name of the technology. Many different logic families of integrated circuits have been introduced commercially. The following are the most popular TTL ECL Transistor -transistor Logic Emitter coupled Logic MOS - Metal-oxide semiconductor CMOS- Complementary metal-oxide semiconductor TTL is a widespread logic family that has been in operation for many years and is considered as standard. ECL has an advantage in systems requiring high-speed operation. MOS is suitable for circuits that need high component density, and CMOS is preferable in systems requiring low power consumption. The transistor-transistor logic family was an evolution of a previous technology that used diodes and transistors for the basic NAND gate. This technology was called DTL, for "diode-transistor logic." Later the diodes were replaced by transistors to improve the circuit operation and the name of the logic family was changed to "transistor-transistor logic." This is the reason for mentioning the word "transistor" twice. There are several variations of the TTL family besides the standard TTL, such as high-speed TTL, low-power TIL, The emitter-coupled logic (ECL) family provides the highest-speed digital circuits in integrated form. ECL is used in systems such as supercomputers and signal processors where high speed is essential. The transistors in ECL gates operate in a non saturated state, a condition that allows the achievement of propagation delays of 1 to 2 nanoseconds. The metal-oxide semiconductor (MOS) is a unipolar transistor that depends on the flow of only one type of carrier, which may be electrons (n-channel) or holes (p-channel). This is in contrast to the bipolar transistor used in TTL and ECL gates, where both carriers exist during normal operation. A p- channel MOS is referred to as PMOS and an n-channel as NMOS. NMOS is the one that is commonly used in circuits with only one type of MOS transistor. The complementary MOS (CMOS) technology uses PMOS and NMOS transistors connected in a complementary fashion in all circuits. The most important advantages of CMOS over bipolar are the high packing density of circuits, a simpler processing technique during fabrication, and a more economical operation because of low power consumption.

4 4 Because of their many advantages, integrated circuits are used exclusively to provide various digital components needed in the design of computer systems. To understand the organization and design of digital computers it is very important to be familiar with the various components encountered in integrated circuits. For this reason, the most basic components are introduced in this chapter with an explanation of their logical properties. These components provide a catalog of elementary digital functional units commonly used as basic building blocks in the design of digital computers. 6.4 Decoders: In digital electronics, a decoder can take the form of a multiple-input, multiple-output logic circuit that converts coded inputs into coded outputs, where the input and output codes are different e.g. n-to-2 n, binary-coded decimal decoders. Enable inputs must be on for the decoder to function, otherwise its outputs assume a single "disabled" output code word. Decoding is necessary in applications such as data multiplexing, 7 segment display and memory address decoding. The example decoder circuit would be an AND gate because the output of an AND gate is "High" (1) only when all its inputs are "High." Such output is called as "active High output". If instead of AND gate, the NAND gate is connected the output will be "Low" (0) only when all its inputs are "High". Such output is called as "active low output". A slightly more complex decoder would be the n-to-2 n type binary decoders. These type of decoders are combinational circuits that convert binary information from 'n' coded inputs to a maximum of 2 n unique outputs. We say a maximum of 2 n outputs because in case the 'n' bit coded information has unused bit combinations, the decoder may have less than 2 n outputs. We can have 2-to-4 decoder, 3-to-8 decoder or 4-to-16 decoder. We can form a 3-to- 8 decoder from two 2-to-4 decoders (with enable signals). Similarly, we can also form a 4-to-16 decoder by combining two 3-to-8 decoders. In this type of circuit design, the enable inputs of both 3-to-8 decoders originate from a 4th input, which acts as a selector between the two 3-to-8 decoders. This allows the 4th input to enable either the top or bottom decoder, which produces outputs of D(0) through D(7) for the first decoder, and D(8) through D(15) for the second decoder.

5 5 A decoder that contains enable inputs is also known as a decoder- de-multiplexer. Thus, we have a 4-to-16 decoder produced by adding a 4th input shared among both decoders, producing 16 outputs. NAND gate Decoder : Some decoders are constructed NAND instead of and gates. Since NAND gate produces the AND operation with an inverted output, it becomes more economical to generate the decoder output in their complement form. A two to 4 line decoder with an enable input constructed with NAND gate is in figure X1. The circuit operate with complemented output and a complemented enable input E. The decoder is enable when E is equal to 0. An indicated by the truth table, only one output is equal to 0 at any given time, the other three output are equal to 1. The output whose value is equal to 0 represents the equivalent binary number in input A1 and A0. The circuit is disabled when E is equal to 1, regardless of the values of the other two inputs. When the circuit is disabled, none of the output are selected and all outputs are equal to 1. in general, a decoder may operate with complemented or un-complemented outputs. The enable input may be activated with a 0 or with a 1 signal level. some decoders have two or more enable input that must satisfy a given logic condition in order to enable the circuit. Decoder Expansion : There are occasions when a certain-size decoder is needed but only smaller sizes are available. When this occurs it is possible to combine two or more decoders with enable inputs to form a larger decoder. Thus if a 6-to-64-line decoder is needed, it is possible to construct it with four 4-to16-line decoders. Figure X2 shows how decoders with enable inputs can be connected to form a larger decoder. Two 2-to-4-line decoders are combined to achieve a 3-to-8-line decoder. The two least significant bits of the input are connected to both decoders. The most significant bit is connected to the enable input of one decoder and through an inverter to the enable input of the other decoder. It is assumed that each decoder is enabled when its E input is equal to 1. When E is equal to 0, the decoder is disabled and all its outputs are in the 0 level. When A2 =

6 6 0, the upper decoder is enabled and the lower is disabled. The lower decoder outputs become inactive with all outputs at O. The outputs of the upper decoder generate outputs Do through D3, depending on the values of At and Ao (while A2 = 0). When A2 = 1, the lower decoder is enabled and the upper is disabled. The lower decoder output generates the binary equivalent D4 through D7 since these binary numbers have a 1 in the A2 position. 6.5 Encoder An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2n (or lees) input lines and n output lines. The output lines generate the binary code corresponding to the input value; An example of an encoder is the octal-to-binary encoder, whose truth table is given in Table X1. It has eight inputs, one for each of the octal digits, and three outputs that generate the corresponding binary number. It is assumed that only one input has a value of 1 at any given time; otherwise, the circuit has no meaning. TABLE : X1 Truth Table for Octal-co-Binary Encoder Inputs Outputs D7 D6 D5 D4 D3 D2 D1 D0 A2 A A The encoder can be implemented with OR gates whose inputs are determined directly from the truth table. Output A0 = 1 if the input octal digit is 1 or 3 or 5 or 7. Similar conditions apply for the other two outputs. These conditions can be expressed by the following Boolean functions: A0 = D1 + D3 + D5 + D7; A1 = D2 + D3 + D6 + D7; A2 = D4 + Ds + D6 + D7: The encoder can be implemented with three OR gates.

7 7 6.6 Multiplexers A multiplexer, sometimes referred to as a "multiplexor" or simply "mux", is a device that selects between a number of input signals. In its simplest form, a multiplexer will have two signal inputs, one control input, and one output. An everyday example of an analog multiplexer is the source selection control on a home stereo unit. Multiplexers are used in building digital semiconductors such as CPUs and graphics controllers. In these applications, the number of inputs is generally a multiple of 2 (2, 4, 8, 16, etc.), the number of outputs is either 1 or relatively small multiple of 2, and the number of control signals is related to the combined number of inputs and outputs. For example, a 2- input, 1-output mux requires only 1 control signal to select the input, while a 16-input, 4- output mux requires 4 control signals to select the input and 2 to select the output. Multiplexers are also used in communications; the telephone network is an example of a very large virtual mux built from many smaller discrete ones. Instead of having a direct connection from every telephone to every telephone - which would be physically impossible - the network "muxes" individual telephones onto one of a small number of wires as calls are placed. At the receiving end, a demultiplexer, or "demux", chooses the correct destination from the many possible destinations by applying the same principle in reverse. There are more complex forms of multiplexers. Time-division multiplexers, for example, have the same input/output characteristics as described above, but instead of having a control signal, they alternate between all possible inputs at precise time intervals. By taking turns in this manner, many inputs can share one output. This technique is commonly used on long distance phone lines, allowing many individual phone calls to be spliced together without affecting the speed or quality of any individual call. Time-division multiplexers are generally built as semiconductor devices, or chips, but can also be built as optical devices for fiber optic applications. Theory: What is a multiplexer? It quite often happens, in the design of large-scale digital systems, that a single line is required to carry two or more different digital signals. Of course, only one signal at a time can be placed on the one line. What is required is a device that will allow us to select, at different instants, the signal we wish to place on this common line. Such a circuit is referred to as a Multiplexer. A multiplexer performs the function of selecting the input on any one of 'n' input lines and feeding this input to one output line. Multiplexers are used as one method of reducing the number of integrated circuit packages required by a particular circuit design. This in turn reduces the cost of the system. Assume that we have four lines, C0, C1, C2 and C3, which are to be multiplexed on a single line, Output (f). The four input lines are also known as the Data Inputs. Since there are four inputs, we will need two additional inputs to the multiplexer, known as the Select Inputs, to select which of the C inputs is to appear at the output. Call these select lines A and B. The gate implementation of a 4-line to 1-line multiplexer is shown below:

8 8 Algebraic Method of Multiplexer Implementation Introduction This is an approach where you can transform one Boolean expression into a form so that a multiplexer can be implemented. This can be achieved by applying Boolean Theorems. Before attempting the design of a multiplexer using the algebraic method, the function to be considered should be minimized using the techniques covered in Minimization of Boolean Functions. Minimizing the terms and expressions can be important because this allows designers to use the least amount of components and use the most efficient type of multiplexer. Example : Consider the function f(a,b,c) = A B+BC+A C Expanding to standard sum of products form: f(a,b,c) =A B(C+C )+(A+A )BC+A C(B+B ) =A BC+A BC +ABC+A BC+A BC+A B C =A BC+A BC +A B C+ABC =A B(C+C )+A B C+ABC =A B (C)+A B(1)+AB +AB( C) The resulting multiplexer implementation is: Karnaugh Map Method of Multiplexer Implementation Introduction It can be seen that applying Boolean algebra can be awkward in order to implement multiplexers. This is because it takes a lot of practice and can be very difficult to determine the set of laws and propositions to use. Karnaugh maps provide a simple and straight-forward method of implementing multiplexers. With the Karnaugh map Boolean expressions having up to four and even six variables can be implemented. In the above example we could have picked any variable to be the data variable and the other two as select variables. Suppose one were to take A as the data variable. The corresponding Karnaugh map is then: Example 1: Consider the function: As with the algebraic method example, C is taken to be the data variable and A,B to be the select variables. Example 2: In the above example we could have picked any variable to be the data variable and the other two as select variables. Suppose one were to take A as the data variable. The corresponding Karnaugh map is then:

9 9 Design multiplexer implementations for the following functions using the Karnaugh map method. For the first problem, try using A as the data variable and B,C as the select variables. For the second problem, try using C as the data variable and A,B as the select variables. For the following solutions the data variable has been suggested although any variable can be chosen as the data variable and the other two as the select variables. 1. Using A as the data variable and B,C as the select variables: 2. Using C as the data variable and A,B as the select variables.

10 10 Numerical Method Theory. To simplify the theory the function is defined in binary, with a true form of a variable denoted by a 1, and conversely, a false form denoted by a 0. The system can expect to deal with variables being missing, or a don't care condition, which is denoted by a dash (-. ). This can be expressed clearly by the following functions of three variables, i.e. f(a,b,c). Essentially the method is one of factoring using the relationship in which the variable allowing the maximum number of terms to be so factored is sought. That variable(s) is then used as the multiplexer data input variable. Listing the two minterms we have Now consider the following function. Note that these variables cannot be combined. Now consider the following. function. Note that this variable cannot be combined. This is because the FIRST RULE of the numerical method for two terms is that they

11 11 must differ in only one digit position. The number of variables that are true form, i.e. the number of 1's in a term, is significant and is referred to as its index. For example: f(a, B, C, D) Index , Index , 0011, Index , Index Index 4 For each minterm in the function the index is found. The minterms are arranged in order of index starting with the lowest index entries. Those term-pairs with only a difference in the least weighted variable are listed. The process is repeated with a new list for those term-pairs with a difference of the next weighted variable. This continues with a further list for term-pairs, and so on. Memory Units Memory unit is used to store the data and program. CPU can work with the information stored in memory unit. This memory unit is termed as primary memory or main memory module. These are basically semi conductor memories. There are two types of semiconductor memories RAM and ROM Random-Access Memory (RAM- Volatile Memory): In this section, we discuss the block diagram organization of random access memory (RAM). RAM is a memory unit in the computer that is used to hold programs and data while the program is running. RAM is an example of a set of storage devices that hold information. Other devices include registers, hard disks, and diskettes. An example organization of RAM in a block diagram is shown in Figure-X. In the figure, memory is composed of words. A word is a set of memory locations that can be moved out of or into memory as a single entity. As can be seen from the example block diagram, the memory contains 1024 words (word 0 to word 1023). A word is characterized by its content and its address. In the diagram, word 1 is the address of word 1; its content (or value) is ( ). The contents of the word could represent either data or instructions, as will be discussed later. The size of the memory unit is the total number of bits. In the example, the memory unit size is (number of words the size of each word). The contents of a memory word can be accessed through the use of buses. A bus is a set of lines used to communicate between different units (e.g., the CPU and memory the memory block diagram shows three buses: the address bus, the data-in bus, and the data-out bus. The size of a bus is the number of lines used. In the figure, the data buses are 8 bits each. The address bus is 10 bits. The address and bus sizes are a function of the memory organization. In general, for a RAM with n words and m-bit word size, the number of address lines is given as [log2n]

12 The number of data-in and data-out lines is given as m, the size of each word. In the example figure, the size of the bus is 10 bits ([log2 1024]=10), with the address of word 0 given as ( ) 2 =(0) 10 and the address of the last word given as ( ) 2 =(1023) 10. Reading from memory is the process of retrieving the contents of a word by placing its content on the data-out bus. This is done by placing the address on the address bus and informing memory of a read request (using read and write input signals). In the figure, there is one input line labeled read/write; a 1 on the line indicates a read request and a 0 indicates a write request. We will discuss the chip select later. Writing to memory is the process of modifying the contents of a The Contents of Memory Location Is (AF)H memory word. Similar to reading, in order to write to memory we specify the address of the word on the address lines and place word contents on the data-in bus. We also indicate a write request on the read/write line. In the block diagram of RAM given in Figure 9.5.1, the CS line is used to select a specific chip for reading or writing. This is done since general designs may have multiple RAM chips. These RAM chips may share a common set of data-in and data-out lines. The CS line is used to choose one of these chips for communication. Before we conclude this section, however, we mention that the term RAM is used to indicate that words in memory can be accessed in any random fashion in approximately equal time. Contrast this with accessing information on a tape; accessing information at the beginning of the tape takes less time than accessing information toward the end of the tape (assuming the tape is rewound to the beginning). Another name used for RAM is read/write memory (RWM) to distinguish it from read-only memory (ROM). 12

13 13 Read Only Memory (Non-Volatile Memory): Types of ROMs : ROM (Read only Memory) PROM (Programmable ROM) EPROM (Erasable PROM), EEPROM (Electrically Erasable PROM). One major type of memory that is used in PCs is called read-only memory, or ROM for short. ROM is a type of memory that normally can only be read, as opposed to RAM which can be both read and written. There are two main reasons that read-only memory is used for certain functions within the PC: Permanence: The values stored in ROM are always there, whether the power is on or not. A ROM can be removed from the PC, stored for an indefinite period of time, and then replaced, and the data it contains will still be there. For this reason, it is called nonvolatile storage. A hard disk is also non-volatile, for the same reason, but regular RAM is not. Security: The fact that ROM cannot easily be modified provides a measure of security against accidental (or malicious) changes to its contents. You are not going to find viruses infecting true ROMs, for example; it's just not possible. (It's technically possible with erasable EPROMs, though in practice never seen.) Read-only memory is most commonly used to store system-level programs that we want to have available to the PC at all times. The most common example is the system BIOS program, which is stored in a ROM called (amazingly enough) the system BIOS ROM. Having this in a permanent ROM means it is available when the power is turned on so that the PC can use it to boot up the system. Remember that when you first turn on the PC the system memory is empty, so there has to be something for the PC to use when it starts up. See this section for a description of the system BIOS ROM; see here for a description of the system boot sequence. While the whole point of a ROM is supposed to be that the contents cannot be changed, there are times when being able to change the contents of a ROM can be very useful. There are several ROM variants that can be changed under certain circumstances; these can be thought of as "mostly read-only memory". :^) The following are the different types of ROMs with a description of their relative modifiability: ROM: A regular ROM is constructed from hard-wired logic, encoded in the silicon itself, much the way that a processor is. It is designed to perform a specific function and cannot be changed. This is inflexible and so regular ROMs are only used generally for programs that are static (not changing often) and mass-produced. This product is analogous to a commercial software CD-ROM that you purchase in a store. Programmable ROM (PROM): This is a type of ROM that can be programmed using special equipment; it can be written to, but only once. This is useful for companies that make their own ROMs from software they write, because when they change their code they can create new PROMs without requiring expensive equipment. This is similar to the way a CD-ROM recorder works by letting you "burn" programs onto blanks once and then letting you read from them many times. In fact, programming a PROM is also called burning, just like burning a CD-R, and it is comparable in terms of its flexibility. Erasable Programmable ROM (EPROM): An EPROM is a ROM that can be erased and reprogrammed. A little glass window is installed in the top of the ROM package, through which you can actually see the chip that holds the memory. Ultraviolet light of a specific frequency can be shined through this window for a specified period of time, which

14 will erase the EPROM and allow it to be reprogrammed again. Obviously this is much more useful than a regular PROM, but it does require the erasing light. Continuing the "CD" analogy, this technology is analogous to a reusable CD-RW. Electrically Erasable Programmable ROM (EEPROM): The next level of eras ability is the EEPROM, which can be erased under software control. This is the most flexible type of ROM, and is now commonly used for holding BIOS programs. When you hear reference to a "flash BIOS" or doing a BIOS upgrade by "flashing", this refers to reprogramming the BIOS EEPROM with a special software program. Here we are blurring the line a bit between what "read-only" really means, but remember that this rewriting is done maybe once a year or so, compared to real read-write memory (RAM) where rewriting is done often many times per second. 14

Lecture (05) Boolean Algebra and Logic Gates

Lecture (05) Boolean Algebra and Logic Gates Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either

More information

Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can

More information

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University Memory Overview Curtis Nelson Walla Walla University Overview - Memory Types n n n Magnetic tape (used primarily for long term archive) Magnetic disk n Hard disk (File, Directory, Folder) n Floppy disks

More information

8051 INTERFACING TO EXTERNAL MEMORY

8051 INTERFACING TO EXTERNAL MEMORY 8051 INTERFACING TO EXTERNAL MEMORY Memory Capacity The number of bits that a semiconductor memory chip can store Called chip capacity It can be in units of Kbits (kilobits), Mbits (megabits), and so on

More information

DIGITAL ELECTRONICS. Vayu Education of India

DIGITAL ELECTRONICS. Vayu Education of India DIGITAL ELECTRONICS ARUN RANA Assistant Professor Department of Electronics & Communication Engineering Doon Valley Institute of Engineering & Technology Karnal, Haryana (An ISO 9001:2008 ) Vayu Education

More information

Concept of Memory. The memory of computer is broadly categories into two categories:

Concept of Memory. The memory of computer is broadly categories into two categories: Concept of Memory We have already mentioned that digital computer works on stored programmed concept introduced by Von Neumann. We use memory to store the information, which includes both program and data.

More information

This presentation will..

This presentation will.. Component Identification: Digital Introduction to Logic Gates and Integrated Circuits Digital Electronics 2014 This presentation will.. Introduce transistors, logic gates, integrated circuits (ICs), and

More information

Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic

Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic EE 200: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Unit 6.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2. Logic Logic and Computer Design Fundamentals Part Implementation

More information

Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Chapter 2. Boolean Algebra and Logic Gates Tong In Oh 1 Basic Definitions 2 3 2.3 Axiomatic Definition of Boolean Algebra Boolean algebra: Algebraic structure defined by a set of elements, B, together

More information

CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)

CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics... 1 1.1.1 Introduction... 1 1.1.2 Advantages of Digital Systems...

More information

Introduction read-only memory random access memory

Introduction read-only memory random access memory Memory Interface Introduction Simple or complex, every microprocessorbased system has a memory system. Almost all systems contain two main types of memory: read-only memory (ROM) and random access memory

More information

Integrated circuits and fabrication

Integrated circuits and fabrication Integrated circuits and fabrication Motivation So far we have discussed about the various devices that are the heartbeat of core electronics. This modules aims at giving an overview of how these solid

More information

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing Microcontroller Systems ELET 3232 Topic 11: General Memory Interfacing 1 Objectives To become familiar with the concepts of memory expansion and the data and address bus To design embedded systems circuits

More information

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I)

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I) COMP3221: Microprocessors and Embedded Systems Lecture 23: Memory Systems (I) Overview Memory System Hierarchy RAM, ROM, EPROM, EEPROM and FLASH http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session

More information

Memory and Programmable Logic

Memory and Programmable Logic Memory and Programmable Logic Memory units allow us to store and/or retrieve information Essentially look-up tables Good for storing data, not for function implementation Programmable logic device (PLD),

More information

THE MICROCOMPUTER SYSTEM CHAPTER - 2

THE MICROCOMPUTER SYSTEM CHAPTER - 2 THE MICROCOMPUTER SYSTEM CHAPTER - 2 20 2.1 GENERAL ASPECTS The first computer was developed using vacuum tubes. The computers thus developed were clumsy and dissipating more power. After the invention

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE4220. PROGRAMMABLE LOGIC DEVICES (PLDs)

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE4220. PROGRAMMABLE LOGIC DEVICES (PLDs) COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE4220 PROGRAMMABLE LOGIC DEVICES (PLDs) A PLD, or programmable logic device, is an electronic component that is used

More information

Lecture-7 Characteristics of Memory: In the broad sense, a microcomputer memory system can be logically divided into three groups: 1) Processor

Lecture-7 Characteristics of Memory: In the broad sense, a microcomputer memory system can be logically divided into three groups: 1) Processor Lecture-7 Characteristics of Memory: In the broad sense, a microcomputer memory system can be logically divided into three groups: 1) Processor memory 2) Primary or main memory 3) Secondary memory Processor

More information

1 Digital tools. 1.1 Introduction

1 Digital tools. 1.1 Introduction 1 Digital tools 1.1 Introduction In the past few years, enormous advances have been made in the cost, power, and ease of use of microcomputers and associated analog and digital circuits. It is now possible,

More information

UNIT V (PROGRAMMABLE LOGIC DEVICES)

UNIT V (PROGRAMMABLE LOGIC DEVICES) UNIT V (PROGRAMMABLE LOGIC DEVICES) Introduction There are two types of memories that are used in digital systems: Random-access memory(ram): perform both the write and read operations. Read-only memory(rom):

More information

Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER

Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER Boolean Algebra BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 5 Boolean Algebra /2 A set of elements B There exist at least two elements x, y B s. t. x y Binary operators: +

More information

Chap-2 Boolean Algebra

Chap-2 Boolean Algebra Chap-2 Boolean Algebra Contents: My name Outline: My position, contact Basic information theorem and postulate of Boolean Algebra. or project description Boolean Algebra. Canonical and Standard form. Digital

More information

2.1 Binary Logic and Gates

2.1 Binary Logic and Gates 1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary

More information

Digital Techniques. Lecture 1. 1 st Class

Digital Techniques. Lecture 1. 1 st Class Digital Techniques Lecture 1 1 st Class Digital Techniques Digital Computer and Digital System: Digital computer is a part of digital system, it based on binary system. A block diagram of digital computer

More information

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory The basic element of a semiconductor memory is the memory cell. Although a variety of

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system.

Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system. Assignment No. 1 1. State advantages of digital system over analog system. 2. Convert following numbers a. (138.56) 10 = (?) 2 = (?) 8 = (?) 16 b. (1110011.011) 2 = (?) 10 = (?) 8 = (?) 16 c. (3004.06)

More information

3. The high voltage level of a digital signal in positive logic is : a) 1 b) 0 c) either 1 or 0

3. The high voltage level of a digital signal in positive logic is : a) 1 b) 0 c) either 1 or 0 1. The number of level in a digital signal is: a) one b) two c) four d) ten 2. A pure sine wave is : a) a digital signal b) analog signal c) can be digital or analog signal d) neither digital nor analog

More information

PROGRAMMABLE LOGIC DEVICES

PROGRAMMABLE LOGIC DEVICES PROGRAMMABLE LOGIC DEVICES Programmable logic devices (PLDs) are used for designing logic circuits. PLDs can be configured by the user to perform specific functions. The different types of PLDs available

More information

SECTION-A

SECTION-A M.Sc(CS) ( First Semester) Examination,2013 Digital Electronics Paper: Fifth ------------------------------------------------------------------------------------- SECTION-A I) An electronics circuit/ device

More information

C Program Adventures. From C code to motion

C Program Adventures. From C code to motion C Program Adventures From C code to motion ECE 100 Prof. Erdal Oruklu From C code to motion C Code Motion x=5; if (x!=y) { z=0; } else { z=1; } 1 Compilation of C code Virtual machine program Program download

More information

Combinational Circuits

Combinational Circuits Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables

More information

Memory Study Material

Memory Study Material Computer memory refers to the devices that are used to store data or programs on a temporary or permanent basis for use in a computer. Any data or instruction entered into the memory of a computer is considered

More information

Address connections Data connections Selection connections

Address connections Data connections Selection connections Interface (cont..) We have four common types of memory: Read only memory ( ROM ) Flash memory ( EEPROM ) Static Random access memory ( SARAM ) Dynamic Random access memory ( DRAM ). Pin connections common

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

More information

Summer 2003 Lecture 18 07/09/03

Summer 2003 Lecture 18 07/09/03 Summer 2003 Lecture 18 07/09/03 NEW HOMEWORK Instruction Execution Times: The 8088 CPU is a synchronous machine that operates at a particular clock frequency. In the case of the original IBM PC, that clock

More information

Review: Chip Design Styles

Review: Chip Design Styles MPT-50 Introduction to omputer Design SFU, Harbour entre, Spring 007 Lecture 9: Feb. 6, 007 Programmable Logic Devices (PLDs) - Read Only Memory (ROM) - Programmable Array Logic (PAL) - Programmable Logic

More information

B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN

B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don

More information

COMBINATIONAL LOGIC CIRCUITS

COMBINATIONAL LOGIC CIRCUITS COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic

More information

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM Memories Overview Memory Classification Read-Only Memory (ROM) Types of ROM PROM, EPROM, E 2 PROM Flash ROMs (Compact Flash, Secure Digital, Memory Stick) Random Access Memory (RAM) Types of RAM Static

More information

Introduction to ICs and Transistor Fundamentals

Introduction to ICs and Transistor Fundamentals Introduction to ICs and Transistor Fundamentals A Brief History 1958: First integrated circuit Flip-flop using two transistors Built by Jack Kilby at Texas Instruments 2003 Intel Pentium 4 mprocessor (55

More information

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

CREATED BY M BILAL & Arslan Ahmad Shaad Visit: CREATED BY M BILAL & Arslan Ahmad Shaad Visit: www.techo786.wordpress.com Q1: Define microprocessor? Short Questions Chapter No 01 Fundamental Concepts Microprocessor is a program-controlled and semiconductor

More information

Lecture 21: Combinational Circuits. Integrated Circuits. Integrated Circuits, cont. Integrated Circuits Combinational Circuits

Lecture 21: Combinational Circuits. Integrated Circuits. Integrated Circuits, cont. Integrated Circuits Combinational Circuits Lecture 21: Combinational Circuits Integrated Circuits Combinational Circuits Multiplexer Demultiplexer Decoder Adders ALU Integrated Circuits Circuits use modules that contain multiple gates packaged

More information

CS 320 February 2, 2018 Ch 5 Memory

CS 320 February 2, 2018 Ch 5 Memory CS 320 February 2, 2018 Ch 5 Memory Main memory often referred to as core by the older generation because core memory was a mainstay of computers until the advent of cheap semi-conductor memory in the

More information

UNIT:4 MEMORY ORGANIZATION

UNIT:4 MEMORY ORGANIZATION 1 UNIT:4 MEMORY ORGANIZATION TOPICS TO BE COVERED. 4.1 Memory Hierarchy 4.2 Memory Classification 4.3 RAM,ROM,PROM,EPROM 4.4 Main Memory 4.5Auxiliary Memory 4.6 Associative Memory 4.7 Cache Memory 4.8

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS YEAR / SEMESTER: II / III ACADEMIC YEAR: 2015-2016 (ODD

More information

Menu. word size # of words byte = 8 bits

Menu. word size # of words byte = 8 bits Menu LSI Components >Random Access Memory (RAM) Static RAM (SRAM) Dynamic RAM (DRAM) Read-Only Memory (ROM) Look into my... See figures from Lam text on web: RAM_ROM_ch6.pdf 1 It can be thought of as 1

More information

Intro to Logic Gates & Datasheets. Intro to Logic Gates & Datasheets. Introduction to Integrated Circuits. TTL Vs. CMOS Logic

Intro to Logic Gates & Datasheets. Intro to Logic Gates & Datasheets. Introduction to Integrated Circuits. TTL Vs. CMOS Logic Intro to Logic Gates & Datasheets Digital Electronics Intro to Logic Gates & Datasheets This presentation will Introduce integrated circuits (ICs). Present an overview of : Transistor-Transistor Logic

More information

Intro to Logic Gates & Datasheets. Digital Electronics

Intro to Logic Gates & Datasheets. Digital Electronics Intro to Logic Gates & Datasheets Digital Electronics Intro to Logic Gates & Datasheets This presentation will Introduce integrated circuits (ICs). Present an overview of : Transistor-Transistor Logic

More information

Memory & Logic Array. Lecture # 23 & 24 By : Ali Mustafa

Memory & Logic Array. Lecture # 23 & 24 By : Ali Mustafa Memory & Logic Array Lecture # 23 & 24 By : Ali Mustafa Memory Memory unit is a device to which a binary information is transferred for storage. From which information is retrieved when needed. Types of

More information

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

More information

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable

More information

Sense Amplifiers 6 T Cell. M PC is the precharge transistor whose purpose is to force the latch to operate at the unstable point.

Sense Amplifiers 6 T Cell. M PC is the precharge transistor whose purpose is to force the latch to operate at the unstable point. Announcements (Crude) notes for switching speed example from lecture last week posted. Schedule Final Project demo with TAs. Written project report to include written evaluation section. Send me suggestions

More information

FPGA for Dummies. Introduc)on to Programmable Logic

FPGA for Dummies. Introduc)on to Programmable Logic FPGA for Dummies Introduc)on to Programmable Logic FPGA for Dummies Historical introduc)on, where we come from; FPGA Architecture: Ø basic blocks (Logic, FFs, wires and IOs); Ø addi)onal elements; FPGA

More information

Digital Logic Design Exercises. Assignment 1

Digital Logic Design Exercises. Assignment 1 Assignment 1 For Exercises 1-5, match the following numbers with their definition A Number Natural number C Integer number D Negative number E Rational number 1 A unit of an abstract mathematical system

More information

Scheme G. Sample Test Paper-I

Scheme G. Sample Test Paper-I Sample Test Paper-I Marks : 25 Times:1 Hour 1. All questions are compulsory. 2. Illustrate your answers with neat sketches wherever necessary. 3. Figures to the right indicate full marks. 4. Assume suitable

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

Semiconductor Memories: RAMs and ROMs

Semiconductor Memories: RAMs and ROMs Semiconductor Memories: RAMs and ROMs Lesson Objectives: In this lesson you will be introduced to: Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc. Different terms like: read, write,

More information

Combinational Circuits Digital Logic (Materials taken primarily from:

Combinational Circuits Digital Logic (Materials taken primarily from: Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a

More information

Agenda EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 1: Introduction. Go over the syllabus 3/31/2010

Agenda EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 1: Introduction. Go over the syllabus 3/31/2010 // EE : INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture : Introduction /9/ Avinash Kodi, kodi@ohio.edu Agenda Go over the syllabus Introduction ti to Digital it Systems // Why Digital Systems?

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

Combinational Logic with MSI and LSI

Combinational Logic with MSI and LSI 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010

More information

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory Semiconductor Memory Types Semiconductor Memory RAM Misnamed as all semiconductor memory is random access

More information

EE 8351 Digital Logic Circuits Ms. J.Jayaudhaya, ASP/EEE

EE 8351 Digital Logic Circuits Ms. J.Jayaudhaya, ASP/EEE EE 8351 Digital Logic Circuits Ms. J.Jayaudhaya, ASP/EEE Numbering Systems Types Of Numbers Natural Numbers The number 0 and any number obtained by repeatedly adding a count of 1 to 0 Negative Numbers

More information

Read and Write Cycles

Read and Write Cycles Read and Write Cycles The read cycle is shown. Figure 41.1a. The RAS and CAS signals are activated one after the other to latch the multiplexed row and column addresses respectively applied at the multiplexed

More information

Logic design Ibn Al Haitham collage /Computer science Eng. Sameer

Logic design Ibn Al Haitham collage /Computer science Eng. Sameer DEMORGAN'S THEOREMS One of DeMorgan's theorems stated as follows: The complement of a product of variables is equal to the sum of the complements of the variables. DeMorgan's second theorem is stated as

More information

Reference Sheet for C112 Hardware

Reference Sheet for C112 Hardware Reference Sheet for C112 Hardware 1 Boolean Algebra, Gates and Circuits Autumn 2016 Basic Operators Precedence : (strongest),, + (weakest). AND A B R 0 0 0 0 1 0 1 0 0 1 1 1 OR + A B R 0 0 0 0 1 1 1 0

More information

END-TERM EXAMINATION

END-TERM EXAMINATION (Please Write your Exam Roll No. immediately) END-TERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA-103 Subject: Digital Electronics Time: 3 Hours Maximum

More information

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR DLD UNIT III Combinational Circuits (CC), Analysis procedure, Design Procedure, Combinational circuit for different code converters and other problems, Binary Adder- Subtractor, Decimal Adder, Binary Multiplier,

More information

Parts of Computer hardware Software

Parts of Computer hardware Software Parts of Computer Parts of Computer If you use a desktop computer, you might already know that there is not any single part called the "computer." A computer is really a system of many parts working together.

More information

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR STUDENT IDENTIFICATION NO MULTIMEDIA COLLEGE JALAN GURNEY KIRI 54100 KUALA LUMPUR SECOND SEMESTER FINAL EXAMINATION, 2013/2014 SESSION ITC2223 COMPUTER ORGANIZATION & ARCHITECTURE DSEW-E-F 1/13 18 FEBRUARY

More information

P-2 Digital Design & Applications

P-2 Digital Design & Applications P-2 Digital Design & Applications Semiconductor Memory (Unit-V) By: A K Verma SOS in Electronics & Photonics Pt. Ravishankar Shukla University, Raipur (C.G.) 1 What is Memory? In computing, memory refers

More information

UNIT- V COMBINATIONAL LOGIC DESIGN

UNIT- V COMBINATIONAL LOGIC DESIGN UNIT- V COMBINATIONAL LOGIC DESIGN NOTE: This is UNIT-V in JNTUK and UNIT-III and HALF PART OF UNIT-IV in JNTUA SYLLABUS (JNTUK)UNIT-V: Combinational Logic Design: Adders & Subtractors, Ripple Adder, Look

More information

Chapter TEN. Memory and Memory Interfacing

Chapter TEN. Memory and Memory Interfacing Chapter TEN Memory and Memory Interfacing OBJECTIVES this chapter enables the student to: Define the terms capacity, organization, and speed as used in semiconductor memories. Calculate the chip capacity

More information

Digital Electronics. CHAPTER THIRTY TWO. Semiconductor Read-Only Memories

Digital Electronics. CHAPTER THIRTY TWO. Semiconductor Read-Only Memories Digital Electronics. CHAPTER THIRTY TWO Semiconductor Read-Only Memories Introduction Diode circuits, BJT circuits, and MOSFET circuits are used to provide memory semiconductor circuits consisting of both

More information

CMPE 415 Programmable Logic Devices FPGA Technology I

CMPE 415 Programmable Logic Devices FPGA Technology I Department of Computer Science and Electrical Engineering CMPE 415 Programmable Logic Devices FPGA Technology I Prof. Ryan Robucci Some slides (blue-frame) developed by Jim Plusquellic Some images credited

More information

CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES This chapter in the book includes: Objectives Study Guide 9.1 Introduction 9.2 Multiplexers 9.3 Three-State Buffers 9.4 Decoders and Encoders

More information

M. Sc (CS) (II Semester) Examination, Subject: Computer System Architecture Paper Code: M.Sc-CS-203. Time: Three Hours] [Maximum Marks: 60

M. Sc (CS) (II Semester) Examination, Subject: Computer System Architecture Paper Code: M.Sc-CS-203. Time: Three Hours] [Maximum Marks: 60 M. Sc (CS) (II Semester) Examination, 2012-13 Subject: Computer System Architecture Paper Code: M.Sc-CS-203 Time: Three Hours] [Maximum Marks: 60 Note: Question Number 1 is compulsory. Answer any four

More information

ECSE-2610 Computer Components & Operations (COCO)

ECSE-2610 Computer Components & Operations (COCO) ECSE-2610 Computer Components & Operations (COCO) Part 18: Random Access Memory 1 Read-Only Memories 2 Why ROM? Program storage Boot ROM for personal computers Complete application storage for embedded

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 2, 2016 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

Chapter 5 Internal Memory

Chapter 5 Internal Memory Chapter 5 Internal Memory Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM) Read-write memory Electrically, byte-level Electrically Volatile Read-only memory (ROM) Read-only

More information

Chapter 4 Main Memory

Chapter 4 Main Memory Chapter 4 Main Memory Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering fundamentals

More information

Unit 5: Memory Organizations

Unit 5: Memory Organizations Memory Organizations Unit 5: Memory Organizations Introduction This unit considers the organization of a computer's memory system. The characteristics of the most important storage technologies are described

More information

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

More information

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory 5.1 Semiconductor Main Memory 5.2 Error Correction 5.3 Advanced DRAM Organization 5.1 Semiconductor Main Memory

More information

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017 Lecture Objectives Introduction to Computing Chapter The AVR microcontroller and embedded systems using assembly and c Students should be able to: Convert between base and. Explain the difference between

More information

Contents. Chapter 3 Combinational Circuits Page 1 of 34

Contents. Chapter 3 Combinational Circuits Page 1 of 34 Chapter 3 Combinational Circuits Page of 34 Contents Contents... 3 Combinational Circuits... 2 3. Analysis of Combinational Circuits... 2 3.. Using a Truth Table... 2 3..2 Using a Boolean unction... 4

More information

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved.

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved. Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Internal Memory http://www.yildiz.edu.tr/~naydin 1 2 Outline Semiconductor main memory Random Access Memory

More information

AMD actual programming and testing on a system board. We will take a simple design example and go through the various stages of this design process.

AMD actual programming and testing on a system board. We will take a simple design example and go through the various stages of this design process. actual programming and testing on a system board. We will take a simple design example and go through the various stages of this design process. Conceptualize A Design Problem Select Device Implement Design

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

Copyright 2000 N. AYDIN. All rights reserved. 1

Copyright 2000 N. AYDIN. All rights reserved. 1 Electronic Circuits Prof. Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin Dr. Gökhan Bilgin gokhanb@ce.yildiz.edu.tr Digital devices Introduction Gate characteristics Logic families

More information

eaymanelshenawy.wordpress.com

eaymanelshenawy.wordpress.com Lectures on Memory Interface Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. Al-Azhar University Email : eaymanelshenawy@yahoo.com eaymanelshenawy.wordpress.com Lecture

More information

IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

More information

UNIT 4 INTEGRATED CIRCUIT DESIGN METHODOLOGY E5163

UNIT 4 INTEGRATED CIRCUIT DESIGN METHODOLOGY E5163 UNIT 4 INTEGRATED CIRCUIT DESIGN METHODOLOGY E5163 LEARNING OUTCOMES 4.1 DESIGN METHODOLOGY By the end of this unit, student should be able to: 1. Explain the design methodology for integrated circuit.

More information

SSRVM Content Creation Template

SSRVM Content Creation Template SSRVM Content Creation Template Title: Evolution of Computers Contributors: Sreeja. T Std: IV Submission Date: Reviewers: Approval Date: REF No: Brief Description: Goal: Brief History which reveals a clear

More information

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS UNIT I

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS UNIT I KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS YEAR / SEM: III / V UNIT I NUMBER SYSTEM & BOOLEAN ALGEBRA

More information

Introduction to SRAM. Jasur Hanbaba

Introduction to SRAM. Jasur Hanbaba Introduction to SRAM Jasur Hanbaba Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Non-volatile Memory Manufacturing Flow Memory Arrays Memory Arrays Random Access Memory Serial

More information

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems Advanced Embedded Systems Lecture 2: Memory and Programmable Logic Dr. Mohamed Abd El Ghany, Memory Random Access Memory (RAM) Can be read and written Static Random Access Memory (SRAM) Data stored so

More information

Sketch A Transistor-level Schematic Of A Cmos 3-input Xor Gate

Sketch A Transistor-level Schematic Of A Cmos 3-input Xor Gate Sketch A Transistor-level Schematic Of A Cmos 3-input Xor Gate DE09 DIGITALS ELECTRONICS 3 (For Mod-m Counter, we need N flip-flops (High speeds are possible in ECL because the transistors are used in

More information