beats per minute (bpm) in the utero period. At about 5 weeks gestation, your

Size: px
Start display at page:

Download "beats per minute (bpm) in the utero period. At about 5 weeks gestation, your"

Transcription

1 1. INTRODUCTION A normal fetal heart rate (FHR) usually ranges from 120 to 160 beats per minute (bpm) in the utero period. At about 5 weeks gestation, your baby's heart begins to beat. At this point, a normal fetal heart rate is about the same heart rate as the mother's: about beats per minute (BPM). It is measurable sonographically from around 6 weeks and the normal range varies during gestation, increasing to around 170 bpm at 10 weeks and decreasing from then to around 130 bpm at term. From this point, it will increase its rate about 3 beats per minute per day during that first month. By the beginning of the 9th week of pregnancy, the normal fetal heart rate is an average of 175 BPM. At this point it begins a rapid deceleration to the normal fetal heart rate for the middle of the pregnancy of about BPM. Fetal heart rate monitoring is used in nearly every pregnancy at prenatal visits. It is done to check on how the fetus is doing and to look for any problems. Fetal heart rate monitoring is especially helpful if you have a high-risk pregnancy. The pregnancy will be high risk if the patient is an diabetian or have high blood pressure. It is also high risk if the fetus is not developing or growing thus the results of fetal heart rate monitoring will be less accurate. Hence continuous monitoring can ensure the safe pregnancy for the mother. MATLAB simulation is implemented to display the fetal heart rate. Here the input signals are taken from the physionet website. This website provides the 1

2 signals used for the research purposes. These signals are extracted as Matlab file. Then by using the fuzzy logic these signals are trained and the fetal heart rate is displayed in the LCD using Arduino. Figure 1.1: Input signal 2

3 2. BLOCK DIAGRAM MATERNAL AND FETAL SIGNAL MATLAB SOFTWA RE ARDUINO LCD Figure 2.1: Block diagram 3. COMPONENTS ARDUINO LCD DISPLAY 3

4 4. HARDWARE DESCRIPTION 4.1 ARDUINO UNO The Arduino Uno is a microcontroller board based on the ATmega328. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller. Simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial converter. All Arduino boards are based around the ATMEGA AVR series microcontrollers from ATMEL which feature both analog and digital pins. Arduino also created software which is compatible with all Arduino microcontrollers. The software, also called Arduino, it can be used to program any of the Arduino microcontrollers by selecting them from a drop-down menu. Being open source and based around C, Arduino users are not necessarily restricted to this software, and can use a variety of other software to program the microcontrollers. 4.2 FEATURES Operating Voltage 5V Input Voltage (recommended) 7-12V Input Voltage (limit) 6-20V Digital I/O Pins 14 (of which 6 provide PWM output) PWM Digital I/O Pins 6 4

5 Analog Input Pins 6 DC Current per I/O Pin 20 ma DC Current for 3.3V Pin 50 ma Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader SRAM 2 KB (ATmega328P) EEPROM 1 KB (ATmega328P) Clock Speed 16 MHz INPUT AND OUTPUT Each of the 14 digital pins on the Uno can be used as an input or output, using pinmode(), digitalwrite(), and digitalread() functions. They operate at 5 volts. Each pin can provide or receive 20 ma as recommended operating condition and has an internal pull-up resistor (disconnected by default) of 20-50k ohm. A maximum of 40mA is the value that must not be exceeded on any I/O pin to avoid permanent damage to the microcontroller. The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10bits of resolution (i.e different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF. pin and the analogreference() function. There are a couple of other pins on the board: AREF. Reference voltage for the analog inputs. Used with analogreference(). 5

6 Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board. Figure Pin diagram MEMORY The ATmega328 has 32 KB (with 0.5 KB occupied by the bootloader). It also has 2 KB of SRAM and 1 KB of EEPROM. 6

7 4.1.4 POWER The Uno board can be powered via the USB connection or with an external power supply. The power source is selected automatically. External (non-usb) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the GND and Vin pin headers of the POWER connector. The board can operate on an external supply from 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may become unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts. The power pins are as follows: Vin. The input voltage to the Uno board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin. 5V.This pin outputs a regulated 5V from the regulator on the board. The board can be supplied with power either from the DC power jack (7-12V), the USB connector (5V), or the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the regulator, and can damage your board. We don't advise it. 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 ma. GND. Ground pins. IOREF. This pin on the Uno board provides the voltage reference with which the microcontroller operates. A properly configured shield can read 7

8 the IOREF pin voltage and select the appropriate power source or enable voltage translators on the outputs to work with the 5V or 3.3V COMMUNICATION The Uno has a number of facilities for communicating with a computer, another Uno board, or other microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An ATmega16U2 on the board channels this serial communication over USB and appears as a virtual com port to software on the computer. The 16U2 firmware uses the standard USB COM drivers, and no external driver is needed. The Arduino Software (IDE) includes a serial monitor which allows simple textual data to be sent to and from the board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-serial chip and USB connection to the computer (but not for serial communication on pins 0 and 1). A Software Serial library allows serial communication on any of the Uno's digital pins. The ATmega328 also supports I2C (TWI) and SPI communication. The Arduino Software (IDE) includes a Wire library to simplify use of the I2C bus; see the documentation for details. For SPI communication, use the SPI library AUTOMATIC RESET Rather than requiring a physical press of the reset button before an upload, the Uno board is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of 8

9 the ATmega8U2/16U2 is connected to the reset line of the ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino Software (IDE) uses this capability to allow you to upload code by simply pressing the upload button in the interface toolbar. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload. This setup has other implications. When the Uno is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Uno. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data. The Uno board contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can be soldered together to reenable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to the reset line SPECIALIZED PIN FUNCTIONS Some pins have specialized functions: Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip. 9

10 External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachinterrupt() function for details. PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogwrite() function. SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication using the SPI library. LED: 13. There is a built-in LED driven by digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off. TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the Wire library PHYSICAL CHARACTERISTICS The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB connector and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other pins. 10

11 Figure Physical characteristics ADVANTAGES Inexpensive Cross-platform Simple, clear programming environment Open source and extensible software Open source and extensible hardware 11

12 4.2 LCD DISPLAY A liquid crystal display (LCD) is a flat panel display, electronic visual display, or video display that uses the light modulating properties of liquid crystals. Liquid crystals (Fig 3.5) do not emit light directly. LCDs are available to display arbitrary images (as in a general-purpose computer display) or fixed images which can be displayed or hidden, such as preset words, digits, and 7- segment displays as in a digital clock. They use the same basic technology, except that arbitrary images are made up of a large number of small pixels, while other displays have larger elements. LCDs are used in a wide range of applications including computer monitors, televisions, instrument panels, aircraft cockpit displays, and signage. They are common in consumer devices such as video players, gaming devices, clocks, watches, calculators, and telephones, and have replaced cathode ray tube (CRT) displays in most applications. They are available in a wider range of screen sizes than CRT and plasma displays, and since they do not use phosphors, they do not suffer image burn-in. LCDs are, however, susceptible to image persistence. The LCD is more energy efficient and can be disposed of more safely than a CRT. Its low electrical power consumption enables it to be used in battery-powered electronic equipment. It is an electronically modulated optical device made up of any number of segments filled with liquid crystals and arrayed in front of a light source (backlight) or reflector to produce images in color or monochrome. Liquid crystals were first developed in By 2008, worldwide sales of televisions with LCD screens exceeded annual sales of CRT units; the CRT became obsolete for most purposes. 12

13 Figure LCD PIN DESCRIPTION The LCDs have a parallel interface, meaning that the microcontroller has to manipulate several interface pins at once to control the display. The interface consists of the following pins: A register select (RS) pin that controls where in the LCD's memory you're writing data to. You can select either the data register, which holds what goes on the screen, or an instruction register, which is where the LCD's controller looks for instructions on what to do next. A Read/Write (R/W) pin that selects reading mode or writing mode An Enable pin that enables writing to the registers 8 data pins (D0 -D7). The states of these pins (high or low) are the bits that you're writing to a register when you write, or the values you're reading when you read. 13

14 There's also a display constrast pin (Vo), power supply pins (+5V and Gnd) and LED Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD, control the display contrast, and turn on and off the LED backlight, respectively PIN INTERFACING To wire the LCD screen to arduino board, connect the following pins: LCD RS pin to digital pin 12 LCD Enable pin to digital pin 11 LCD D4 pin to digital pin 5 LCD D5 pin to digital pin 4 LCD D6 pin to digital pin 3 LCD D7 pin to digital pin 2 Additionally, wire a 10k pot to +5V and GND, with it's wiper (output) to LCD screens VO pin (pin3). A 220 ohm resistor is used to power the backlight of the display, usually on pin 15 and 16 of the LCD connector 14

15 Figure Arduino and LCD interfacing 15

16 Use of the LCD is pretty straightforward. After power-up, wait a half second or so to let the LCD run its own initialization. Since the default mode is eight bits, we ll have to reinitialize it to accept our data via the four-bit bus. When the four-bit initialization is complete, It can send our characters or commands. The RS line is set high for characters, low for LCD commands. The initialization code is required to allow the LCD to operate in four-bit mode. After setting the four-bit interface, this section of code turns the display on, turns off the underline cursor, and causes the cursor to increment after each character is written. Just to ensure that there is no garbage left from any previous operations, the Display Clear command is sent to the LCD. Writing a character or command is done in these steps: 1. Set the RS line (HIGH for character, LOW for command). 2. Place the high nibble of the character/command byte on the bus. 3. Strobe the Enable line (cause a HIGH-to-LOW transition). 4. Place the low nibble on the bus. 5. Strobe the Enable line one more time. The LCD pins are numbered from 1-16.In the case where the LCD is powered with the Arduino by the 5V USB cable, selecting the contrast resistor to be 2K ohm and the back LED resistor to be 100 ohm is a good start. Alternatively, a 5K potentiometer can be used to adjust the contrast. 16

17 Table LCD and its interface 5 SOFTWARE DESCRIPTION 5.1 MATLAB SOFTWARE MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Typical uses include: Math and computation Algorithm development Modeling, simulation, and prototyping Data analysis, exploration, and visualization Scientific and engineering graphics Application development, including Graphical User Interface building 17

18 The name MATLAB stands for matrix laboratory. MATLAB features a family of application-specific solutions called toolboxes. Very important to most users of MATLAB, toolboxes allow you to learn and apply specialized technology. Toolboxes are comprehensive collections of MATLAB functions (Mfiles) that extend the MATLAB environment to solve particular classes of problems. Areas in which toolboxes are available include signal processing, control systems, neural networks, fuzzy logic, wavelets, simulation, and many others METHOD AND CONCEPT OF FECG EXTRACTION The method used in this project is adaptive noise cancellation (ANC) based on neuro fuzzy logic technique. ANC is a process by which the interference signal can be filtered out by identifying a non linear model between a measurable noise source (which is MECG in this case) and the corresponding immeasurable interference. This is an extremely useful technique when a signal is submerged in a very noisy environment. Usually, the MECG noise is not steady; it changes from time to time. So the noise cancellation must be an adaptive process: it should be able to work under changing conditions, and be able to adjust itself according to the changing environment. The basic idea of an adaptive noise cancellation algorithm is to pass the corrupted signal (abdominal) through a filter that tends to suppress the MECG while leaving the signal unchanged. As mentioned above, this is an adaptive process, which means it does not require prior knowledge of signal or noise characteristics. 18

19 Figure 5.1: Noise cancellation with ANFIS filtering In this project, x(k) represents the FECG signal that is to be extracted from the noisy signal. n(k) is the MECG which is the noise source signal. The noise signal goes through an unknown nonlinear dynamics(f) and generates a distorted d(k) which is then added to x(k) to form the measurable output(abdominal) signal y(k). During the extraction of the fetal heartbeat signal, the system input parameters (of both the maternal and the fetal heartbeat signals) were generated by codes written in matlab. These parameters were then passed to the adaptive neuro fuzzy inference system (ANFIS) for training. In the process of training, the parameters (i.e. membership function parameters) of each system input signal continues to map each other until the adaptive noise canceller (ANC) reaches a point of convergence. At this point the fetal heart rate signal is extracted. 19

20 Figure 5.2:Flowchart for the extraction of FECG ADVANTAGES OF ANFIS Adaptive Neuro Fuzzy Inference System (ANFIS) was the proposed technique for the extraction of Fetal Electrocardiogram (FECG) signals from composite abdominal ECG recordings. The advantage of this technique over other methods is that it requires only one abdominal signal and one thoracic signal. But the other methods require many signals to validate their results. Compared to other methods, ANFIS is well suitable for non linear applications.. Since this technique uses neural network it requires fewer inputs to extract the FECG signal. Convergence time is less compared to methods using neural network alone due to the hybrid rule used in the ANFIS technique. ANFIS can separate the FECG without dividing the signals into different frames. After removing the major interference (MECG) from the FECG, it is easier to cancel the high frequency noise using digital filters. Since the morphology of the extracted FECG using this technique remains same, it can be used by the medical doctors and/or physicians to diagnose. 20

21 5.2 ARDUINO SOFTWARE The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. It runs on Windows, Mac OS X, and Linux. The environment is written in Java and based on Processing and other open-source software. This software can be used with any Arduino board. The Arduino Integrated Development Environment or Arduino Software (IDE) contains a text editor for writing code, a message area, a text console, a toolbar with buttons for common functions and a series of menus. It connects to the Arduino and Genuino hardware to upload programs and communicate with them. Programs written using Arduino Software (IDE) are called sketches. These sketches are written in the text editor and are saved with the file extension.ino. The editor has features for cutting/pasting and for searching/replacing text. The message area gives feedback while saving and exporting and also displays errors. The console displays text output by the Arduino Software (IDE), including complete error messages and other information. The bottom righthand corner of the window displays the configured board and serial port. The toolbar buttons allow you to verify and upload programs, create, open, and save sketches, and open the serial monitor. Verify/Compile Checks your sketch for errors compiling it; it will report memory usage for code and variables in the console area. Upload Compiles and loads the binary file onto the configured board through the configured Port. Upload Using Programmer : This will overwrite the bootloader on the board; you will need to use Tools > Burn Bootloader to restore it and be able to 21

22 Upload to USB serial port again. However, it allows you to use the full capacity of the Flash memory for your sketch. Please note that this command will NOT burn the fuses. To do so a Tools -> Burn Bootloader command must be executed. Export Compiled Binary : Saves a.hex file that may be kept as archive or sent to the board using other tools. Port This menu contains all the serial devices (real or virtual) on your machine. It should automatically refresh every time you open the top-level tools menu. Burn Bootloader The items in this menu allow you to burn a bootloader onto the microcontroller on an Arduino board. 6.ADVANTAGES Continuous fetal heart rate monitoring reduces the chances of seizure after the birth, a symptom of brain injury from low oxygen. It also ensures the well-being and safety of both mother and fetal during pregnancy. An abnormal fetal heart rate or pattern mean that the fetus is not getting enough oxygen or suffering from any other problems. If the fetal heart rate lies above or below 120 to 160BPM, it indicates the emergency situation. 7.CONCLUSION Thus the fetal heart rate is monitored by using the adaptive neuro fuzzy logic which is implemented by MATLAB, in which the FECG signal is extracted by comparing normal MECG signal from the MECG and the fetal heart rate signal is displayed in the LCD using Arduino. So that we ensure the wellbeing and safety of both mother and fetal during pregnancy. 22

23 8. REFERENCE [1] Assaleh K. (2007). Extraction of Fetal Electrocardiogram Using Adaptive Neuro-Fuzzy Inference Systems, IEEE Trans. Biomed. Eng., 54: [2] Ibahimy M. et al. (2003). Real Time Signal Processing For Fetal Heart Rate Monitoring, IEEE Med Biol. Eng. Comput., 50: [3] Jang J. (1993). ANFIS: Adaptive Network- Based Fuzzy Inference Systems, IEEE Trans. Syst. Man Cybern, 23: [4] Ferrara, E. R., and Widrow, B., Fetal electrocardiogram enhancement by timesequenced adaptive filtering, IEEE Trans. Biomed. Eng. 29, pp , [5] Jafari, M. G., and Chambers, J. A., Fetal electrocardiogram extraction by sequential source separation in the wavelet domain, IEEE Transactions on Biomedical Engineering, vol. 52, no. 3, pp ,2005. [6] Widrow, B., Adaptive Noise Cancelling: Principles and Applications, Proc. IEEE, vol. 63, pp , Dec [7] John, R. G. Jr., Adaptive Noise Canceling Applied to Sinusoidal Interferences, IEEE Trans. ASSP, Vol. ASSP-25, no. 6, pp , Dec.1977 [8] V. Zarzoso and A. Nandi, Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation, Biomedical Engineering, IEEE Transactions on, vol. 48, no. 1, pp , [9] Physionet, the research resource for complex biomedical signals. physionet.org/. [10] R. Sameni and G. Clifford, A review of fetal ECG signal processing; issues and promising directions, The open pacing, electrophysiology & therapy journal, vol. 3, p. 4,

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front Arduino Uno Arduino Uno R3 Front Arduino Uno R2 Front Arduino Uno SMD Arduino Uno R3 Back Arduino Uno Front Arduino Uno Back Overview The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet).

More information

ARDUINO MEGA 2560 REV3 Code: A000067

ARDUINO MEGA 2560 REV3 Code: A000067 ARDUINO MEGA 2560 REV3 Code: A000067 The MEGA 2560 is designed for more complex projects. With 54 digital I/O pins, 16 analog inputs and a larger space for your sketch it is the recommended board for 3D

More information

ARDUINO UNO REV3 SMD Code: A The board everybody gets started with, based on the ATmega328 (SMD).

ARDUINO UNO REV3 SMD Code: A The board everybody gets started with, based on the ATmega328 (SMD). ARDUINO UNO REV3 SMD Code: A000073 The board everybody gets started with, based on the ATmega328 (SMD). The Arduino Uno SMD R3 is a microcontroller board based on the ATmega328. It has 14 digital input/output

More information

ARDUINO UNO REV3 Code: A000066

ARDUINO UNO REV3 Code: A000066 ARDUINO UNO REV3 Code: A000066 The UNO is the best board to get started with electronics and coding. If this is your first experience tinkering with the platform, the UNO is the most robust board you can

More information

ARDUINO MEGA ADK REV3 Code: A000069

ARDUINO MEGA ADK REV3 Code: A000069 ARDUINO MEGA ADK REV3 Code: A000069 OVERVIEW The Arduino MEGA ADK is a microcontroller board based on the ATmega2560. It has a USB host interface to connect with Android based phones, based on the MAX3421e

More information

Arduino ADK Rev.3 Board A000069

Arduino ADK Rev.3 Board A000069 Arduino ADK Rev.3 Board A000069 Overview The Arduino ADK is a microcontroller board based on the ATmega2560 (datasheet). It has a USB host interface to connect with Android based phones, based on the MAX3421e

More information

ARDUINO LEONARDO ETH Code: A000022

ARDUINO LEONARDO ETH Code: A000022 ARDUINO LEONARDO ETH Code: A000022 All the fun of a Leonardo, plus an Ethernet port to extend your project to the IoT world. You can control sensors and actuators via the internet as a client or server.

More information

ARDUINO LEONARDO WITH HEADERS Code: A000057

ARDUINO LEONARDO WITH HEADERS Code: A000057 ARDUINO LEONARDO WITH HEADERS Code: A000057 Similar to an Arduino UNO, can be recognized by computer as a mouse or keyboard. The Arduino Leonardo is a microcontroller board based on the ATmega32u4 (datasheet).

More information

ARDUINO MICRO WITHOUT HEADERS Code: A000093

ARDUINO MICRO WITHOUT HEADERS Code: A000093 ARDUINO MICRO WITHOUT HEADERS Code: A000093 Arduino Micro is the smallest board of the family, easy to integrate it in everyday objects to make them interactive. The Micro is based on the ATmega32U4 microcontroller

More information

keyestudio Keyestudio MEGA 2560 R3 Board

keyestudio Keyestudio MEGA 2560 R3 Board Keyestudio MEGA 2560 R3 Board Introduction: Keyestudio Mega 2560 R3 is a microcontroller board based on the ATMEGA2560-16AU, fully compatible with ARDUINO MEGA 2560 REV3. It has 54 digital input/output

More information

ARDUINO M0 PRO Code: A000111

ARDUINO M0 PRO Code: A000111 ARDUINO M0 PRO Code: A000111 The Arduino M0 Pro is an Arduino M0 with a step by step debugger With the new Arduino M0 Pro board, the more creative individual will have the potential to create one s most

More information

ARDUINO YÚN Code: A000008

ARDUINO YÚN Code: A000008 ARDUINO YÚN Code: A000008 Arduino YÚN is the perfect board to use when designing connected devices and, more in general, Internet of Things projects. It combines the power of Linux with the ease of use

More information

How to Use an Arduino

How to Use an Arduino How to Use an Arduino By Vivian Law Introduction The first microcontroller, TMS-1802-NC, was built in 1971 by Texas Instruments. It owed its existence to the innovation and versatility of silicon and the

More information

ARDUINO YÚN MINI Code: A000108

ARDUINO YÚN MINI Code: A000108 ARDUINO YÚN MINI Code: A000108 The Arduino Yún Mini is a compact version of the Arduino YUN OVERVIEW: Arduino Yún Mini is a breadboard PCB developed with ATmega 32u4 MCU and QCA MIPS 24K SoC CPU operating

More information

Gambar A.1 Board Arduino

Gambar A.1 Board Arduino LAMPIRAN A ARDUINO UNO Gambar A.1 Board Arduino The Arduino Uno is a microcontroller board based on the ATmega328. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog

More information

ARDUINO INDUSTRIAL 1 01 Code: A000126

ARDUINO INDUSTRIAL 1 01 Code: A000126 ARDUINO INDUSTRIAL 1 01 Code: A000126 The Industrial 101 is a small form-factor YUN designed for product integration. OVERVIEW: Arduino Industrial 101 is an Evaluation board for Arduino 101 LGA module.

More information

ARDUINO PRIMO. Code: A000135

ARDUINO PRIMO. Code: A000135 ARDUINO PRIMO Code: A000135 Primo combines the processing power from the Nordic nrf52 processor, an Espressif ESP8266 for WiFi, as well as several onboard sensors and a battery charger. The nrf52 includes

More information

Arduino Uno R3 INTRODUCTION

Arduino Uno R3 INTRODUCTION Arduino Uno R3 INTRODUCTION Arduino is used for building different types of electronic circuits easily using of both a physical programmable circuit board usually microcontroller and piece of code running

More information

Arduino Ethernet. Arduino Ethernet Rev. 2 board front view with optional PoE module. (http://arduino.cc/en/uploads/main/arduinoethernetfrontpoe.

Arduino Ethernet. Arduino Ethernet Rev. 2 board front view with optional PoE module. (http://arduino.cc/en/uploads/main/arduinoethernetfrontpoe. Arduino - ArduinoBoardEthernet Page 1 of 10 Arduino Ethernet (http://arduino.cc/en/uploads/main/arduinoethernetfront.jpg) Arduino Ethernet Rev. 3 board front view (http://arduino.cc/en/uploads/main/arduinoethernetback.jpg)

More information

Arduino: The Novel by nanowrirobot.pl Created in November of 2010

Arduino: The Novel by nanowrirobot.pl Created in November of 2010 Arduino: The Novel by nanowrirobot.pl Created in November of 2010 Inexperienced sending Bring range simplify buy Rather. Included programmers GPL against step-by-step PCB steps. Output source While beyond

More information

ARDUINO MINI 05 Code: A000087

ARDUINO MINI 05 Code: A000087 ARDUINO MINI 05 Code: A000087 The Arduino Mini is a very compact version of the Arduino Nano without an on board USB to Serial connection The Arduino Mini 05 is a small microcontroller board originally

More information

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet). It has 54 digital input/output pins (of which 14 can be used as

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet). It has 54 digital input/output pins (of which 14 can be used as The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet). It has 54 digital input/output pins (of which 4 can be used as PWM outputs), 6 analog inputs, 4 UARTs (hardware serial

More information

Sanguino TSB. Introduction: Features:

Sanguino TSB. Introduction: Features: Sanguino TSB Introduction: Atmega644 is being used as CNC machine driver for a while. In 2012, Kristian Sloth Lauszus from Denmark developed a hardware add-on of Atmega644 for the popular Arduino IDE and

More information

Lesson 6 Intel Galileo and Edison Prototype Development Platforms. Chapter-8 L06: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

Lesson 6 Intel Galileo and Edison Prototype Development Platforms. Chapter-8 L06: Internet of Things , Raj Kamal, Publs.: McGraw-Hill Education Lesson 6 Intel Galileo and Edison Prototype Development Platforms 1 Intel Galileo Gen 2 Boards Based on the Intel Pentium architecture Includes features of single threaded, single core and 400 MHz constant

More information

Alessandra de Vitis. Arduino

Alessandra de Vitis. Arduino Alessandra de Vitis Arduino Arduino types Alessandra de Vitis 2 Interfacing Interfacing represents the link between devices that operate with different physical quantities. Interface board or simply or

More information

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 8051 Intermidiate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

Lesson 5 Arduino Prototype Development Platforms. Chapter-8 L05: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

Lesson 5 Arduino Prototype Development Platforms. Chapter-8 L05: Internet of Things , Raj Kamal, Publs.: McGraw-Hill Education Lesson 5 Arduino Prototype Development Platforms 1 Arduino Boards, Modules And Shields Popular AVR MCU based products Each board has clear markings on the connection pins, sockets and in-circuit connections

More information

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help AVR Intermediate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

Adafruit Metro Mini. Created by lady ada. Last updated on :12:28 PM UTC

Adafruit Metro Mini. Created by lady ada. Last updated on :12:28 PM UTC Adafruit Metro Mini Created by lady ada Last updated on 2018-01-24 08:12:28 PM UTC Guide Contents Guide Contents Overview Pinouts USB & Serial converter Microcontroller & Crystal LEDs Power Pins & Regulators

More information

Lab 01 Arduino 程式設計實驗. Essential Arduino Programming and Digital Signal Process

Lab 01 Arduino 程式設計實驗. Essential Arduino Programming and Digital Signal Process Lab 01 Arduino 程式設計實驗 Essential Arduino Programming and Digital Signal Process Arduino Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's

More information

Arduino Dock 2. The Hardware

Arduino Dock 2. The Hardware Arduino Dock 2 The Arduino Dock 2 is our supercharged version of an Arduino Uno R3 board. These two boards share the same microcontroller, the ATmel ATmega328P microcontroller (MCU), and have identical

More information

IDUINO for maker s life. User Manual. For IDUINO development Board.

IDUINO for maker s life. User Manual. For IDUINO development Board. User Manual For IDUINO development Board 1.Overview 1.1 what is Arduino? Arduino is an open-source prototyping platform based on easy-to-use hardware and software. Arduino boards are able to read inputs

More information

8:1 Serial Port Expander

8:1 Serial Port Expander 8:1 Serial Port Expander V 1.3 This is an evolving document check back for updates. Features Expand a single UART (RX / TX) serial port into 8 additional serial ports On-board LEDs indicate which channel

More information

Cookie User Manual. For NuMicro Edition 1.0. Rev. 1.0 Release: forum.coocox.org.

Cookie User Manual. For NuMicro Edition 1.0. Rev. 1.0 Release: forum.coocox.org. Cookie User Manual For NuMicro Edition 1.0 Rev. 1.0 Release: 2012-08-09 Website: Forum: Techinal: Market: www.coocox.org forum.coocox.org master@coocox.com market@coocox.com 1 Introduction Cookie is an

More information

Introduction to Arduino. Wilson Wingston Sharon

Introduction to Arduino. Wilson Wingston Sharon Introduction to Arduino Wilson Wingston Sharon cto@workshopindia.com Physical computing Developing solutions that implement a software to interact with elements in the physical universe. 1. Sensors convert

More information

Goal: We want to build an autonomous vehicle (robot)

Goal: We want to build an autonomous vehicle (robot) Goal: We want to build an autonomous vehicle (robot) This means it will have to think for itself, its going to need a brain Our robot s brain will be a tiny computer called a microcontroller Specifically

More information

Prototyping Module Datasheet

Prototyping Module Datasheet Prototyping Module Datasheet Part Numbers: MPROTO100 rev 002 Zenseio LLC Updated: September 2016 Table of Contents Table of Contents Functional description PROTOTYPING MODULE OVERVIEW FEATURES BLOCK DIAGRAM

More information

IDUINO for maker s life. User Manual. For IDUINO Mega2560 Board(ST1026)

IDUINO for maker s life. User Manual. For IDUINO Mega2560 Board(ST1026) User Manual For IDUINO Mega2560 Board(ST1026) 1.Overview 1.1 what is Arduino? Arduino is an open-source prototyping platform based on easy-to-use hardware and software. Arduino boards are able to read

More information

Mega128-Net Mega128-Net Mega128 AVR Boot Loader Mega128-Net

Mega128-Net Mega128-Net Mega128 AVR Boot Loader Mega128-Net Mega128-Net Development Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The Mega128-Net development board is designed

More information

ESPino - Specifications

ESPino - Specifications ESPino - Specifications Summary Microcontroller ESP8266 (32-bit RISC) WiFi 802.11 (station, access point, P2P) Operating Voltage 3.3V Input Voltage 4.4-15V Digital I/O Pins 9 Analog Input Pins 1 (10-bit

More information

Arduino UNO R3. Features of the Arduino UNO:

Arduino UNO R3. Features of the Arduino UNO: Arduino UNO R This is the Arduino Uno R. In addition to all the features of the previous board, the Uno now uses an ATmegaU instead of the U found on the Uno (or the FTDI found on previous generations).

More information

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The Mega128-Development board is designed for

More information

Pridgen Vermeer Robotics Xmega128 Manual

Pridgen Vermeer Robotics Xmega128 Manual Features: 12x PWM signals with 5V supply 8x A/D Inputs with 3.3V supply 2x RS 232 Terminals 1x SPI Interface 4x 8-bit Digital IO ports 3.3V Power Bus LCD Header (4-bit mode) Smart Power Connecter Power

More information

Breeze Board. Type A. User Manual.

Breeze Board. Type A. User Manual. Breeze Board Type A User Manual www.dizzy.co.za Contents Introduction... 3 Overview Top... 4 Overview Bottom... 5 Getting Started (Amicus Compiler)... 6 Power Circuitry... 7 USB... 8 Microcontroller...

More information

Atmel Microprocessor Programming With AVRISPmkii

Atmel Microprocessor Programming With AVRISPmkii Atmel Microprocessor Programming With AVRISPmkii Purpose EE 400D - Senior Design Part of Electronics & Control Division Technical Training Series by Nicholas Lombardo October 13, 2015 The purpose of this

More information

Introducting Itsy Bitsy 32u4

Introducting Itsy Bitsy 32u4 Introducting Itsy Bitsy 32u4 Created by lady ada Last updated on 2018-01-03 05:47:20 AM UTC Guide Contents Guide Contents Overview Pinouts Which do you have? Power Pins Adafruit Pro Trinket LiIon/LiPoly

More information

Freeduino USB 1.0. Arduino Compatible Development Board Starter Guide. 1. Overview

Freeduino USB 1.0. Arduino Compatible Development Board Starter Guide. 1. Overview Freeduino USB 1.0 Arduino Compatible Development Board Starter Guide 1. Overview 1 Arduino is an open source embedded development platform consisting of a simple development board based on Atmel s AVR

More information

EXL x240 Graphic LCD Smart Module 3,8 SHORT FORM TECHNICAL SPECIFICATIONS. Via di Corticella, Bologna, Italy

EXL x240 Graphic LCD Smart Module 3,8 SHORT FORM TECHNICAL SPECIFICATIONS.   Via di Corticella, Bologna, Italy 320x240 Graphic LCD Smart Module 3,8 SHORT FORM TECHNICAL SPECIFICATIONS www.exelmicroel.it Via di Corticella, 201 40128 - Bologna, Italy Tel: +39 051 6380211 Fax: +39 051 6380226 exelbo@exelmicroel.it

More information

GE-INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH VOLUME -3, ISSUE -5 (May 2015) IF ISSN: ( )

GE-INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH VOLUME -3, ISSUE -5 (May 2015) IF ISSN: ( ) DESIGN AND IMPLEMENTATION OF MICROCONTROLLER BASED SPEED DATA LOGGER Kriti Jain *, Prem Chand #, Saad Shamsi #, Dimple Taneja #, Rahul Yadav #, Sanjeev Yadav # *Assistant Professor, ECE Department, Amity

More information

Arduino Based Interaction between Blind, Deaf and Dumb People

Arduino Based Interaction between Blind, Deaf and Dumb People Arduino Based Interaction between Blind, Deaf and Dumb People R.Jeena 1, Attur Keerthana 2, R.Meenakshi 3, K.Priya 4 Assistant Professor, Panimalar Institute of Technology, Chennai, Tamil Nadu, India 1

More information

Omega MP. Multi-Programming Shield for Atmel Microcontrollers. User Manual

Omega MP. Multi-Programming Shield for Atmel Microcontrollers. User Manual Omega MP Multi-Programming Shield for Atmel Microcontrollers User Manual Ω - Omega MCU Systems Copyright 2012 Contents Introduction...2 Omega MP main features:...2 Getting Started...3 Assumptions...3 1.

More information

CSCI 6907 PROJECT PROPOSAL LIGHTS OUT MANAGEMENT

CSCI 6907 PROJECT PROPOSAL LIGHTS OUT MANAGEMENT CSCI 6907 PROJECT PROPOSAL LIGHTS OUT MANAGEMENT JAMES LEE JAMESLEE@GWU.EDU. Project Abstract I am a system administrator who manages hundreds of Unix systems. One of the essential tools to ensure I don

More information

USER MANUAL ARDUINO I/O EXPANSION SHIELD

USER MANUAL ARDUINO I/O EXPANSION SHIELD USER MANUAL ARDUINO I/O EXPANSION SHIELD Description: Sometimes Arduino Uno users run short of pins because there s a lot of projects that requires more than 20 signal pins. The only option they are left

More information

Arduino Smart Robot Car Kit User Guide

Arduino Smart Robot Car Kit User Guide User Guide V1.0 04.2017 UCTRONIC Table of Contents 1. Introduction...3 2. Assembly...4 2.1 Arduino Uno R3...4 2.2 HC-SR04 Ultrasonic Sensor Module with Bracket / Holder...5 2.3 L293D Motor Drive Expansion

More information

Academic Year Annexure I. 1. Project Title: Color sensor based multiple line follower robot with obstacle detection

Academic Year Annexure I. 1. Project Title: Color sensor based multiple line follower robot with obstacle detection Academic Year 2015-16 Annexure I 1. Project Title: Color sensor based multiple line follower robot with obstacle detection TABLE OF CONTENTS 1.1 Abstract 2-2 1.2 Motivation 3-3 1.3 Objective 3-3 2.1 Block

More information

USER GUIDE ARDBOX ANALOG

USER GUIDE ARDBOX ANALOG USER GUIDE ARDBOX ANALOG Version: 00300170_Ardbox_Analog Page2 Ardbox User Guide: 1 Contents 2 ARDBOX... 3... 4 3 Precautions... 4 1.1. Arduino Board... 4 1.2. Intended Audience... 4 1.3. General Precautions...

More information

Shack Clock kit. U3S Rev 2 PCB 1. Introduction

Shack Clock kit. U3S Rev 2 PCB 1. Introduction Shack Clock kit U3S Rev 2 PCB 1. Introduction Thank you for purchasing the QRP Labs Shack Clock kit. This clock uses the Ultimate3S QRSS/WSPR kit hardware, but a different firmware version. It can be used

More information

M-DUINO R FAMILY. M-Duino 19R/38R/57R User Guide: 1 Index

M-DUINO R FAMILY. M-Duino 19R/38R/57R User Guide: 1 Index Page1 M-DUINO R FAMILY M-Duino 19R/38R/57R User Guide: 1 Index 2 General Description M-DUINO R FAMILY product... 3 2.1 Mechanical dimension... 4 3 Precautions... 5 3.1 Arduino Board... 5 3.2 Intended Audience...

More information

Shack Clock kit PCB Revision: QCU Rev 1 or QCU Rev 3

Shack Clock kit PCB Revision: QCU Rev 1 or QCU Rev 3 1. Introduction Shack Clock kit PCB Revision: QCU Rev 1 or QCU Rev 3 Thank you for purchasing this QRP Labs Shack Clock kit. The kit uses the same PCB and bag of components as some other QRP Labs kits.

More information

Omega-328 SB. Rapid Prototyping tool with Shield Base for Atmel AtmegaXX8 Microcontrollers. User Manual

Omega-328 SB. Rapid Prototyping tool with Shield Base for Atmel AtmegaXX8 Microcontrollers. User Manual Omega-328 SB Rapid Prototyping tool with Shield Base for Atmel AtmegaXX8 Microcontrollers User Manual - Omega MCU Systems Copyright 2012 Contents Introduction... 2 Omega-328 SB main features:... 2 Getting

More information

BV511 Hardware Guide ByVac ByVac Revision 1.0

BV511 Hardware Guide ByVac ByVac Revision 1.0 BV511 Hardware Guide ByVac ByVac 2007 www.byvac.co.uk Revision 1.0 ByVac 1 Copyright in this work is vested in ByVac and the document is issued in confidence for the purpose only for which it is supplied.

More information

Note. The above image and many others are courtesy of - this is a wonderful resource for designing circuits.

Note. The above image and many others are courtesy of   - this is a wonderful resource for designing circuits. Robotics and Electronics Unit 2. Arduino Objectives. Students will understand the basic characteristics of an Arduino Uno microcontroller. understand the basic structure of an Arduino program. know how

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Digilent Cerebot Board Reference Manual Revision: 11/17/2005 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Board is a useful tool for

More information

8051 Basic Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

8051 Basic Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 8051 Basic Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

Microcontroller. BV523 32bit Microcontroller. Product specification. Jun 2011 V0.a. ByVac Page 1 of 8

Microcontroller. BV523 32bit Microcontroller. Product specification. Jun 2011 V0.a. ByVac Page 1 of 8 32bit Product specification Jun 2011 V0.a ByVac Page 1 of 8 Contents 1. Introduction...3 2. Features...3 3. Physical Specification...3 3.1. PIC32...3 3.2. USB Interface...3 3.3. Power Supply...4 3.4. Power

More information

Arduino Prof. Dr. Magdy M. Abdelhameed

Arduino Prof. Dr. Magdy M. Abdelhameed Course Code: MDP 454, Course Name:, Second Semester 2014 Arduino What is Arduino? Microcontroller Platform Okay but what s a Microcontroller? Tiny, self-contained computers in an IC Often contain peripherals

More information

Web Site: Forums: forums.parallax.com Sales: Technical:

Web Site:  Forums: forums.parallax.com Sales: Technical: Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

EPT-200TMP-TS-U2 TMP102 Temperature Sensor Docking Board Data Sheet

EPT-200TMP-TS-U2 TMP102 Temperature Sensor Docking Board Data Sheet EPT-2TMP-TS-U2 TMP12 Temperature Sensor Docking Board Data Sheet This docking board is based on the TMP12 Temperature Sensor chip from Texas Instruments. It can measure the ambient temperature between

More information

LAMPIRAN I (LISTING PROGRAM)

LAMPIRAN I (LISTING PROGRAM) LAMPIRAN I (LISTING PROGRAM) #include LiquidCrystal lcd(8, 9, 4, 5, 6, 7); const int numreadings = 10; int readings[numreadings]; // the readings from the analog input int readindex =

More information

CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6

CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 Switches 7 Jumpers 8 MCU Sockets 9 Power Supply 11 On-board USB 2.0 Programmer 12 Oscillator 14 LEDs 15 Reset Circuit 17 Push-buttons

More information

DEVBOARD3 DATASHEET. 10Mbits Ethernet & SD card Development Board PIC18F67J60 MICROCHIP

DEVBOARD3 DATASHEET. 10Mbits Ethernet & SD card Development Board PIC18F67J60 MICROCHIP DEVBOARD3 DATASHEET 10Mbits Ethernet & SD card PIC18F67J60 MICROCHIP Version 1.0 - March 2009 DEVBOARD3 Version 1.0 March 2009 Page 1 of 7 The DEVBOARD3 is a proto-typing board used to quickly and easily

More information

Doc: page 1 of 8

Doc: page 1 of 8 Minicon Reference Manual Revision: February 9, 2009 Note: This document applies to REV C of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Minicon board is a

More information

Introduction to Arduino

Introduction to Arduino Introduction to Arduino Paco Abad May 20 th, 2011 WGM #21 Outline What is Arduino? Where to start Types Shields Alternatives Know your board Installing and using the IDE Digital output Serial communication

More information

An FTDI connection: The ATtiny microcontrollers don t have a hardware UART External Crystal header pins for an optional crystal

An FTDI connection: The ATtiny microcontrollers don t have a hardware UART External Crystal header pins for an optional crystal Getting Started with the T-Board The T-Board modules were designed to speed up your AVR prototyping. This guide will show you just how quickly you can get up and running with the Hello World for microcontrollers

More information

Intel Galileo gen 2 Board

Intel Galileo gen 2 Board Intel Galileo gen 2 Board The Arduino Intel Galileo board is a microcontroller board based on the Intel Quark SoC X1000, a 32- bit Intel Pentium -class system on a chip (SoC). It is the first board based

More information

SECURE DIGITAL ACCESS SYSTEM USING IBUTTON

SECURE DIGITAL ACCESS SYSTEM USING IBUTTON SECURE DIGITAL ACCESS SYSTEM USING IBUTTON Access control forms a vital link in a security chain. Here we describe a secure digital access system using ibutton that allows only authorised persons to access

More information

Distributed Real- Time Control Systems

Distributed Real- Time Control Systems Distributed Real- Time Control Systems Lecture 2 Embedded Systems Basics A. Bernardino, C. Silvestre, IST- ACSDC 1 What are embedded systems? Small computers to efficiently address specific purposes, e.g.

More information

Breeze Board. Type B. User Manual.

Breeze Board. Type B. User Manual. Breeze Board Type B User Manual www.dizzy.co.za Contents Introduction... 3 Overview Top... 4 Overview Bottom... 5 Getting Started (USB Bootloader)... 6 Power Circuitry... 7 USB... 8 Microcontroller...

More information

ECG 2 click PID: MIKROE Weight: 30 g. Condition: New product. Table of contents

ECG 2 click PID: MIKROE Weight: 30 g. Condition: New product. Table of contents ECG 2 click PID: MIKROE-2507 Weight: 30 g Condition: New product Track the patterns of your beating heart with ECG 2 click. ECG 2 click contains ADS1194 16 bit deltasigma analog to digital converters from

More information

ATmega48/88/168 Development Board

ATmega48/88/168 Development Board ATmega// Development Board This is versatile development board for AVR microcontrollers ATmega//. It is good for testing and debugging embedded programs. It has many built-in peripheries connected to microcontroller

More information

Building your own special-purpose embedded system gadget.

Building your own special-purpose embedded system gadget. Bare-duino Building your own special-purpose embedded system gadget. Saves a little money. You can configure the hardware exactly the way that you want. Plus, it s fun! bare-duino 1 Arduino Uno reset I/O

More information

M-DUINO FAMILY. M-Duino 21 User Guide: 1 Index

M-DUINO FAMILY. M-Duino 21 User Guide: 1 Index Page1 MDUINO FAMILY MDuino 21 User Guide: 1 Index 2 General Description MDUINO FAMILY product... 3 2.1 Mechanical dimension... 4 3 Precautions... 5 3.1 Arduino Board... 5 3.2 Intended Audience... 5 3.3

More information

AVRminiV3.1 Manual. 1. AVRminiV3.1 Overview. 2. AVRminiV3.1 Features and Specifications Standard Features: 2.2. Optional Features:

AVRminiV3.1 Manual. 1. AVRminiV3.1 Overview. 2. AVRminiV3.1 Features and Specifications Standard Features: 2.2. Optional Features: AVRminiV3. Manual. AVRminiV3. Overview The AVRminiV3. board is a low-cost versatile development board for Atmel AVR processors. The AVRminiV3. supports all AVR processors in 40-pin and 64-pin packages

More information

BV4626 General Purpose I/O. Product specification. Mar 2010 V0.a. ByVac Page 1 of 13

BV4626 General Purpose I/O. Product specification. Mar 2010 V0.a. ByVac Page 1 of 13 General Purpose I/O Product specification Mar 2010 V0.a ByVac Page 1 of 13 Contents 1. Introduction... 3 2. Features... 3 3. Physical Specification... 3 3.1. JP7... 3 3.2. Control Interface... 4 3.3. Serial

More information

XNUCLEO-F030R8, Improved STM32 NUCLEO Board

XNUCLEO-F030R8, Improved STM32 NUCLEO Board XNUCLEO-F030R8, Improved STM32 NUCLEO Board STM32 Development Board, Supports Arduino, Compatible with NUCLEO-F030R8 XNUCLEO-F030R8 Features Compatible with NUCLEO-F030R8, onboard Cortex-M0 microcontroller

More information

Smart Restaurant Menu Ordering System

Smart Restaurant Menu Ordering System IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 09 March 2016 ISSN (online): 2349-784X Smart Restaurant Menu Ordering System Mrs. Anisha Cotta Assistant professor Miss.

More information

Bluetooth Based Automatic Floor Cleaning System

Bluetooth Based Automatic Floor Cleaning System International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.04, pp 55-62, 2018 Bluetooth Based Automatic Floor Cleaning System C.R.Balamurugan*, P.Kirubha,

More information

Doc: page 1 of 6

Doc: page 1 of 6 Nanocon Reference Manual Revision: February 9, 2009 Note: This document applies to REV A-B of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Nanocon board is

More information

DEV-1 HamStack Development Board

DEV-1 HamStack Development Board Sierra Radio Systems DEV-1 HamStack Development Board Reference Manual Version 1.0 Contents Introduction Hardware Compiler overview Program structure Code examples Sample projects For more information,

More information

6LoWPAN Development Platform Saker Manual

6LoWPAN Development Platform Saker Manual 6LoWPAN Development Platform Saker Manual WEPTECH elektronik GmbH Page 1 of 19 V.1.0.1 1. Table of Content 1. General information... 4 1.1 1.2 1.3 1.4 1.5 Copyright protection... 4 Warranty information...

More information

USER GUIDE ARDBOX ANALOG HF. Version: IS_AB20ANA.7.1

USER GUIDE ARDBOX ANALOG HF. Version: IS_AB20ANA.7.1 USER GUIDE ARDBOX ANALOG HF Version: IS_AB20ANA.7.1 Ardbox User Guide: Contents ARDBOX... 3 Precautions... 4 Arduino Board... 4 Intended Audience... 4 General Precautions... 4 Technical Specifications...

More information

Pridgen Vermeer Robotics ATmega128 Revision 0

Pridgen Vermeer Robotics ATmega128 Revision 0 Features: 6x 8-bit I/O Ports 4x A/D Inputs 6x PWM Headers 2x RS 232 Terminals Power Bus LCD Header (4-bit mode) Smart Power Connecter Power Switch Header Power LED Debug LED Note: Some pins have multiple

More information

OBSTACLE AVOIDANCE ROBOT

OBSTACLE AVOIDANCE ROBOT e-issn 2455 1392 Volume 3 Issue 4, April 2017 pp. 85 89 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com OBSTACLE AVOIDANCE ROBOT Sanjay Jaiswal 1, Saurabh Kumar Singh 2, Rahul Kumar 3 1,2,3

More information

A Novel Approach for Communication among Blind, Deaf and Dumb People

A Novel Approach for Communication among Blind, Deaf and Dumb People Volume 118 No. 24 2018 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ A Novel Approach for Communication among Blind, Deaf and Dumb People Sharad Agarwal,

More information

BIG8051. Development system. User manual

BIG8051. Development system. User manual BIG8051 User manual All s development systems represent irreplaceable tools for programming and developing microcontroller-based devices. Carefully chosen components and the use of machines of the last

More information

Color 7 click. PID: MIKROE 3062 Weight: 19 g

Color 7 click. PID: MIKROE 3062 Weight: 19 g Color 7 click PID: MIKROE 3062 Weight: 19 g Color 7 click is a very accurate color sensing Click board which features the TCS3472 color light to digital converter with IR filter, from ams. It contains

More information

VLSI AppNote: VSx053 Simple DSP Board

VLSI AppNote: VSx053 Simple DSP Board : VSx053 Simple DSP Board Description This document describes the VS1053 / VS8053 Simple DPS Board and the VSx053 Simple DSP Host Board. Schematics, layouts and pinouts of both cards are included. The

More information

USER GUIDE ARDBOX ANALOG

USER GUIDE ARDBOX ANALOG USER GUIDE ARDBOX ANALOG Version: 150715_Ardbox_Analog Page2 Ardbox User Guide: 1 Contents 2 ARDBOX FAMILY GUIDE... 3 3 Precautions... 4 1.1. Arduino Board... 4 1.2. Intended Audience... 4 1.3. General

More information

chipkit WiFire Board Reference Manual May 12, 2014

chipkit WiFire Board Reference Manual May 12, 2014 chipkit WiFire Board Reference Manual May 12, 2014 Production Release The production boards of the WiFIRE are manufactured using the Microchip PIC32MZ2048EFG100 MCU. Earlier pre-production, Rev B and earlier,

More information

1.6inch SPI Module user manual

1.6inch SPI Module user manual 1.6inch SPI Module user manual www.lcdwiki.com 1 / 10 Rev1.0 Product Description The 1.6 module is tested using the ESP8266MOD D1 Mini development board, Both the test program and the dependent libraries

More information