ELEC 377 Operating Systems. Week 6 Class 3

Size: px
Start display at page:

Download "ELEC 377 Operating Systems. Week 6 Class 3"

Transcription

1 ELEC 377 Operatng Systems Week 6 Class 3

2 Last Class Memory Management Memory Pagng Pagng Structure ELEC 377 Operatng Systems

3 Today Pagng Szes Vrtual Memory Concept Demand Pagng ELEC 377 Operatng Systems

4 Page Table address generated by CPU s dvded nto two parts page number(p) - ndex nto page table page offset(d) locaton wthn the page logcal address physcal address CPU p d f d { f ELEC 377 Operatng Systems

5 Memory s mapped by Page Tables Process1 Logcal Address Space Process2 Logcal Address Space ELEC 377 Operatng Systems pagef page1 page pagef page1 page Memory (Physcal Address) P2pgF P1pgF P2pg P1pg1 P1pg P2pg1 Frame N Frame 2 Frame 1 Frame

6 Page Tables Each process can have ts own logcal address space excepton: Mac OS 7 had a sngle page table for all processes (no memory protecton between processes) Thus each process has ts own page table Thus each process has ts own mappng to physcal memory ELEC 377 Operatng Systems

7 Pagng frame table - keeps track of allocated and free frames I/O operatons have to know memory layout page table has to be swtched durng context swtch - ncrease n context swtch tme page tables are large, and usually kept n man memory - page table base regster, length regster Extra memory traffc Must frst use page number to fnd frame number, then access nstructon or data n memory Smple lnear table adds one memory access for each data access. ELEC 377 Operatng Systems

8 Pagng - TLB Want to mnmze extra memory traffc of page tables Small cache nsde of MMU TLB - translaton look-asde buffer assocatve memory Page # Frame # ELEC 377 Operatng Systems

9 TLB If address not n TLB, called a mss Requres one extra memory access cycle n lnear page model (one for table, one for memory) new address added to TLB performance very senstve to ht-rato Some entres n TLB are not modfable (kernel addresses) Some TLBs support multple processes by addng process IDs to the TLB. Ths allows more than one process n TLB at a tme. otherwse TLB must be flushed on each context swtch ELEC 377 Operatng Systems

10 Memory Protecton Snce memory s no longer contguous, base + lmt not suffcent for protecton could stll be used on logcal address sde memory belongng to other processes not n page table and thus not vsble!! OS may be n page table for quck access add vald-nvald bt to page table. Process can only access vald pages ELEC 377 Operatng Systems

11 Page Table Structure The page table can become very large. 32 bt address space, 12 bt page (4K) gve 4 Megabyte page table (allocated contguously) larger than some programs!! Want to reduce resources requred by page tables break up page table so not contguous reduce sze of page table not all process space may be vald!! Stack Data Code ELEC 377 Operatng Systems

12 Page Table Mddle of table s not used (Does not contan references to physcal memory frames) page the page table? logcal address physcal address CPU p d f d ELEC 377 Operatng Systems

13 Herarchcal Tables Multple Tables (forward-mapped page table) page number s splt nto one or more sectons Frst table gves address of next table endng at physcal memory *(*(*(T1+p1) + p2)+d) p1 p2 d f d { { ELEC 377 Operatng Systems

14 Herarchcal Tables Can be more than two levels (Pentum has 4 levels) Cost of mss(assume each lookup s one access) one extra access for each extra level of table p1 p2 p3 d f d { { {

15 Hashed Page Tables Store page entres n a hash table, hashed by page number Hash table has collsons (more than one page number mght hash to a gven locaton) Store as a lnked lst (varable extra cost!!) p d H f d p f ELEC 377 Operatng Systems

16 Inverted Pages prevous schemes have separate table(s) per process Just as the TLB has a combned representaton, so do page tables tables have empty space Inverted tables have one entry for each frame Stores process number and page number correspondng to the frame Search table for <pd,page#> hash table can shorten search tme Need to extend to handle shared memory ELEC 377 Operatng Systems

17 Page Structures - Summary Three ways of reducng the memory requrements of the page tables All of them ncrease the cost of convertng a logcal address to a physcal address TLB absorbs much of the cost Increase the cost of a TLB mss Effectveness of TLB s more mportant ELEC 377 Operatng Systems

18 Demand Pagng All pages of the process are swapped out swap each page n as t s needed lazy swapper f page s never referenced -> never loaded!! pager vs swapper Hardware needs to know whch pages are n memory ELEC 377 Operatng Systems

19 Logcal vs Physcal Address Sze Pages and Frames must be the same sze d same n both physcal and logcal spaces But there may be more frames than pages or more pages than frames not necessary that p = f CPU p d f d f ELEC 377 Operatng Systems

20 Logcal vs Physcal Address Sze d = 12, logcal = 32, physcal = 4 page/frame sze = 4K #pages = 2 = 124K pages = 1M pages - page table sze (1 word per entry) = 4M #frames = 28 = 256M frames d = 1, logcal = 32, physcal = 24 page/frame sze = 1K #pages = 22 = 4M pages #frames = 14 = 16K frames - total physcal memory = 16M ELEC 377 Operatng Systems

21 Logcal vs Physcal Address Sze how can the physcal address space be less than the logcal address space? Not all of the logcal address space s used 32 bts = 4Gb A process smple process may only have 1 pages (not ncludng shared lbrares) = 8K mddle s not mapped Stack Data Code ELEC 377 Operatng Systems

22 Example Translaton Logcal = 32, Physcal = 24, Page Sze = 4K CPU 2AF53 3F7 3EC 3F7 3EC th entry n page table ELEC 377 Operatng Systems

23 Herarchcal Tables Example Program wth 222k of Code and Data, 3K of Stack 32 bt address space, 1k pages, p1 s 12 bts - how much space s taken by the page tables?? - assume 4 bytes for each entry of p1 table and 4 bytes for each entry of each p2 table. p2 = 1 bts how many pages of code and data? -> 222 pages how many pages for stack? -> 3 pages How many p2 tables? -> 2 tables how many p1 tables? -> 1 table sze of p1 table = 2 12 * 4 = 2 14 sze of each p2 table = 2 1 * 4 = 2 12 Total table space = = =16k+8k=24k ELEC 377 Operatng Systems

24 Page Table Example Stack - 3 K Stack * * *111111* Code+Data 222K *111111* ** Data Code ELEC 377 Operatng Systems

25 Page Table Example entres Empty Stack Empty ELEC 377 Operatng Systems Empty 222 entres Data Code

26 Sharng Pages Shared Lbrares Multple nvocatons of a gven program (e.g. shell, edtor) Contguous memory allocaton makes sharng dffcult Shared code must be reentrant Must not modfy tself Must also be poston ndependent Most data s not shared - however IPC Shared Segments (lab3) now easy!! Page table entres for shared code and data n each process pont to the common frames Page table entres for prvate data pont to dfferent frames ELEC 377 Operatng Systems

27 Sharng Pages-Two Procs same Prog P ELEC 377 Operatng Systems P1

28 Sharng Pages -Two Progs, 1 Shared P ELEC 377 Operatng Systems P1

29 Today Pagng Szes Vrtual Memory <<<<<<< Concept Demand Pagng ELEC 377 Operatng Systems

30 Vrtual Memory Separaton of Logcal Address from Physcal Address Each process has t s own vrtual address space Thnks t has the machne to tself Not all of the program need be n memory at one tme dynamc loadng, overlays only map the needed pages to frames n memory store unused pages on the dsk (smlar to swap) more effcent to start a new process Logcal address space can be bgger than physcal address space!! process can more effectvely share avalable memory resources ELEC 377 Operatng Systems

31 Demand Pagng All pages of the process are swapped out swap each page n as t s needed lazy swapper f page s never referenced -> never loaded!! pager vs swapper localty of reference Hardware needs to know whch pages are n memory nvald bt -> now means not n memory when a process starts, all pages are nvald generate a page-fault when the page s not n memory. ELEC 377 Operatng Systems

32 Demand Pagng Vrtual Address Page Table Memory Backng Store Note: not all pages are vald! ELEC 377 Operatng Systems

33 Demand Pagng Vrtual Address Page Table Memory Backng Store Note: not all pages are vald! ELEC 377 Operatng Systems

34 Demand Pagng Vrtual Address Page Table Memory Backng Store ELEC 377 Operatng Systems

35 Demand Pagng Vrtual Address Page Table Memory Backng Store ELEC 377 Operatng Systems

36 Demand Pagng Vrtual Address Page Table Memory Backng Store ELEC 377 Operatng Systems Page

37 Demand Pagng Vrtual Address Page Table Memory Backng Store ELEC 377 Operatng Systems Page

38 Demand Pagng Vrtual Address Page Table Memory Backng Store ELEC 377 Operatng Systems Page

39 Demand Pagng Vrtual Address Page Table 4 v Memory Backng Store ELEC 377 Operatng Systems Page

40 Demand Pagng Vrtual Address Page Table 4 v Memory Backng Store ELEC 377 Operatng Systems

41 Demand Pagng Vrtual Address Page Table 4 v Memory Backng Store ELEC 377 Operatng Systems

42 Demand Pagng Vrtual Address Page Table Memory Backng Store v ELEC 377 Operatng Systems Page Fault

43 Demand Pagng Vrtual Address Page Table Memory Backng Store v ELEC 377 Operatng Systems Page Fault

44 Demand Pagng Vrtual Address Page Table Memory Backng Store v ELEC 377 Operatng Systems Page Fault Abort!!

45 Demand Pagng Pure demand pagng (no pages to start) In practce, we know that at least the frst code page wll be used Pages that are n memory are called memory resdent Restartng the nstructon may cause more page faults some nstructons can access a lot of memory multple ndrecton addressng modes memory copy (strng move nstructon on x86) text talks about restartng nstructons undong sde effects of nstructons some CPUs can suspend the nstructon save nternal regsters on stack ELEC 377 Operatng Systems

46 Copy on Wrte Unx fork() duplcate chld process - duplcate code - duplcate data - duplcate stack We already talked about sharng code pages, and separate data and stack pages On a fork(), we could share all pages only copy a page when t s modfed requres support from hardware (MMU) more effcent use of memory don t waste cpu cycles copyng memory ELEC 377 Operatng Systems

47 Copy on Wrte Process Memory ELEC 377 Operatng Systems

48 Copy on Wrte after fork() Process Memory Process ELEC 377 Operatng Systems

49 Copy on Wrte after P2 changes 2 Process Memory 2a Process ELEC 377 Operatng Systems

50 Memory Mapped Fles Tradtonal I/O lbrary accumulates output untl a buffer s flled and then calls O/S to wrte the buffer to the fle nput s read a buffer at a tme from O/S and then lbrary gves t n smaller amounts Pagng allows a dfferent approach Take unmapped pages of the process space and map them to the blocks of the fle. page fault brngs the block nto memory when the fle s closed, wrte all modfed blocks random access to data fle! fles can be shared wth wrte access! ELEC 377 Operatng Systems

51 Page Replacement What happens when we run out of memory? runnng more processes than memory (over allocaton) no spare frames select some other frame n physcal memory wrte ts contents to dsk nvaldate the MMU regsters that pont to the frame reuse the frame Two transfers (wrte old contents, read new contents) ELEC 377 Operatng Systems

52 Page Replacement drty bt? add another flag to the page table ndcates that the page has been changed (drty) only wrte drty pages (otherwse matches copy on the dsk) Code pages are mapped from the program executable snce code doesn t change (reentrant), never have to wrte code pages. Backng store only saves data and stack pages ELEC 377 Operatng Systems

53 Page Replacement Algorthms Smlar to schedulng algorthms want to mnmze page faults FIFO Not partcularly good Belady s Anomaly more memory more page faults Optmal smlar to Shortest Job Frst schedulng algorthm page that wll not be used for the longest tme future knowledge ELEC 377 Operatng Systems

54 Page Replacement Algorthms LRU - Least recently used past behavour predcts future behavour page referenced longest ago gets replaced hardware support(page counters, stack) Approxmaton reference bts (hstory of page references) second chance algorthm (FIFO wth 1 ref bt) Alternatves nclude modfed bt prefer clean pages to drty pages not as mportant as recently used reference bt, breaks tes ELEC 377 Operatng Systems

Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory

Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory Background EECS. Operatng System Fundamentals No. Vrtual Memory Prof. Hu Jang Department of Electrcal Engneerng and Computer Scence, York Unversty Memory-management methods normally requres the entre process

More information

If you miss a key. Chapter 6: Demand Paging Source:

If you miss a key. Chapter 6: Demand Paging Source: ADRIAN PERRIG & TORSTEN HOEFLER ( -6- ) Networks and Operatng Systems Chapter 6: Demand Pagng Source: http://redmne.replcant.us/projects/replcant/wk/samsunggalaxybackdoor If you mss a key after yesterday

More information

ADRIAN PERRIG & TORSTEN HOEFLER ( -6- ) Networks and Operatng Systems Chapter 6: Demand Pagng Page Table Structures Page table structures Page table structures Problem: smple lnear table s too bg Problem:

More information

#4 Inverted page table. The need for more bookkeeping. Inverted page table architecture. Today. Our Small Quiz

#4 Inverted page table. The need for more bookkeeping. Inverted page table architecture. Today. Our Small Quiz ADRIAN PERRIG & TORSTEN HOEFLER Networks and Operatng Systems (-6-) Chapter 6: Demand Pagng http://redmne.replcant.us/projects/replcant/wk/samsunggalaxybackdoor () # Inverted table One system-wde table

More information

Cache Performance 3/28/17. Agenda. Cache Abstraction and Metrics. Direct-Mapped Cache: Placement and Access

Cache Performance 3/28/17. Agenda. Cache Abstraction and Metrics. Direct-Mapped Cache: Placement and Access Agenda Cache Performance Samra Khan March 28, 217 Revew from last lecture Cache access Assocatvty Replacement Cache Performance Cache Abstracton and Metrcs Address Tag Store (s the address n the cache?

More information

4/11/17. Agenda. Princeton University Computer Science 217: Introduction to Programming Systems. Goals of this Lecture. Storage Management.

4/11/17. Agenda. Princeton University Computer Science 217: Introduction to Programming Systems. Goals of this Lecture. Storage Management. //7 Prnceton Unversty Computer Scence 7: Introducton to Programmng Systems Goals of ths Lecture Storage Management Help you learn about: Localty and cachng Typcal storage herarchy Vrtual memory How the

More information

Nachos Project 3. Speaker: Sheng-Wei Cheng 2010/12/16

Nachos Project 3. Speaker: Sheng-Wei Cheng 2010/12/16 Nachos Project Speaker: Sheng-We Cheng //6 Agenda Motvaton User Programs n Nachos Related Nachos Code for User Programs Project Assgnment Bonus Submsson Agenda Motvaton User Programs n Nachos Related Nachos

More information

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss.

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss. Today s Outlne Sortng Chapter 7 n Wess CSE 26 Data Structures Ruth Anderson Announcements Wrtten Homework #6 due Frday 2/26 at the begnnng of lecture Proect Code due Mon March 1 by 11pm Today s Topcs:

More information

Memory and I/O Organization

Memory and I/O Organization Memory and I/O Organzaton 8-1 Prncple of Localty Localty small proporton of memory accounts for most run tme Rule of thumb For 9% of run tme next nstructon/data wll come from 1% of program/data closest

More information

News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example

News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example Unversty of Brtsh Columba CPSC, Intro to Computaton Jan-Apr Tamara Munzner News Assgnment correctons to ASCIIArtste.java posted defntely read WebCT bboards Arrays Lecture, Tue Feb based on sldes by Kurt

More information

An Efficient Garbage Collection for Flash Memory-Based Virtual Memory Systems

An Efficient Garbage Collection for Flash Memory-Based Virtual Memory Systems S. J and D. Shn: An Effcent Garbage Collecton for Flash Memory-Based Vrtual Memory Systems 2355 An Effcent Garbage Collecton for Flash Memory-Based Vrtual Memory Systems Seunggu J and Dongkun Shn, Member,

More information

CSE 120. Translation Lookaside Buffer (TLB) Implemented in Hardware. July 18, Day 5 Memory. Instructor: Neil Rhodes. Software TLB Management

CSE 120. Translation Lookaside Buffer (TLB) Implemented in Hardware. July 18, Day 5 Memory. Instructor: Neil Rhodes. Software TLB Management CSE 120 July 18, 2006 Day 5 Memory Instructor: Neil Rhodes Translation Lookaside Buffer (TLB) Implemented in Hardware Cache to map virtual page numbers to page frame Associative memory: HW looks up in

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 1 ata Structures and Algorthms Chapter 4: Trees BST Text: Read Wess, 4.3 Izmr Unversty of Economcs 1 The Search Tree AT Bnary Search Trees An mportant applcaton of bnary trees s n searchng. Let us assume

More information

Efficient Distributed File System (EDFS)

Efficient Distributed File System (EDFS) Effcent Dstrbuted Fle System (EDFS) (Sem-Centralzed) Debessay(Debsh) Fesehaye, Rahul Malk & Klara Naherstedt Unversty of Illnos-Urbana Champagn Contents Problem Statement, Related Work, EDFS Desgn Rate

More information

Memory Management. To improve CPU utilization in a multiprogramming environment we need multiple programs in main memory at the same time.

Memory Management. To improve CPU utilization in a multiprogramming environment we need multiple programs in main memory at the same time. Memory Management To improve CPU utilization in a multiprogramming environment we need multiple programs in main memory at the same time. Basic CPUs and Physical Memory CPU cache Physical memory

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions

Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions Sortng Revew Introducton to Algorthms Qucksort CSE 680 Prof. Roger Crawfs Inserton Sort T(n) = Θ(n 2 ) In-place Merge Sort T(n) = Θ(n lg(n)) Not n-place Selecton Sort (from homework) T(n) = Θ(n 2 ) In-place

More information

CS1100 Introduction to Programming

CS1100 Introduction to Programming Factoral (n) Recursve Program fact(n) = n*fact(n-) CS00 Introducton to Programmng Recurson and Sortng Madhu Mutyam Department of Computer Scence and Engneerng Indan Insttute of Technology Madras nt fact

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS : OPERATNG SYSTEMS [VRTUAL MEMORY] Shrideep Pallickara Computer Science Colorado State University Multi-level paging: How many levels deep?

More information

Assembler. Building a Modern Computer From First Principles.

Assembler. Building a Modern Computer From First Principles. Assembler Buldng a Modern Computer From Frst Prncples www.nand2tetrs.org Elements of Computng Systems, Nsan & Schocken, MIT Press, www.nand2tetrs.org, Chapter 6: Assembler slde Where we are at: Human Thought

More information

CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar

CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vdyanagar Faculty Name: Am D. Trved Class: SYBCA Subject: US03CBCA03 (Advanced Data & Fle Structure) *UNIT 1 (ARRAYS AND TREES) **INTRODUCTION TO ARRAYS If we want

More information

Chapter 6: Demand Paging

Chapter 6: Demand Paging ADRIAN PERRIG & TORSTEN HOEFLER ( 5-006-00 ) Networks and Operating Systems Chapter 6: Demand Paging Source: http://redmine.replicant.us/projects/replicant/wiki/samsunggalaxybackdoor If you miss a key

More information

Priority queues and heaps Professors Clark F. Olson and Carol Zander

Priority queues and heaps Professors Clark F. Olson and Carol Zander Prorty queues and eaps Professors Clark F. Olson and Carol Zander Prorty queues A common abstract data type (ADT) n computer scence s te prorty queue. As you mgt expect from te name, eac tem n te prorty

More information

ADRIAN PERRIG & TORSTEN HOEFLER Networks and Operating Systems ( ) Chapter 6: Demand Paging

ADRIAN PERRIG & TORSTEN HOEFLER Networks and Operating Systems ( ) Chapter 6: Demand Paging ADRIAN PERRIG & TORSTEN HOEFLER Networks and Operating Systems (5-006-00) Chapter 6: Demand Paging http://redmine.replicant.us/projects/replicant/wiki/samsunggalaxybackdoor (0) # Inverted page table One

More information

Chapter 8 Main Memory

Chapter 8 Main Memory Chapter 8 Main Memory 8.1, 8.2, 8.3, 8.4, 8.5 Chapter 9 Virtual memory 9.1, 9.2, 9.3 https://www.akkadia.org/drepper/cpumemory.pdf Images from Silberschatz Pacific University 1 How does the OS manage memory?

More information

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following. Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal

More information

Computer models of motion: Iterative calculations

Computer models of motion: Iterative calculations Computer models o moton: Iteratve calculatons OBJECTIVES In ths actvty you wll learn how to: Create 3D box objects Update the poston o an object teratvely (repeatedly) to anmate ts moton Update the momentum

More information

Basic Memory Management

Basic Memory Management Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester 10/15/14 CSC 2/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it

More information

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,

More information

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005 Exercses (Part 4) Introducton to R UCLA/CCPR John Fox, February 2005 1. A challengng problem: Iterated weghted least squares (IWLS) s a standard method of fttng generalzed lnear models to data. As descrbed

More information

Chapter 4 Memory Management

Chapter 4 Memory Management Chapter 4 Memory Management 4.1 Basic memory management 4.2 Swapping 4.3 Virtual memory 4.4 Page replacement algorithms 4.5 Modeling page replacement algorithms 4.6 Design issues for paging systems 4.7

More information

Array transposition in CUDA shared memory

Array transposition in CUDA shared memory Array transposton n CUDA shared memory Mke Gles February 19, 2014 Abstract Ths short note s nspred by some code wrtten by Jeremy Appleyard for the transposton of data through shared memory. I had some

More information

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it to be run Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester Mono-programming

More information

AADL : about scheduling analysis

AADL : about scheduling analysis AADL : about schedulng analyss Schedulng analyss, what s t? Embedded real-tme crtcal systems have temporal constrants to meet (e.g. deadlne). Many systems are bult wth operatng systems provdng multtaskng

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information

Memory Management. Chapter 4 Memory Management. Multiprogramming with Fixed Partitions. Ideally programmers want memory that is.

Memory Management. Chapter 4 Memory Management. Multiprogramming with Fixed Partitions. Ideally programmers want memory that is. Chapter 4 Memory Management Ideally programmers want memory that is Memory Management large fast non volatile 4.1 Basic memory management 4.2 Swapping 4.3 Virtual memory 4.4 Page replacement algorithms

More information

Sorting. Sorted Original. index. index

Sorting. Sorted Original. index. index 1 Unt 16 Sortng 2 Sortng Sortng requres us to move data around wthn an array Allows users to see and organze data more effcently Behnd the scenes t allows more effectve searchng of data There are MANY

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

Performance Evaluation of Information Retrieval Systems

Performance Evaluation of Information Retrieval Systems Why System Evaluaton? Performance Evaluaton of Informaton Retreval Systems Many sldes n ths secton are adapted from Prof. Joydeep Ghosh (UT ECE) who n turn adapted them from Prof. Dk Lee (Unv. of Scence

More information

USING GRAPHING SKILLS

USING GRAPHING SKILLS Name: BOLOGY: Date: _ Class: USNG GRAPHNG SKLLS NTRODUCTON: Recorded data can be plotted on a graph. A graph s a pctoral representaton of nformaton recorded n a data table. t s used to show a relatonshp

More information

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe CSCI 104 Sortng Algorthms Mark Redekopp Davd Kempe Algorthm Effcency SORTING 2 Sortng If we have an unordered lst, sequental search becomes our only choce If we wll perform a lot of searches t may be benefcal

More information

Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array

Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array Inserton Sort Dvde and Conquer Sortng CSE 6 Data Structures Lecture 18 What f frst k elements of array are already sorted? 4, 7, 1, 5, 1, 16 We can shft the tal of the sorted elements lst down and then

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L20 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions from last time Page

More information

Sorting: The Big Picture. The steps of QuickSort. QuickSort Example. QuickSort Example. QuickSort Example. Recursive Quicksort

Sorting: The Big Picture. The steps of QuickSort. QuickSort Example. QuickSort Example. QuickSort Example. Recursive Quicksort Sortng: The Bg Pcture Gven n comparable elements n an array, sort them n an ncreasng (or decreasng) order. Smple algorthms: O(n ) Inserton sort Selecton sort Bubble sort Shell sort Fancer algorthms: O(n

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015 Operating Systems 09. Memory Management Part 1 Paul Krzyzanowski Rutgers University Spring 2015 March 9, 2015 2014-2015 Paul Krzyzanowski 1 CPU Access to Memory The CPU reads instructions and reads/write

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is infinite Allocation of memory

More information

VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) , Fax: (370-5) ,

VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) , Fax: (370-5) , VRT012 User s gude V0.1 Thank you for purchasng our product. We hope ths user-frendly devce wll be helpful n realsng your deas and brngng comfort to your lfe. Please take few mnutes to read ths manual

More information

CSE 326: Data Structures Quicksort Comparison Sorting Bound

CSE 326: Data Structures Quicksort Comparison Sorting Bound CSE 326: Data Structures Qucksort Comparson Sortng Bound Steve Setz Wnter 2009 Qucksort Qucksort uses a dvde and conquer strategy, but does not requre the O(N) extra space that MergeSort does. Here s the

More information

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to

More information

Operating Systems. Paging... Memory Management 2 Overview. Lecture 6 Memory management 2. Paging (contd.)

Operating Systems. Paging... Memory Management 2 Overview. Lecture 6 Memory management 2. Paging (contd.) Operating Systems Lecture 6 Memory management 2 Memory Management 2 Overview Paging (contd.) Structure of page table Shared memory Segmentation Segmentation with paging Virtual memory Just to remind you...

More information

Chapter 9: Virtual-Memory

Chapter 9: Virtual-Memory Chapter 9: Virtual-Memory Management Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation of Frames Thrashing Other Considerations Silberschatz, Galvin and Gagne 2013

More information

Notes on Organizing Java Code: Packages, Visibility, and Scope

Notes on Organizing Java Code: Packages, Visibility, and Scope Notes on Organzng Java Code: Packages, Vsblty, and Scope CS 112 Wayne Snyder Java programmng n large measure s a process of defnng enttes (.e., packages, classes, methods, or felds) by name and then usng

More information

High level vs Low Level. What is a Computer Program? What does gcc do for you? Program = Instructions + Data. Basic Computer Organization

High level vs Low Level. What is a Computer Program? What does gcc do for you? Program = Instructions + Data. Basic Computer Organization What s a Computer Program? Descrpton of algorthms and data structures to acheve a specfc ojectve Could e done n any language, even a natural language lke Englsh Programmng language: A Standard notaton

More information

CMPS 10 Introduction to Computer Science Lecture Notes

CMPS 10 Introduction to Computer Science Lecture Notes CPS 0 Introducton to Computer Scence Lecture Notes Chapter : Algorthm Desgn How should we present algorthms? Natural languages lke Englsh, Spansh, or French whch are rch n nterpretaton and meanng are not

More information

AMath 483/583 Lecture 21 May 13, Notes: Notes: Jacobi iteration. Notes: Jacobi with OpenMP coarse grain

AMath 483/583 Lecture 21 May 13, Notes: Notes: Jacobi iteration. Notes: Jacobi with OpenMP coarse grain AMath 483/583 Lecture 21 May 13, 2011 Today: OpenMP and MPI versons of Jacob teraton Gauss-Sedel and SOR teratve methods Next week: More MPI Debuggng and totalvew GPU computng Read: Class notes and references

More information

CS 5523 Operating Systems: Memory Management (SGG-8)

CS 5523 Operating Systems: Memory Management (SGG-8) CS 5523 Operating Systems: Memory Management (SGG-8) Instructor: Dr Tongping Liu Thank Dr Dakai Zhu, Dr Palden Lama, and Dr Tim Richards (UMASS) for providing their slides Outline Simple memory management:

More information

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1)

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1) Secton 1.2 Subsets and the Boolean operatons on sets If every element of the set A s an element of the set B, we say that A s a subset of B, or that A s contaned n B, or that B contans A, and we wrte A

More information

Load Balancing for Hex-Cell Interconnection Network

Load Balancing for Hex-Cell Interconnection Network Int. J. Communcatons, Network and System Scences,,, - Publshed Onlne Aprl n ScRes. http://www.scrp.org/journal/jcns http://dx.do.org/./jcns.. Load Balancng for Hex-Cell Interconnecton Network Saher Manaseer,

More information

5.1 The ISR: Overvieui. chapter

5.1 The ISR: Overvieui. chapter chapter 5 The LC-3 n Chapter 4, we dscussed the basc components of a computer ts memory, ts processng unt, ncludng the assocated temporary storage (usually a set of regsters), nput and output devces, and

More information

Module Management Tool in Software Development Organizations

Module Management Tool in Software Development Organizations Journal of Computer Scence (5): 8-, 7 ISSN 59-66 7 Scence Publcatons Management Tool n Software Development Organzatons Ahmad A. Al-Rababah and Mohammad A. Al-Rababah Faculty of IT, Al-Ahlyyah Amman Unversty,

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some materal adapted from Mohamed Youns, UMBC CMSC 611 Spr 2003 course sldes Some materal adapted from Hennessy & Patterson / 2003 Elsever Scence Performance = 1 Executon tme Speedup = Performance (B)

More information

Virtual Memory Outline

Virtual Memory Outline Virtual Memory Outline Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations Operating-System Examples

More information

CACHE MEMORY DESIGN FOR INTERNET PROCESSORS

CACHE MEMORY DESIGN FOR INTERNET PROCESSORS CACHE MEMORY DESIGN FOR INTERNET PROCESSORS WE EVALUATE A SERIES OF THREE PROGRESSIVELY MORE AGGRESSIVE ROUTING-TABLE CACHE DESIGNS AND DEMONSTRATE THAT THE INCORPORATION OF HARDWARE CACHES INTO INTERNET

More information

Chapter 9: Virtual-Memory Management. Operating System Concepts 8 th Edition,

Chapter 9: Virtual-Memory Management. Operating System Concepts 8 th Edition, Chapter 9: Virtual-Memory Management, Silberschatz, Galvin and Gagne 2009 Chapter 9: Virtual-Memory Management Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

Sorting. Sorting. Why Sort? Consistent Ordering

Sorting. Sorting. Why Sort? Consistent Ordering Sortng CSE 6 Data Structures Unt 15 Readng: Sectons.1-. Bubble and Insert sort,.5 Heap sort, Secton..6 Radx sort, Secton.6 Mergesort, Secton. Qucksort, Secton.8 Lower bound Sortng Input an array A of data

More information

Wishing you all a Total Quality New Year!

Wishing you all a Total Quality New Year! Total Qualty Management and Sx Sgma Post Graduate Program 214-15 Sesson 4 Vnay Kumar Kalakband Assstant Professor Operatons & Systems Area 1 Wshng you all a Total Qualty New Year! Hope you acheve Sx sgma

More information

CSE 326: Data Structures Quicksort Comparison Sorting Bound

CSE 326: Data Structures Quicksort Comparison Sorting Bound CSE 326: Data Structures Qucksort Comparson Sortng Bound Bran Curless Sprng 2008 Announcements (5/14/08) Homework due at begnnng of class on Frday. Secton tomorrow: Graded homeworks returned More dscusson

More information

GSLM Operations Research II Fall 13/14

GSLM Operations Research II Fall 13/14 GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

More information

Move back and forth between memory and disk. Memory Hierarchy. Two Classes. Don t

Move back and forth between memory and disk. Memory Hierarchy. Two Classes. Don t Memory Management Ch. 3 Memory Hierarchy Cache RAM Disk Compromise between speed and cost. Hardware manages the cache. OS has to manage disk. Memory Manager Memory Hierarchy Cache CPU Main Swap Area Memory

More information

Memory Management Ch. 3

Memory Management Ch. 3 Memory Management Ch. 3 Ë ¾¾ Ì Ï ÒÒØ Å ÔÔ ÓÐÐ 1 Memory Hierarchy Cache RAM Disk Compromise between speed and cost. Hardware manages the cache. OS has to manage disk. Memory Manager Ë ¾¾ Ì Ï ÒÒØ Å ÔÔ ÓÐÐ

More information

Real-Time Guarantees. Traffic Characteristics. Flow Control

Real-Time Guarantees. Traffic Characteristics. Flow Control Real-Tme Guarantees Requrements on RT communcaton protocols: delay (response s) small jtter small throughput hgh error detecton at recever (and sender) small error detecton latency no thrashng under peak

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those from an earlier edition of the course text Operating

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Computer Architecture ELEC3441

Computer Architecture ELEC3441 Causes of Cache Msses: The 3 C s Computer Archtecture ELEC3441 Lecture 9 Cache (2) Dr. Hayden Kwo-Hay So Department of Electrcal and Electronc Engneerng Compulsory: frst reference to a lne (a..a. cold

More information

Edge Detection in Noisy Images Using the Support Vector Machines

Edge Detection in Noisy Images Using the Support Vector Machines Edge Detecton n Nosy Images Usng the Support Vector Machnes Hlaro Gómez-Moreno, Saturnno Maldonado-Bascón, Francsco López-Ferreras Sgnal Theory and Communcatons Department. Unversty of Alcalá Crta. Madrd-Barcelona

More information

Operating System Concepts

Operating System Concepts Chapter 9: Virtual-Memory Management 9.1 Silberschatz, Galvin and Gagne 2005 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

Computer Animation and Visualisation. Lecture 4. Rigging / Skinning

Computer Animation and Visualisation. Lecture 4. Rigging / Skinning Computer Anmaton and Vsualsaton Lecture 4. Rggng / Sknnng Taku Komura Overvew Sknnng / Rggng Background knowledge Lnear Blendng How to decde weghts? Example-based Method Anatomcal models Sknnng Assume

More information

Virtual Memory. 1 Administrivia. Tom Kelliher, CS 240. May. 1, Announcements. Homework, toolboxes due Friday. Assignment.

Virtual Memory. 1 Administrivia. Tom Kelliher, CS 240. May. 1, Announcements. Homework, toolboxes due Friday. Assignment. Virtual Memory Tom Kelliher, CS 240 May. 1, 2002 1 Administrivia Announcements Homework, toolboxes due Friday. Assignment From Last Time Introduction to caches. Outline 1. Virtual memory. 2. System support:

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms Heaps and Heapsort Reference: CLRS Chapter 6 Topcs: Heaps Heapsort Prorty queue Huo Hongwe Recap and overvew The story so far... Inserton sort runnng tme of Θ(n 2 ); sorts

More information

Chapter 3 - Memory Management

Chapter 3 - Memory Management Chapter 3 - Memory Management Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Memory Management 1 / 222 1 A Memory Abstraction: Address Spaces The Notion of an Address Space Swapping

More information

Esc101 Lecture 1 st April, 2008 Generating Permutation

Esc101 Lecture 1 st April, 2008 Generating Permutation Esc101 Lecture 1 Aprl, 2008 Generatng Permutaton In ths class we wll look at a problem to wrte a program that takes as nput 1,2,...,N and prnts out all possble permutatons of the numbers 1,2,...,N. For

More information

Memory Management. Virtual Memory. By : Kaushik Vaghani. Prepared By : Kaushik Vaghani

Memory Management. Virtual Memory. By : Kaushik Vaghani. Prepared By : Kaushik Vaghani Memory Management Virtual Memory By : Kaushik Vaghani Virtual Memory Background Page Fault Dirty Page / Dirty Bit Demand Paging Copy-on-Write Page Replacement Objectives To describe the benefits of a virtual

More information

9. BASIC programming: Control and Repetition

9. BASIC programming: Control and Repetition Am: In ths lesson, you wll learn: H. 9. BASIC programmng: Control and Repetton Scenaro: Moz s showng how some nterestng patterns can be generated usng math. Jyot [after seeng the nterestng graphcs]: Usng

More information

Brave New World Pseudocode Reference

Brave New World Pseudocode Reference Brave New World Pseudocode Reference Pseudocode s a way to descrbe how to accomplsh tasks usng basc steps lke those a computer mght perform. In ths week s lab, you'll see how a form of pseudocode can be

More information

Searching & Sorting. Definitions of Search and Sort. Linear Search in C++ Linear Search. Week 11. index to the item, or -1 if not found.

Searching & Sorting. Definitions of Search and Sort. Linear Search in C++ Linear Search. Week 11. index to the item, or -1 if not found. Searchng & Sortng Wee 11 Gadds: 8, 19.6,19.8 CS 5301 Sprng 2014 Jll Seaman 1 Defntons of Search and Sort Search: fnd a gven tem n a lst, return the ndex to the tem, or -1 f not found. Sort: rearrange the

More information

Range images. Range image registration. Examples of sampling patterns. Range images and range surfaces

Range images. Range image registration. Examples of sampling patterns. Range images and range surfaces Range mages For many structured lght scanners, the range data forms a hghly regular pattern known as a range mage. he samplng pattern s determned by the specfc scanner. Range mage regstraton 1 Examples

More information

Multi-Process Systems: Memory (2) Memory & paging structures: free frames. Memory & paging structures. Physical memory

Multi-Process Systems: Memory (2) Memory & paging structures: free frames. Memory & paging structures. Physical memory Multi-Process Systems: Memory (2) What we will learn A detailed description of various ways of organizing memory Discuss various memory-management techniques, including paging and segmentation To provide

More information

Quantifying Performance Models

Quantifying Performance Models Quantfyng Performance Models Prof. Danel A. Menascé Department of Computer Scence George Mason Unversty www.cs.gmu.edu/faculty/menasce.html 1 Copyrght Notce Most of the fgures n ths set of sldes come from

More information

Greedy Technique - Definition

Greedy Technique - Definition Greedy Technque Greedy Technque - Defnton The greedy method s a general algorthm desgn paradgm, bult on the follong elements: confguratons: dfferent choces, collectons, or values to fnd objectve functon:

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory 9.1 Background 9.2 Demand Paging 9.3 Copy-on-Write 9.4 Page Replacement 9.5 Allocation of Frames 9.6 Thrashing 9.7 Memory-Mapped Files 9.8 Allocating

More information

CS 268: Lecture 8 Router Support for Congestion Control

CS 268: Lecture 8 Router Support for Congestion Control CS 268: Lecture 8 Router Support for Congeston Control Ion Stoca Computer Scence Dvson Department of Electrcal Engneerng and Computer Scences Unversty of Calforna, Berkeley Berkeley, CA 9472-1776 Router

More information

CS420: Operating Systems

CS420: Operating Systems Virtual Memory James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background Code needs to be in memory

More information

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles Page Replacement page 1 Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number

More information

Memory management, part 2: outline

Memory management, part 2: outline Memory management, part 2: outline Page replacement algorithms Modeling PR algorithms o Working-set model and algorithms Virtual memory implementation issues 1 Page Replacement Algorithms Page fault forces

More information