Computer Systems II. Memory Management" Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed

Size: px
Start display at page:

Download "Computer Systems II. Memory Management" Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed"

Transcription

1 Computer Systems II Memory Management" Memory Management" Subdividing memory to accommodate many processes A program is loaded in main memory to be executed Memory needs to be allocated efficiently to pack as many processes into memory as possible Memory management requirements Relocation Protection

2 Relocation" The programmer doesn t know where the program will be placed in memory when it is executed Physical memory references cannot be fixed It is necessary to distinguish between logical address and physical address : Logical address generated by the CPU; also referred to as virtual address Physical address address seen by the memory unit The compiler generates logical (virtual) addresses Compiler-Generated Code"... x <main+>: cmp xb,[ebp-] xd <main+>: jle xa <main+> xf <main+>: call x <print_error> xa <main+>: mov [ebp-], eax xa <main+>: add eax, xaa <main+>: cmp [ebp-], eax xad <main+>: je xb <main+> xaf <main+>: call x <print_error> xb <main+>: movl $xd,[esp] xbb <main+>: call x <puts@plt>... Logical Address (relative to the beginning of the executable file)

3 Hardware Support for Relocation" CPU jle Protection" User processes cannot be allowed to read or write outside their boundaries Protection must be done at runtime Programs can be loaded anywhere in memory Programs can dynamically allocate memory Check for valid addresses during address translation Verify that address is within its bound

4 Hardware Support for Protection" limit register relocation register CPU jle Relocation and Protection Exercise" ax " CPU" MMU" Limit " Relocation " " Main memory" bx " " mov ax, []" IR " mov ax, []" PC " " " x" "

5 Contiguous Allocation?" Load processes contiguously in memory Holes are created when processes release memory External Fragmentation Operating System M Process BAD" M M Process Does not fit M Process M Process M Process M Process M M M M M M M Memory Partitioning Paging"

6 Simple Paging" Memory is divided into small page frames Pages of process are loaded into frames (need not be contiguous) Less external fragmentation Small pages limit internal fragmentation Page table translates page addresses to frames Simple Paging (Example)" Load pages into empty frames Sufficient frames must exist for entire process No compaction needed (pages can be loaded into non-contiguous frames) Process A D () () Process A D () () Process A D () () Process A D () () Process B () Process B () Process B () Process B () Process B () Process B () Process C () Process C () Process C () Process C () Process D () Process D ()

7 Page Tables" One page table for each process Page table translates logical addresses to physical addresses Process B Page Process C Page Process D Page Process A D () () Process A D () () Process A D () () Process A D () () Process B () Process B () Process B () Process B () Process B () Process B () Process C () Process C () Process C () Process C () Process D () Process D () Page Table Exercise" Fill in the page tables for processes A, B, C Process A Process B Process C Page# # Page# # Page# # Process A () () Process A () () Process A C () () Process A C () () Process C () Process B () Process B () Process B () Process B () Process B () Process C () Process C () Process B () Process B () Process A () Process A ()

8 Logical (Virtual) Address Format" Example: -bit address (= ) bits Logical Address Executable bytes Page Page Number Page Offset Page Number bytes Page Page Offset bytes Page Upper N bits represent page number Lower M bits represent offset within page... Logical to Physical Translation" Translation done in hardware Upper N bits translated to frame number Lower M bits contain offset into page Page Number Logical Address (Process A) Page Offset Page Table (A) Page Number Offset Physical Address (=*+ = ) Process A () () Process A () () Process A C () () Process A C () () Process C () Process B () Process B () Process B () Process B () Process B () Process A () Process A () Process B () Process B () Process C () Process C ()

9 Logical to Physical Translation" Translation done in hardware Determine page number and page offset Use the page number to index the page table Extract frame number and append offset Page Executable (Logical Memory) Process B () Process B () Process B () Process B () Process B () Process B () Process B () Process A () () Process A () () Process A C () () Process A C () () Process C () Process B () Process B () Process B () Process B () Process B () Process A () Process A () Process B () Process B () Process C () Process C () Address Translation Example"

10 Virtual Memory" Problems with Memory Allocation" In simple paging all pages must be loaded Limits the number of active processes External fragmentation still possible Swapping is a time consuming process Solution: Virtual Memory Load pages only when needed Less need to swap processes out to disk Virtual memory allows the OS to load pieces only when needed (demand paging)

11 Virtual Addressing" Virtual (logical) address is mapped to a real address using a page table Size of physical address limited by memory size What limits the size of a virtual address?? Page Number Offset Virtual Address Page table mapping Number Offset Physical Address Backing Store on Disk" Pages not in main memory are stored in a dedicated swap area on disk Pages Page table Disk Swap Area

12 Demand Paging" Only load those pages needed by process Keep a permanent store of pages on disk Allows more processes to be active Eliminates needless loading and unloading Process A () Process A () Process D () Process B () Process C () Process D () Process E () Process C () Process F () Process G () Process B () Process H () Process I () Process J () Process E () Process J () Page Table Structure" Extra control information needed Presence bit: indicates whether page is loaded Dirty bit: indicates whether page has been modified other control (I.e. protection) During address translation, if bit in page table entry is invalid page fault # page table Presence bit

13 Page fault" Occurs when a process accesses a page not in memory Initial page fault processing Block current process Memory Full? No Setup I/O HW to read page from disk yes Replacement Policy? Evict a page from memory When page is loaded (Disk Interrupt) Update page table Mark process ready Start a new ready process Replacement Policy" Process A attempts to execute: mov [ebx], ecx Register ebx contains an address that corresponds to page of process A What happens? Process A () Process A () Process D () Process B () Process C () Process D () Process E () Process C () Process F () Process G () Process B () Process H () Process I () Process J () Process E () Process J ()

14 Replacement Policy" Most studied memory policy Goal is to replace page needed furthest in the future (minimize page faults) Policies include: Optimal: Not possible but something to try for Least recently used (LRU) First-in, first-out (FIFO) Clock: tries to approximate LRU Some pages not subject to replacement s are locked Least-Recently-Used (LRU)" Replace the page that was referenced furthest in the past Assumes that the past reflects the future Requires an update on every reference keep the time or update the reference list Four page replacements for example Page Address Stream F F F F

15 This Lecture" Relocation and Protection Simple Paging Virtual Memory

Computer Systems II. Memory Management" Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed

Computer Systems II. Memory Management Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed Computer Systems II Memory Management" Memory Management" Subdividing memory to accommodate many processes A program is loaded in main memory to be executed Memory needs to be allocated efficiently to

More information

Paging, and segmentation

Paging, and segmentation Paging, and segmentation Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory as possible 2 Big Picture

More information

Chapters 9 & 10: Memory Management and Virtual Memory

Chapters 9 & 10: Memory Management and Virtual Memory Chapters 9 & 10: Memory Management and Virtual Memory Important concepts (for final, projects, papers) addressing: physical/absolute, logical/relative/virtual overlays swapping and paging memory protection

More information

Memory Management. Memory Management

Memory Management. Memory Management Memory Management Chapter 7 1 Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory as possible 2 1 Memory

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those from an earlier edition of the course text Operating

More information

The Memory Management Unit. Operating Systems. Autumn CS4023

The Memory Management Unit. Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline The Memory Management Unit 1 The Memory Management Unit Logical vs. Physical Address Space The concept of a logical address space that is bound to a separate

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole Memory Management Memory Management Memory a linear array of bytes - Holds O.S. and programs (processes) - Each cell (byte) is named by a unique memory address Recall,

More information

Chapter 8 Main Memory

Chapter 8 Main Memory Chapter 8 Main Memory 8.1, 8.2, 8.3, 8.4, 8.5 Chapter 9 Virtual memory 9.1, 9.2, 9.3 https://www.akkadia.org/drepper/cpumemory.pdf Images from Silberschatz Pacific University 1 How does the OS manage memory?

More information

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018 CS 31: Intro to Systems Virtual Memory Kevin Webb Swarthmore College November 15, 2018 Reading Quiz Memory Abstraction goal: make every process think it has the same memory layout. MUCH simpler for compiler

More information

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

Chapter 8 & Chapter 9 Main Memory & Virtual Memory Chapter 8 & Chapter 9 Main Memory & Virtual Memory 1. Various ways of organizing memory hardware. 2. Memory-management techniques: 1. Paging 2. Segmentation. Introduction Memory consists of a large array

More information

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition Chapter 8: Memory Management 8.1 Silberschatz, Galvin and Gagne 2009 Background Program must be brought (from disk) into memory and placed within a process for it to be run Main memory and registers are

More information

Lecture 7. Memory Management

Lecture 7. Memory Management Lecture 7 Memory Management 1 Lecture Contents 1. Memory Management Requirements 2. Memory Partitioning 3. Paging 4. Segmentation 2 Memory Memory is an array of words or bytes, each with its own address.

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

How to create a process? What does process look like?

How to create a process? What does process look like? How to create a process? On Unix systems, executable read by loader Compile time runtime Ken Birman ld loader Cache Compiler: generates one object file per source file Linker: combines all object files

More information

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015 Operating Systems 09. Memory Management Part 1 Paul Krzyzanowski Rutgers University Spring 2015 March 9, 2015 2014-2015 Paul Krzyzanowski 1 CPU Access to Memory The CPU reads instructions and reads/write

More information

Virtual Memory 1. Virtual Memory

Virtual Memory 1. Virtual Memory Virtual Memory 1 Virtual Memory key concepts virtual memory, physical memory, address translation, MMU, TLB, relocation, paging, segmentation, executable file, swapping, page fault, locality, page replacement

More information

CSE 421/521 - Operating Systems Fall Lecture - XII Main Memory Management. Tevfik Koşar. University at Buffalo. October 18 th, 2012.

CSE 421/521 - Operating Systems Fall Lecture - XII Main Memory Management. Tevfik Koşar. University at Buffalo. October 18 th, 2012. CSE 421/521 - Operating Systems Fall 2012 Lecture - XII Main Memory Management Tevfik Koşar University at Buffalo October 18 th, 2012 1 Roadmap Main Memory Management Fixed and Dynamic Memory Allocation

More information

Virtual Memory 1. Virtual Memory

Virtual Memory 1. Virtual Memory Virtual Memory 1 Virtual Memory key concepts virtual memory, physical memory, address translation, MMU, TLB, relocation, paging, segmentation, executable file, swapping, page fault, locality, page replacement

More information

Course Outline. Processes CPU Scheduling Synchronization & Deadlock Memory Management File Systems & I/O Distributed Systems

Course Outline. Processes CPU Scheduling Synchronization & Deadlock Memory Management File Systems & I/O Distributed Systems Course Outline Processes CPU Scheduling Synchronization & Deadlock Memory Management File Systems & I/O Distributed Systems 1 Today: Memory Management Terminology Uniprogramming Multiprogramming Contiguous

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium 8.2 Silberschatz, Galvin

More information

Operating Systems Lecture 6: Memory Management II

Operating Systems Lecture 6: Memory Management II CSCI-GA.2250-001 Operating Systems Lecture 6: Memory Management II Hubertus Franke frankeh@cims.nyu.edu What is the problem? Not enough memory Have enough memory is not possible with current technology

More information

Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation

Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Basic Hardware Address Binding Logical VS Physical Address Space Dynamic Loading Dynamic Linking and Shared

More information

Introduction to Virtual Memory Management

Introduction to Virtual Memory Management Introduction to Virtual Memory Management Minsoo Ryu Department of Computer Science and Engineering Virtual Memory Management Page X Demand Paging Page X Q & A Page X Memory Allocation Three ways of memory

More information

Memory Management william stallings, maurizio pizzonia - sistemi operativi

Memory Management william stallings, maurizio pizzonia - sistemi operativi Memory Management 1 summary goals and requirements techniques that do not involve virtual memory 2 memory management tracking used and free memory primitives allocation of a certain amount of memory de-allocation

More information

Operating Systems. Paging... Memory Management 2 Overview. Lecture 6 Memory management 2. Paging (contd.)

Operating Systems. Paging... Memory Management 2 Overview. Lecture 6 Memory management 2. Paging (contd.) Operating Systems Lecture 6 Memory management 2 Memory Management 2 Overview Paging (contd.) Structure of page table Shared memory Segmentation Segmentation with paging Virtual memory Just to remind you...

More information

Part Three - Memory Management. Chapter 8: Memory-Management Strategies

Part Three - Memory Management. Chapter 8: Memory-Management Strategies Part Three - Memory Management Chapter 8: Memory-Management Strategies Chapter 8: Memory-Management Strategies 8.1 Background 8.2 Swapping 8.3 Contiguous Memory Allocation 8.4 Segmentation 8.5 Paging 8.6

More information

Chapter 3 Memory Management: Virtual Memory

Chapter 3 Memory Management: Virtual Memory Memory Management Where we re going Chapter 3 Memory Management: Virtual Memory Understanding Operating Systems, Fourth Edition Disadvantages of early schemes: Required storing entire program in memory

More information

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit Memory Management All data in memory before and after processing All instructions in memory in order to execute Memory management determines what is to be in memory Memory management activities Keeping

More information

Memory management. Requirements. Relocation: program loading. Terms. Relocation. Protection. Sharing. Logical organization. Physical organization

Memory management. Requirements. Relocation: program loading. Terms. Relocation. Protection. Sharing. Logical organization. Physical organization Requirements Relocation Memory management ability to change process image position Protection ability to avoid unwanted memory accesses Sharing ability to share memory portions among processes Logical

More information

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it to be run Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester Mono-programming

More information

Memory Management. Memory Management Requirements

Memory Management. Memory Management Requirements Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated to ensure a reasonable supply of ready processes to consume available processor time 1 Memory Management

More information

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013 CSE325 Principles of Operating Systems Virtual Memory David P. Duggan dduggan@sandia.gov March 7, 2013 Reading Assignment 9 Chapters 10 & 11 File Systems, due 3/21 3/7/13 CSE325 - Virtual Memory 2 Outline

More information

Changelog. Virtual Memory (2) exercise: 64-bit system. exercise: 64-bit system

Changelog. Virtual Memory (2) exercise: 64-bit system. exercise: 64-bit system Changelog Virtual Memory (2) Changes made in this version not seen in first lecture: 21 November 2017: 1-level example: added final answer of memory value, not just location 21 November 2017: two-level

More information

Operating Systems. Memory Management. Lecture 9 Michael O Boyle

Operating Systems. Memory Management. Lecture 9 Michael O Boyle Operating Systems Memory Management Lecture 9 Michael O Boyle 1 Memory Management Background Logical/Virtual Address Space vs Physical Address Space Swapping Contiguous Memory Allocation Segmentation Goals

More information

Memory Management. 3. What two registers can be used to provide a simple form of memory protection? Base register Limit Register

Memory Management. 3. What two registers can be used to provide a simple form of memory protection? Base register Limit Register Memory Management 1. Describe the sequence of instruction-execution life cycle? A typical instruction-execution life cycle: Fetches (load) an instruction from specific memory address. Decode the instruction

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is infinite Allocation of memory

More information

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14 98:23 Intro to Computer Organization Lecture 4 Virtual Memory 98:23 Introduction to Computer Organization Lecture 4 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Several slides courtesy of

More information

Embedded System Design

Embedded System Design Embedded System Design Lecture 5 Jaeyong Chung System-on-Chips (SoC) Laboratory Incheon National University What We Have Covered So Far Instruction Set Architecture How CPU interacts with I/O controllers

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009! Chapter 8: Memory Management Background" Swapping " Contiguous Memory Allocation" Paging" Structure

More information

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD OPERATING SYSTEMS #8 After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD MEMORY MANAGEMENT MEMORY MANAGEMENT The memory is one of

More information

CS420: Operating Systems

CS420: Operating Systems Main Memory James Moscola Department of Engineering & Computer Science York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background Program must

More information

8.1 Background. Part Four - Memory Management. Chapter 8: Memory-Management Management Strategies. Chapter 8: Memory Management

8.1 Background. Part Four - Memory Management. Chapter 8: Memory-Management Management Strategies. Chapter 8: Memory Management Part Four - Memory Management 8.1 Background Chapter 8: Memory-Management Management Strategies Program must be brought into memory and placed within a process for it to be run Input queue collection of

More information

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science Memory Management CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture are based on those from Operating Systems Concepts, 9th ed., by Silberschatz, Galvin,

More information

MODERN OPERATING SYSTEMS. Chapter 3 Memory Management

MODERN OPERATING SYSTEMS. Chapter 3 Memory Management MODERN OPERATING SYSTEMS Chapter 3 Memory Management No Memory Abstraction Figure 3-1. Three simple ways of organizing memory with an operating system and one user process. Base and Limit Registers Figure

More information

Memory Management. Memory Management

Memory Management. Memory Management Memory Management Gordon College Stephen Brinton Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 1 Background Program must be brought into memory

More information

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley s companion website (including textbook images, when not explicitly

More information

Basic Memory Management

Basic Memory Management Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester 10/15/14 CSC 2/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it

More information

Move back and forth between memory and disk. Memory Hierarchy. Two Classes. Don t

Move back and forth between memory and disk. Memory Hierarchy. Two Classes. Don t Memory Management Ch. 3 Memory Hierarchy Cache RAM Disk Compromise between speed and cost. Hardware manages the cache. OS has to manage disk. Memory Manager Memory Hierarchy Cache CPU Main Swap Area Memory

More information

Memory Management Ch. 3

Memory Management Ch. 3 Memory Management Ch. 3 Ë ¾¾ Ì Ï ÒÒØ Å ÔÔ ÓÐÐ 1 Memory Hierarchy Cache RAM Disk Compromise between speed and cost. Hardware manages the cache. OS has to manage disk. Memory Manager Ë ¾¾ Ì Ï ÒÒØ Å ÔÔ ÓÐÐ

More information

Roadmap. Tevfik Koşar. CSC Operating Systems Spring Lecture - XII Main Memory - II. Louisiana State University

Roadmap. Tevfik Koşar. CSC Operating Systems Spring Lecture - XII Main Memory - II. Louisiana State University CSC 4103 - Operating Systems Spring 2007 Lecture - XII Main Memory - II Tevfik Koşar Louisiana State University March 8 th, 2007 1 Roadmap Dynamic Loading & Linking Contiguous Memory Allocation Fragmentation

More information

Address spaces and memory management

Address spaces and memory management Address spaces and memory management Review of processes Process = one or more threads in an address space Thread = stream of executing instructions Address space = memory space used by threads Address

More information

Chapter 8: Memory Management

Chapter 8: Memory Management Chapter 8: Memory Management Chapter 8: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.2 Silberschatz, Galvin and Gagne 2005 Background Program/Code

More information

Operating Systems Memory Management. Mathieu Delalandre University of Tours, Tours city, France

Operating Systems Memory Management. Mathieu Delalandre University of Tours, Tours city, France Operating Systems Memory Management Mathieu Delalandre University of Tours, Tours city, France mathieu.delalandre@univ-tours.fr 1 Operating Systems Memory Management 1. Introduction 2. Contiguous memory

More information

Chapter 8: Memory Management Strategies

Chapter 8: Memory Management Strategies Chapter 8: Memory- Management Strategies, Silberschatz, Galvin and Gagne 2009 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table

More information

Lecture 8 Memory Management Strategies (chapter 8)

Lecture 8 Memory Management Strategies (chapter 8) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 8 Memory Management Strategies (chapter 8) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

Background. Contiguous Memory Allocation

Background. Contiguous Memory Allocation Operating System Lecture 8 2017.5.9 Chapter 8 (Main Memory) Background Swapping Contiguous Memory Allocation Segmentation - Paging Memory Management Selection of a memory-management method for a specific

More information

Memory Management Cache Base and Limit Registers base limit Binding of Instructions and Data to Memory Compile time absolute code Load time

Memory Management Cache Base and Limit Registers base limit Binding of Instructions and Data to Memory Compile time absolute code Load time Memory Management To provide a detailed description of various ways of organizing memory hardware To discuss various memory-management techniques, including paging and segmentation To provide a detailed

More information

CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 21: Generating Pentium Code 10 March 08

CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 21: Generating Pentium Code 10 March 08 CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 21: Generating Pentium Code 10 March 08 CS 412/413 Spring 2008 Introduction to Compilers 1 Simple Code Generation Three-address code makes it

More information

Operating Systems. User OS. Kernel & Device Drivers. Interface Programs. Memory Management

Operating Systems. User OS. Kernel & Device Drivers. Interface Programs. Memory Management Operating Systems User OS Kernel & Device Drivers Interface Programs Management Brian Mitchell (bmitchel@mcs.drexel.edu) - Operating Systems 1 Management is an important resource that needs to be managed

More information

Operating Systems: Internals and Design Principles. Chapter 7 Memory Management Seventh Edition William Stallings

Operating Systems: Internals and Design Principles. Chapter 7 Memory Management Seventh Edition William Stallings Operating Systems: Internals and Design Principles Chapter 7 Memory Management Seventh Edition William Stallings Memory Management Requirements Memory management is intended to satisfy the following requirements:

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

Virtual Memory. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Virtual Memory. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Virtual Memory Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3044: Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Virtual Memory:

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part I: Operating system overview: Memory Management 1 Hardware background The role of primary memory Program

More information

Course: Operating Systems Instructor: M Umair. M Umair

Course: Operating Systems Instructor: M Umair. M Umair Course: Operating Systems Instructor: M Umair Memory Management Introduction { Ref: Operating System Concepts 8th Edition Abraham Silberschatz, Greg Gagne, Peter B. Galvin } Address Binding Addresses in

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY MANAGEMENT Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the

More information

Chapter 9. Storage Management

Chapter 9. Storage Management Chapter 9 Storage Management Memory allocation techniques Uniprogramming Fixed-partition multiprogramming Variable-partition multiprogramming Paging Virtual memory Uniprogramming Operating system resides

More information

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS.

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS. Paging 11/10/16 Recall from Tuesday Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS Process 3 Process 3 OS: Place Process 3 Process 1 Process

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Recap: Virtual Addresses A virtual address is a memory address that a process uses to access its own memory Virtual address actual physical

More information

12: Memory Management

12: Memory Management 12: Memory Management Mark Handley Address Binding Program goes through multiple steps from compilation to execution. At some stage, addresses in the program must be bound to physical memory addresses:

More information

Chapter 9: Memory Management. Background

Chapter 9: Memory Management. Background 1 Chapter 9: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 9.1 Background Program must be brought into memory and placed within a process for

More information

Module 8: Memory Management

Module 8: Memory Management Module 8: Memory Management Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.1 Background Program must be brought into memory

More information

Memory Management. Chapter 4 Memory Management. Multiprogramming with Fixed Partitions. Ideally programmers want memory that is.

Memory Management. Chapter 4 Memory Management. Multiprogramming with Fixed Partitions. Ideally programmers want memory that is. Chapter 4 Memory Management Ideally programmers want memory that is Memory Management large fast non volatile 4.1 Basic memory management 4.2 Swapping 4.3 Virtual memory 4.4 Page replacement algorithms

More information

Module 9: Memory Management. Background. Binding of Instructions and Data to Memory

Module 9: Memory Management. Background. Binding of Instructions and Data to Memory Module 9: Memory Management Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 9.1 Background Program must be brought into memory

More information

stack Two-dimensional logical addresses Fixed Allocation Binary Page Table

stack Two-dimensional logical addresses Fixed Allocation Binary Page Table Question # 1 of 10 ( Start time: 07:24:13 AM ) Total Marks: 1 LRU page replacement algorithm can be implemented by counter stack linked list all of the given options Question # 2 of 10 ( Start time: 07:25:28

More information

Last class: Today: Paging. Virtual Memory

Last class: Today: Paging. Virtual Memory Last class: Paging Today: Virtual Memory Virtual Memory What if programs require more memory than available physical memory? Use overlays ifficult to program though! Virtual Memory. Supports programs that

More information

MEMORY MANAGEMENT/1 CS 409, FALL 2013

MEMORY MANAGEMENT/1 CS 409, FALL 2013 MEMORY MANAGEMENT Requirements: Relocation (to different memory areas) Protection (run time, usually implemented together with relocation) Sharing (and also protection) Logical organization Physical organization

More information

Memory Management (1) Memory Management

Memory Management (1) Memory Management EECS 3221 Operating System Fundamentals No.8 Memory Management (1) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Memory Management A program usually resides on a

More information

Chapter 8: Memory Management

Chapter 8: Memory Management Chapter 8: Memory Management Chapter 8: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.2 Background Program must be brought into memory and placed

More information

Memory Management (1) Memory Management. CPU vs. memory. No.8. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University

Memory Management (1) Memory Management. CPU vs. memory. No.8. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University EECS 3221 Operating System Fundamentals No.8 Memory Management (1) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Memory Management A program usually resides on a

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is super big to hold a program

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 17: Paging Lecture Overview Recap: Today: Goal of virtual memory management: map 2^32 byte address space to physical memory Internal fragmentation

More information

Virtual Memory. 11/8/16 (election day) Vote!

Virtual Memory. 11/8/16 (election day) Vote! Virtual Memory 11/8/16 (election day) Vote! Recall: the job of the OS The OS is an interface layer between a user s programs and hardware. Program Operating System Computer Hardware It provides an abstract

More information

Virtual Memory (2) 1

Virtual Memory (2) 1 Virtual Memory (2) 1 Changelog 1 Changes made in this version not seen in first lecture: 21 November 2017: 1-level example: added final answer of memory value, not just location 21 November 2017: two-level

More information

Operating Systems Unit 6. Memory Management

Operating Systems Unit 6. Memory Management Unit 6 Memory Management Structure 6.1 Introduction Objectives 6.2 Logical versus Physical Address Space 6.3 Swapping 6.4 Contiguous Allocation Single partition Allocation Multiple Partition Allocation

More information

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory Virtual Memory Virtual Memory CSCI Operating Systems Design Department of Computer Science Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in

More information

Chapter 8 Memory Management

Chapter 8 Memory Management Chapter 8 Memory Management Da-Wei Chang CSIE.NCKU Source: Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, "Operating System Concepts", 9th Edition, Wiley. 1 Outline Background Swapping Contiguous

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

CS450/550 Operating Systems

CS450/550 Operating Systems CS450/550 Operating Systems Lecture 4 memory Palden Lama Department of Computer Science CS450/550 Memory.1 Review: Summary of Chapter 3 Deadlocks and its modeling Deadlock detection Deadlock recovery Deadlock

More information

Memory management OS

Memory management OS Memory management 1 Memory (ideally) 2 Ideally Extremely fast (faster than the CPU in executing an instruction) Abundantly large Dirt cheap Memory (for real) 3 Typical access time 1 nsec Registers 2 nsec

More information

Part-A QUESTION BANK UNIT-III 1. Define Dynamic Loading. To obtain better memory-space utilization dynamic loading is used. With dynamic loading, a routine is not loaded until it is called. All routines

More information

(b) External fragmentation can happen in a virtual memory paging system.

(b) External fragmentation can happen in a virtual memory paging system. Alexandria University Faculty of Engineering Electrical Engineering - Communications Spring 2015 Final Exam CS333: Operating Systems Wednesday, June 17, 2015 Allowed Time: 3 Hours Maximum: 75 points Note:

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Chapter 3: Important Concepts (3/29/2015)

Chapter 3: Important Concepts (3/29/2015) CISC 3595 Operating System Spring, 2015 Chapter 3: Important Concepts (3/29/2015) 1 Memory from programmer s perspective: you already know these: Code (functions) and data are loaded into memory when the

More information

Operating Systems and Protection CS 217

Operating Systems and Protection CS 217 Operating Systems and Protection CS 7 Goals of Today s Lecture How multiple programs can run at once o es o Context switching o control block o Virtual Boundary between parts of the system o User programs

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY

I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY MANAGEMENT Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of

More information

Modeling Page Replacement: Stack Algorithms. Design Issues for Paging Systems

Modeling Page Replacement: Stack Algorithms. Design Issues for Paging Systems Modeling Page Replacement: Stack Algorithms 7 4 6 5 State of memory array, M, after each item in reference string is processed CS450/550 Memory.45 Design Issues for Paging Systems Local page replacement

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture were based on those Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and

More information

Memory Management. Goals of Memory Management. Mechanism. Policies

Memory Management. Goals of Memory Management. Mechanism. Policies Memory Management Design, Spring 2011 Department of Computer Science Rutgers Sakai: 01:198:416 Sp11 (https://sakai.rutgers.edu) Memory Management Goals of Memory Management Convenient abstraction for programming

More information