RE for Embedded Systems - Part 1

Size: px
Start display at page:

Download "RE for Embedded Systems - Part 1"

Transcription

1 REQUIREMENTS ENGINEERING LECTURE 2017/2018 Dr. Jörg Dörr RE for Embedded Systems - Part 1 Fraunhofer IESE

2 Lecture Outline Embedded systems and their characteristics Requirements specifications (for embedded systems) Embedded-systems software specification

3 Some application domains Requirements Engineering Automobiles Aviation Railway Consumer Electronics Military

4 Characteristics Microprocessor-based and operates within a larger system Interaction with the environment - Often directly Application-specific control logic - Complex functionality e.g. flight control - Execution of specific tasks e.g. cameras - Specific hardware (ASIC, Microcontroller, FPGA, etc.) Constrained for resources - Limited memory - Limited power Battery operated Low heat dissipation Sophisticated power management. - Limited area Low manufacturing costs Portable

5 A closer look A/D conversion Memory (Software) CMOS Light Sensor Electronic shutter (Actuator) D/A conversion ASIC / FPGA Microprocessor

6 A closer look SW 1 SW 2 Memory Env. Input Sensors A/D P ASIC FPGA D/A Actuators Output To Env. Physical System Boundary Environment

7 Additional characteristics Requirements Engineering Real-time behavior - Button pressed do task by deadline. - Real-time does not mean fast Event-driven/ reactive behavior - Shutter pressed Open Lens - Always ready for reaction to external event. Concurrent behavior - Move Window Up, Set Cruise Speed Communicating processes - Set child lock, Open rear door Non-functional guarantees - Safety: If the brake is pressed, the car does not accelerate - Performance: Process 100 requests per minute - Dependability: Failure rate 10-4 failures / month - Fault Tolerance - Not a property; rather a means for achieving dependability Other means include fault prevention, fault masking, etc.

8 Outline Embedded systems and their characteristics Requirements specifications (for embedded systems) Embedded-systems software specification

9 Requirements specifications Requirements Engineering What are specifications? - Specifications state the requirements for a machine which, when correctly implemented, will achieve the desired change in the environment. - Accurate description of what the machine must do at its interface to its environment. E.g. If loss of separation is detected, issue an alert warning This is one specification statement for a requirement on allowable separation between aircraft in flight

10 Requirements categories Functional Non-functional - Performance - Resource consumption - Dependability Safety Reliability Maintainability Integrity Availability Requirements Engineering Other categories also exist.

11 Outline Embedded systems and their characteristics Requirements specifications (for embedded systems) Embedded-systems software specification

12 Embedded System Software Specification Logical system model What is the system? Where is the system boundary? What should be considered? Specification model What does the specification contain? What should be documented? Specification processes What steps to perform and how? Cleanroom software engineering Sequence-based Specification Specification methods How to document? Tables What language to use? SCR

13 Logical system model Requirements Engineering Env. Input A/D Controller (HW + SW) D/A Output To Env. Sensors Input devices Actuators Output devices Environment

14 Embedded System Software Specification Logical system model What is the system? Where is the system boundary? What should be considered? Specification model What does the specification contain? What should be documented? Specification processes What steps to perform and how? Cleanroom software engineering Sequence-based Specification Specification methods How to document? Tables What language to use? SCR

15 Specification model Environment Input Device Boundary Controller System Boundary Output Device Boundary M(t) IN I(t) SOF O(t) OUT C(t) Logical System Boundary REQ, NAT

16 Specification model System requirements document - AKA System requirements specification (SRS) - Black-box view of the system - Description of the environment Constraints from the environment e.g., physical laws - Constraints relevant for the machine to be built - Assumptions Document whose content is defined by mathematical relations David Parnas and Jan Madey. Functional Documents for Computer Science. Science of Computer Programming, Elsevier, 1995 Informally known as the Four Variable Model

17 Before we continue Elementary set-theoretic concepts - Relation AH: Set of {Age, Height}: {{20, 170}, {25,170}, {30,180}, {35,185}} - Function NA: Set of {Name, Age}: {{A, 20}, {B, 25}, {C, 30}, {D, 35}} A well-behaved relation - Domain For a function f or a relation r domain Dom (f ) or Dom (r ) : X-values Dom(AH): {20, 25, 30, 35} - Range For a function f or a relation r range Ran (f ) or Ran (r ) : Y-values Ran(NA): {20, 25, 30, 35}

18 4 variable model variables Requirements Engineering Monitored variables m i (t) - Variables whose values influence output of the machine / system - Exist outside the system boundary Often physical quantities - Values often vary with time Mathematically - m(t): R Value m : function assigning a time dependent real value. - M(t) : {m 1 (t), m 2 (t),, m n (t)} : Vector of monitored variables

19 4 variable model variables Requirements Engineering Controlled variables c i (t) - Variables whose values are determined by the system - Exist outside the system boundary Often physical quantities - Values often vary with time Mathematically - c(t): R Value c : function assigning a time dependent real value. - C(t) : {c 1 (t), c 2 (t),, c n (t)} : Vector of controlled variables

20 Specification model Environment Input Device Boundary Controller System Boundary Output Device Boundary M(t) IN I(t) SOF O(t) OUT C(t) Logical System Boundary REQ, NAT

21 4 variable model variables Requirements Engineering Input variables - Input variables i i (t) Variables whose values are the result of measurement of m i (t) Output variables o i (t) Variables whose values are the result of computation by the machine For all ( ) m i (t) there exists ( ) a corresponding i i (t) c i (t) o i (t) - Vice-versa need not be true - Often i i (t) and o i (t) will be discrete and digital If the machine is HW/SW control logic

22 Specification model Environment Input Device Boundary Controller System Boundary Output Device Boundary M(t) IN I(t) SOF O(t) OUT C(t) Logical System Boundary REQ, NAT

23 4 variable model relations Requirements Engineering NATural constraints expressed as a relation between the vectors of monitored variables M(t) and controlled variables C(t) - Dom (NAT): values of M(t) - Ran (NAT): values of C(t) - {M(t), C(t)} NAT if and only if (iff) environment (nature) permits the behavior

24 4 variable model relations Requirements Engineering REQuirements specified as a relation between the vectors of monitored variables M(t) and controlled variables C(t) - Dom (REQ): values of M(t) - Ran (REQ): values of C(t) - {M(t), C(t)} REQ iff system should permit the behavior

25 4 variable model more relations INput device description is a relation between monitored variables M(t) and Input variables I(t) OUTput device description is a relation between output variables O(t) and controlled variables C(t) SOFtware requirements specified as a relation between Input variables I(t) and output variables O(t) - Dom (SOF): values of I(t) - Ran (SOF): values of O(t) - {I(t), O(t)} SOF iff software should permit the behavior

26 Properties This should ALWAYS be true - Dom (REQ) (is superset of) Dom (NAT) or document is incomplete - If (Dom (NAT REQ) = Dom (NAT) Dom (REQ)) also holds then REQ is considered feasible with respect to NAT Else system breaks laws of nature Software behavior is acceptable if M(t), C(t), I(t), O(t) [IN(M(t), I(t)) SOF(I(t),O(t)) OUT(O(t), C(t)) NAT(M(t), C(t))] REQ(M(t), C(t))

27 4 variable model Summary Requirements Engineering

28 Embedded System Software Specification Logical system model What is the system? Where is the system boundary? What should be considered? Specification model What does the specification contain? What should be documented? Specification processes What steps to perform and how? Cleanroom software engineering Sequence-based Specification Specification methods How to document? Tables What language to use? SCR

29 Box-Structure Development Process How do we begin with specification (of embedded systems / software)? - Identify system boundary Interfaces - Input - Output - Define what is true at system boundary Relation between input and output - Define constraints on the system Also a relation between input and output

30 Cleanroom software engineering A process for developing and certifying high-reliability software Foundations - Software specifications are mathematical functions mapping a domain set to a range set. - Software programs are rules for computing this mathematical function - Well defined functions are complete, consistent and correct

31 Cleanroom software engineering Completeness - A response is defined for every input (or input history) - Each element of the domain set mapped to at least one element of the range set Consistency - Each element of the domain set mapped to exactly one element of the range set Correctness - Requirement vs. Specification - Judgment vs. Proof/ Reasoning - Explicit traceability

32 Cleanroom software engineering Key process activities - Incremental box-structure development Function-based specification and refinement - Statistical process control - Verification - Certification We will look at this today

33 Function based specification Requirements Engineering Incremental development by refinement Verification to check if refinement satisfies abstraction Recursive usage in the same order

34 Function based specification Requirements Engineering S: Stimulus SH: Stimulus history R: Response State and procedure free Specification of usage history - Document sequences of stimuli - Document required behavior for all possible combination of stimuli Required for analysis and agreement before committing resources Definition of behavior to be implemented Definition of behavior to be expected during testing Specify Black box behavior using sequence based specification (SBS)

35 Function based specification Requirements Engineering Definition of state-space Semantics (Old State, S) (New State, R) State preserves stimulus history Many possible state boxes for a given black box Abstraction is important

36 Function based specification Requirements Engineering Clear box: State box by procedure - Sequence do f1; f2 enddo - Alternative if c then f1 else f2 endif - Iteration while c do f1 enddo - Concurrence do f1 f2 enddo This is traditionally done AFTER specification i.e. development

37 Embedded System Software Specification Logical system model What is the system? Where is the system boundary? What should be considered? Specification model What does the specification contain? What should be documented? We looked at these until now Specification processes What steps to perform and how? Cleanroom software engineering Sequence-based Specification Specification methods How to document? Tables What language to use? SCR

38 Embedded System Software Specification Logical system model What is the system? Where is the system boundary? What should be considered? Specification model What does the specification contain? What should be documented? Specification processes What steps to perform and how? Cleanroom software engineering Sequence-based Specification Specification methods How to document? Tables What language to use? SCR Next section & next class on Example on SBS

Grundlagen des Software Engineering Fundamentals of Software Engineering

Grundlagen des Software Engineering Fundamentals of Software Engineering Software Engineering Research Group: Processes and Measurement Fachbereich Informatik TU Kaiserslautern Grundlagen des Software Engineering Fundamentals of Software Engineering Winter Term 2011/12 Prof.

More information

Software Architecture. Lecture 4

Software Architecture. Lecture 4 Software Architecture Lecture 4 Last time We discussed tactics to achieve architecture qualities We briefly surveyed architectural styles 23-Jan-08 http://www.users.abo.fi/lpetre/sa08/ 2 Today We check

More information

FPGA BASED SYSTEM DESIGN. Dr. Tayab Din Memon Lecture 1 & 2

FPGA BASED SYSTEM DESIGN. Dr. Tayab Din Memon Lecture 1 & 2 FPGA BASED SYSTEM DESIGN Dr. Tayab Din Memon tayabuddin.memon@faculty.muet.edu.pk Lecture 1 & 2 Books Recommended Books: Text Book: FPGA Based System Design by Wayne Wolf Verilog HDL by Samir Palnitkar.

More information

Key Features. Defect Rates. Traditional Unit testing: 25 faults / KLOC System testing: 25 / KLOC Inspections: / KLOC

Key Features. Defect Rates. Traditional Unit testing: 25 faults / KLOC System testing: 25 / KLOC Inspections: / KLOC Cleanroom attempt to mathematically-based, scientific engineering process of software development Cleanroom software engineering yields software that is correct by mathematically sound design, and software

More information

EE382V: System-on-a-Chip (SoC) Design

EE382V: System-on-a-Chip (SoC) Design EE382V: System-on-a-Chip (SoC) Design Lecture 8 HW/SW Co-Design Sources: Prof. Margarida Jacome, UT Austin Andreas Gerstlauer Electrical and Computer Engineering University of Texas at Austin gerstl@ece.utexas.edu

More information

ICS 180 Spring Embedded Systems. Introduction: What are Embedded Systems and what is so interesting about them?

ICS 180 Spring Embedded Systems. Introduction: What are Embedded Systems and what is so interesting about them? ICS 180 Spring 1999 Embedded Systems Introduction: What are Embedded Systems and what is so interesting about them? A. Veidenbaum Information and Computer Science University of California, Irvine. Outline

More information

Software Verification and Validation (VIMMD052) Introduction. Istvan Majzik Budapest University of Technology and Economics

Software Verification and Validation (VIMMD052) Introduction. Istvan Majzik Budapest University of Technology and Economics Software Verification and Validation (VIMMD052) Introduction Istvan Majzik majzik@mit.bme.hu Budapest University of Technology and Economics Dept. of Measurement and Information s Budapest University of

More information

Introduction. Definition. What is an embedded system? What are embedded systems? Challenges in embedded computing system design. Design methodologies.

Introduction. Definition. What is an embedded system? What are embedded systems? Challenges in embedded computing system design. Design methodologies. Introduction What are embedded systems? Challenges in embedded computing system design. Design methodologies. What is an embedded system? Communication Avionics Automobile Consumer Electronics Office Equipment

More information

What are Embedded Systems? Lecture 1 Introduction to Embedded Systems & Software

What are Embedded Systems? Lecture 1 Introduction to Embedded Systems & Software What are Embedded Systems? 1 Lecture 1 Introduction to Embedded Systems & Software Roopa Rangaswami October 9, 2002 Embedded systems are computer systems that monitor, respond to, or control an external

More information

Sistemi Embedded Introduzione

Sistemi Embedded Introduzione Sistemi Embedded Introduzione Riferimenti bibliografici Embedded System Design: A Unified Hardware/Software Introduction, Frank Vahid, Tony Givargis, John Wiley & Sons Inc., ISBN:0-471-38678-2, 2002. Computers

More information

MONIKA HEINER.

MONIKA HEINER. LESSON 1 testing, intro 1 / 25 SOFTWARE TESTING - STATE OF THE ART, METHODS, AND LIMITATIONS MONIKA HEINER monika.heiner@b-tu.de http://www.informatik.tu-cottbus.de PRELIMINARIES testing, intro 2 / 25

More information

ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling

ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling ECE 587 Hardware/Software Co-Design Spring 2018 1/20 ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling Professor Jia Wang Department of Electrical and Computer Engineering

More information

Deriving safety requirements according to ISO for complex systems: How to avoid getting lost?

Deriving safety requirements according to ISO for complex systems: How to avoid getting lost? Deriving safety requirements according to ISO 26262 for complex systems: How to avoid getting lost? Thomas Frese, Ford-Werke GmbH, Köln; Denis Hatebur, ITESYS GmbH, Dortmund; Hans-Jörg Aryus, SystemA GmbH,

More information

Cleanroom Software Engineering

Cleanroom Software Engineering Cleanroom Software Engineering Software Testing and Verification Lecture 25 Prepared by Stephen M. Thebaut, Ph.D. University of Florida Required Reading and Additional Reference Required Reading: Linger,

More information

COMPLEX EMBEDDED SYSTEMS

COMPLEX EMBEDDED SYSTEMS COMPLEX EMBEDDED SYSTEMS Embedded System Design and Architectures Summer Semester 2012 System and Software Engineering Prof. Dr.-Ing. Armin Zimmermann Contents System Design Phases Architecture of Embedded

More information

IN4343 Real-Time Systems

IN4343 Real-Time Systems IN4343 Real-Time Systems Koen Langendoen, TA (TBD) 2017-2018 Delft University of Technology Challenge the future Course outline Real-time systems Lectures theory instruction Exam Reinder Bril TU/e Practicum

More information

SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems

SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems Hassan Gomaa References: H. Gomaa, Chapters 1, 2, 3 - Real-Time Software Design for Embedded Systems, Cambridge University

More information

ELEC 5260/6260/6266 Embedded Computing Systems

ELEC 5260/6260/6266 Embedded Computing Systems ELEC 5260/6260/6266 Embedded Computing Systems Spring 2019 Victor P. Nelson Text: Computers as Components, 4 th Edition Prof. Marilyn Wolf (Georgia Tech) Course Web Page: http://www.eng.auburn.edu/~nelsovp/courses/elec5260_6260/

More information

HW/SW Design Space Exploration on the Production Cell Setup

HW/SW Design Space Exploration on the Production Cell Setup HW/SW Design Space Exploration on the Production Cell Setup Communicating Process Architectures 2009, Formal Methods Week Eindhoven University of Technology, The Netherlands, 04-11-2009 Marcel A. Groothuis,

More information

Syllabus Instructors:

Syllabus Instructors: Introduction to Real-Time Systems Embedded Real-Time Software Lecture 1 Syllabus Instructors: Dongsoo S. Kim Office : Room 83345 (031-299-4642) E-mail : dskim@iupui.edu Office Hours: by appointment 2 Syllabus

More information

Servo drives. SafeMotion

Servo drives. SafeMotion 2 Bosch Rexroth AG Electric Drives and Controls Documentation Instructions Intelligent and reliable Safety category 3, PL d, SIL 2 Extensive safety functions Minimum response times Independent of the control

More information

Hardware Software Codesign of Embedded Systems

Hardware Software Codesign of Embedded Systems Hardware Software Codesign of Embedded Systems Rabi Mahapatra Texas A&M University Today s topics Course Organization Introduction to HS-CODES Codesign Motivation Some Issues on Codesign of Embedded System

More information

Embedded Systems: Hardware Components (part I) Todor Stefanov

Embedded Systems: Hardware Components (part I) Todor Stefanov Embedded Systems: Hardware Components (part I) Todor Stefanov Leiden Embedded Research Center Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded System

More information

Gradational conception in Cleanroom Software Development

Gradational conception in Cleanroom Software Development Gradational conception in Cleanroom Software Development Anshu Sharma 1 and Shilpa Sharma 2 1 DAV Institute of Engineering and Technology, Kabir Nagar, Jalandhar, India 2 Lovely Professional University,

More information

MoCC - Models of Computation and Communication SystemC as an Heterogeneous System Specification Language

MoCC - Models of Computation and Communication SystemC as an Heterogeneous System Specification Language SystemC as an Heterogeneous System Specification Language Eugenio Villar Fernando Herrera University of Cantabria Challenges Massive concurrency Complexity PCB MPSoC with NoC Nanoelectronics Challenges

More information

Lecture 7: Requirements Modeling III. Formal Methods in RE

Lecture 7: Requirements Modeling III. Formal Methods in RE Lecture 7: Requirements Modeling III Last Last Week: Week: Modeling Modeling and and (II) (II) Modeling Modeling Functionality Functionality Structured Structured Object Object Oriented Oriented This This

More information

Embedded Systems. Octav Chipara. Thursday, September 13, 12

Embedded Systems. Octav Chipara. Thursday, September 13, 12 Embedded Systems Octav Chipara Caught between two worlds Embedded systems PC world 2 What are embedded systems? Any device that includes a computer (but you don t think of it as a computer) iphone digital

More information

SysML Modeling Guide for Target System

SysML Modeling Guide for Target System SysML Modeling Guide for Target System /4 Table of Contents Scope...4 2 Overview of D-Case and SysML Modeling Guide...4 2. Background and Purpose...4 2.2 Target System of Modeling Guide...5 2.3 Constitution

More information

The Safe State: Design Patterns and Degradation Mechanisms for Fail- Operational Systems

The Safe State: Design Patterns and Degradation Mechanisms for Fail- Operational Systems The Safe State: Design Patterns and Degradation Mechanisms for Fail- Operational Systems Alexander Much 2015-11-11 Agenda About EB Automotive Motivation Comparison of different architectures Concept for

More information

Component Design. Systems Engineering BSc Course. Budapest University of Technology and Economics Department of Measurement and Information Systems

Component Design. Systems Engineering BSc Course. Budapest University of Technology and Economics Department of Measurement and Information Systems Component Design Systems Engineering BSc Course Budapest University of Technology and Economics Department of Measurement and Information Systems Traceability Platform-based systems design Verification

More information

MATLAB/Simulink in der Mechatronik So einfach geht s!

MATLAB/Simulink in der Mechatronik So einfach geht s! MATLAB/Simulink in der Mechatronik So einfach geht s! Executable s with Simulation Models Continuous Test and Verification Automatic Generation Tobias Kuschmider Applikationsingenieur 2014 The MathWorks,

More information

Introduction to Formal Methods

Introduction to Formal Methods 2008 Spring Software Special Development 1 Introduction to Formal Methods Part I : Formal Specification i JUNBEOM YOO jbyoo@knokuk.ac.kr Reference AS Specifier s Introduction to Formal lmethods Jeannette

More information

Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks

Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks 2014 The MathWorks, Inc. 1 Traditional Implementation Workflow: Challenges Algorithm Development

More information

Foundation of Contract for Things

Foundation of Contract for Things Foundation of Contract for Things C.Sofronis, O.Ferrante, A.Ferrari, L.Mangeruca ALES S.r.l. Rome The Internet of System Engineering INCOSE-IL Seminar, Herzliya, Israel 15 September, 2011 Software Platform

More information

ELEC 5260/6260/6266 Embedded Computing Systems

ELEC 5260/6260/6266 Embedded Computing Systems ELEC 5260/6260/6266 Embedded Computing Systems Spring 2018 Victor P. Nelson Text: Computers as Components, 4 th Edition Prof. Marilyn Wolf (Georgia Tech) Course Web Page: http://www.eng.auburn.edu/~nelsovp/courses/elec5260_6260/

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Embedded System Overview 1. What is an embedded system? 2. Embedded system features

More information

Introduction to Real-time Systems. Advanced Operating Systems (M) Lecture 2

Introduction to Real-time Systems. Advanced Operating Systems (M) Lecture 2 Introduction to Real-time Systems Advanced Operating Systems (M) Lecture 2 Introduction to Real-time Systems Real-time systems deliver services while meeting some timing constraints Not necessarily fast,

More information

Subsystem Hazard Analysis (SSHA)

Subsystem Hazard Analysis (SSHA) Subsystem Hazard Analysis (SSHA) c "!$#%! Examine subsystems to determine how their Normal performance Operational degradation Functional failure Unintended function Inadvertent function (proper function

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Embedded System Overview 1. What is an embedded system? 2. Embedded system models

More information

CS4514 Real-Time Systems and Modeling

CS4514 Real-Time Systems and Modeling CS4514 Real-Time Systems and Modeling Fall 2015 José M. Garrido Department of Computer Science College of Computing and Software Engineering Kennesaw State University Real-Time Systems RTS are computer

More information

Embedded Real-Time Systems. Facts and figures. Characteristics

Embedded Real-Time Systems. Facts and figures. Characteristics Embedded Real-Time Systems Properties of embedded real-time systems Types of functionality Many different types coexist Run-time support Real-time Operating systems (RTOS) Modelling embedded real-time

More information

V&V: Model-based testing

V&V: Model-based testing V&V: Model-based testing Systems Engineering BSc Course Budapest University of Technology and Economics Department of Measurement and Information Systems Traceability Platform-based systems design Verification

More information

Sample Application of OOSEM to Real Time Application

Sample Application of OOSEM to Real Time Application Sample Application of OOSEM to Real Time Application Doug Ferguson INCOSE OOSEM Working Group Copyright INCOSE 2004-2007. All rights reserved. 1 m2 s13 SE Interface with Hardware/Software Inputs to SW/HW

More information

Cleanroom Software Engineering

Cleanroom Software Engineering Cleanroom Software Engineering Software Testing and Verification Lecture 25 Prepared by Stephen M. Thebaut, Ph.D. University of Florida Required Reading and Additional Reference Required Reading: Linger,

More information

Design Verification Lecture 01

Design Verification Lecture 01 M. Hsiao 1 Design Verification Lecture 01 Course Title: Verification of Digital Systems Professor: Michael Hsiao (355 Durham) Prerequisites: Digital Logic Design, C/C++ Programming, Data Structures, Computer

More information

A Graduate Embedded System Education Program

A Graduate Embedded System Education Program A Graduate Embedded System Education Program Alberto Sangiovanni-Vincentelli Department of EECS, University of California at Berkeley EE249:Fall03 The Killer Applications for the Future? 2 Energy Conservation

More information

Functional verification on PIL mode with IAR Embedded Workbench

Functional verification on PIL mode with IAR Embedded Workbench by Cristina Marconcini, STM CASE s.r.l. Functional verification on PIL mode with IAR Embedded Workbench The increase of complexity of embedded system components combined with time-to-market constraints

More information

Requirements Specifications

Requirements Specifications ACM Transactions on Software Engineering and Methodology, 1996. Automated Consistency Checking of Requirements Specifications CONSTANCE L. HEITMEYER, RALPH D. JEFFORDS, BRUCE G. LABAW JUNBEOM YOO Dependable

More information

HW/SW Co-design. Design of Embedded Systems Jaap Hofstede Version 3, September 1999

HW/SW Co-design. Design of Embedded Systems Jaap Hofstede Version 3, September 1999 HW/SW Co-design Design of Embedded Systems Jaap Hofstede Version 3, September 1999 Embedded system Embedded Systems is a computer system (combination of hardware and software) is part of a larger system

More information

Design Issues in Hardware/Software Co-Design

Design Issues in Hardware/Software Co-Design Volume-2, Issue-1, January-February, 2014, pp. 01-05, IASTER 2013 www.iaster.com, Online: 2347-6109, Print: 2348-0017 ABSTRACT Design Issues in Hardware/Software Co-Design R. Ganesh Sr. Asst. Professor,

More information

Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 The MathWorks, Inc. 1

Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 The MathWorks, Inc. 1 Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 2012 The MathWorks, Inc. 1 Agenda Formal Verification Key concept Applications Verification of designs against (functional) requirements Design error detection Test

More information

Multiple Views and Relationships for Quality Driven Architecture with AADL: A Multimodel for Software Product Lines

Multiple Views and Relationships for Quality Driven Architecture with AADL: A Multimodel for Software Product Lines Multiple Views and Relationships for Quality Driven Architecture with AADL: A for Software Product Lines Emilio Insfran, Silvia Abrahão, Javier González Department of Information Systems and Computation

More information

Computer Hardware Requirements for Real-Time Applications

Computer Hardware Requirements for Real-Time Applications Lecture (4) Computer Hardware Requirements for Real-Time Applications Prof. Kasim M. Al-Aubidy Computer Engineering Department Philadelphia University Real-Time Systems, Prof. Kasim Al-Aubidy 1 Lecture

More information

By Matthew Noonan, Project Manager, Resource Group s Embedded Systems & Solutions

By Matthew Noonan, Project Manager, Resource Group s Embedded Systems & Solutions Building Testability into FPGA and ASIC Designs By Matthew Noonan, Project Manager, Resource Group s Embedded Systems & Solutions Introduction This paper discusses how the architecture for FPGAs and ASICs

More information

Hardware/Software Co-design

Hardware/Software Co-design Hardware/Software Co-design Zebo Peng, Department of Computer and Information Science (IDA) Linköping University Course page: http://www.ida.liu.se/~petel/codesign/ 1 of 52 Lecture 1/2: Outline : an Introduction

More information

Introduction. Seeing the Elephant. PLM Data Migration happens rarely at a company, but is very difficult to plan and design.

Introduction. Seeing the Elephant. PLM Data Migration happens rarely at a company, but is very difficult to plan and design. Introduction Seeing the Elephant PLM Data Migration happens rarely at a company, but is very difficult to plan and design. 1 14 Approach The Iterative Nature of the Process The design of the new PLM implementation

More information

CENG 336 Introduction to Embedded Systems Development. Lecture 1: An Introduction to Computers and Embedded Systems

CENG 336 Introduction to Embedded Systems Development. Lecture 1: An Introduction to Computers and Embedded Systems CENG 336 Introduction to Embedded Systems Development Lecture 1: An Introduction to Computers and Embedded Systems Course Schedule Lecture: Section 1: Volkan Atalay Tue 10:40 BMB2 Thu 10:40,11:40 BMB1

More information

Concurrent Design of Embedded Control Software

Concurrent Design of Embedded Control Software Concurrent Design of Embedded Software Third International Workshop on Multi-Paradigm Modeling MPM`09, 06-10-2009 Marcel Groothuis, Jan Broenink University of Twente, The Netherlands Raymond Frijns, Jeroen

More information

CSE 417 Network Flows (pt 2) Modeling with Max Flow

CSE 417 Network Flows (pt 2) Modeling with Max Flow CSE 47 Network Flows (pt 2) Modeling with Max Flow Reminders > HW6 is due on Friday start early may take time to figure out the sub-structure Review of last lecture > Defined the maximum flow problem find

More information

EE Embedded Systems Design

EE Embedded Systems Design EE4800-03 Embedded Systems Design Lesson 2 Structured Design, Documentation, and Laboratory Notebooks 1 Overview - Structured Design The divide-and-conquer technique Requirements Partitioning - The Black

More information

A Modeling Framework for Control Fault Tolerant Reactive Systems

A Modeling Framework for Control Fault Tolerant Reactive Systems A Modeling Framework for Control Fault Tolerant Reactive Systems Doug Densmore and Shannon Zelinski Department of Electrical Engineering and Computer Sciences University of California, Berkeley December

More information

Modeling physical properties. Controller, plant and environment model

Modeling physical properties. Controller, plant and environment model Modeling physical properties Controller, plant and environment model 1 Traceability Platform-based systems design Verification and Validation Requirements HW library Functional model HW/SW allocation Platform

More information

Software Architecture--Continued. Another Software Architecture Example

Software Architecture--Continued. Another Software Architecture Example Software Architecture--Continued References for Software Architecture examples: Software Architecture, Perspectives on an Emerging Discipline, by Mary Shaw and David Garlin, Prentice Hall, 1996. B. Hayes-Roth,

More information

Hardware Software Codesign of Embedded System

Hardware Software Codesign of Embedded System Hardware Software Codesign of Embedded System CPSC489-501 Rabi Mahapatra Mahapatra - Texas A&M - Fall 00 1 Today s topics Course Organization Introduction to HS-CODES Codesign Motivation Some Issues on

More information

Requirements Specifications & Standards

Requirements Specifications & Standards REQUIREMENTS ENGINEERING LECTURE 2014/2015 Dr. Jörg Dörr Requirements Specifications & Standards AGENDA Standards & Templates Natural Language Requirements Specification with Conceptual Models Suitable

More information

Model-Based Design: Design with Simulation in Simulink

Model-Based Design: Design with Simulation in Simulink Model-Based Design: Design with Simulation in Simulink Ruth-Anne Marchant Application Engineer MathWorks 2016 The MathWorks, Inc. 1 2 Outline Model-Based Design Overview Modelling and Design in Simulink

More information

Chapter 4 Objectives

Chapter 4 Objectives Chapter 4 Objectives Eliciting requirements from the customers Modeling requirements Reviewing requirements to ensure their quality Documenting requirements for use by the design and test teams 4.1 The

More information

Secure automotive on-board networks

Secure automotive on-board networks Secure automotive on-board networks Basis for secure vehicle-to-x communication Dr.-Ing. Olaf Henniger Fraunhofer SIT / Darmstadt 2 December 2010 Presentation overview EVITA project overview Security challenges

More information

Quantitative Verification and Synthesis of Systems

Quantitative Verification and Synthesis of Systems Quantitative Verification and Synthesis of Systems Sanjit A. Seshia Assistant Professor EECS, UC Berkeley Software-at-Scale Workshop August 2010 Quantitative Analysis / Verification Does the brake-by-wire

More information

Outline. SLD challenges Platform Based Design (PBD) Leveraging state of the art CAD Metropolis. Case study: Wireless Sensor Network

Outline. SLD challenges Platform Based Design (PBD) Leveraging state of the art CAD Metropolis. Case study: Wireless Sensor Network By Alberto Puggelli Outline SLD challenges Platform Based Design (PBD) Case study: Wireless Sensor Network Leveraging state of the art CAD Metropolis Case study: JPEG Encoder SLD Challenge Establish a

More information

SCADE S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R

SCADE S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R SCADE 1 S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R What is SCADE? Introduction 2 Software Critical Application Development Environment, a Lustrebased IDE

More information

Embedded Systems: Hardware Components (part II) Todor Stefanov

Embedded Systems: Hardware Components (part II) Todor Stefanov Embedded Systems: Hardware Components (part II) Todor Stefanov Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded

More information

System Design and Methodology/ Embedded Systems Design (Modeling and Design of Embedded Systems)

System Design and Methodology/ Embedded Systems Design (Modeling and Design of Embedded Systems) Design&Methodologies Fö 1&2-1 Design&Methodologies Fö 1&2-2 Course Information Design and Methodology/ Embedded s Design (Modeling and Design of Embedded s) TDTS07/TDDI08 Web page: http://www.ida.liu.se/~tdts07

More information

Hardware-Software Codesign. 1. Introduction

Hardware-Software Codesign. 1. Introduction Hardware-Software Codesign 1. Introduction Lothar Thiele 1-1 Contents What is an Embedded System? Levels of Abstraction in Electronic System Design Typical Design Flow of Hardware-Software Systems 1-2

More information

The Embedded System Design Process. Wolf Text - Chapter 1.3

The Embedded System Design Process. Wolf Text - Chapter 1.3 The Embedded System Design Process Wolf Text - Chapter 1.3 Design methodologies A procedure for designing a system. Understanding your methodology helps you ensure you didn t skip anything. Compilers,

More information

CS 4387/5387 SOFTWARE V&V LECTURE 4 BLACK-BOX TESTING

CS 4387/5387 SOFTWARE V&V LECTURE 4 BLACK-BOX TESTING 1 CS 4387/5387 SOFTWARE V&V LECTURE 4 BLACK-BOX TESTING Outline 2 Quiz Black-Box Testing Equivalence Class Testing (Equivalence Partitioning) Boundary value analysis Decision Table Testing 1 3 Quiz - 1

More information

Framework for replica selection in fault-tolerant distributed systems

Framework for replica selection in fault-tolerant distributed systems Framework for replica selection in fault-tolerant distributed systems Daniel Popescu Computer Science Department University of Southern California Los Angeles, CA 90089-0781 {dpopescu}@usc.edu Abstract.

More information

MURPHY S COMPUTER LAWS

MURPHY S COMPUTER LAWS Bosch Workshop 04/08/18 Brandenburg University of Technology at Cottbus, Dep. of Computer Science MURPHY S COMPUTER LAWS (1) No program without faults. DEPENDABLE SOFTWARE - AN UNREALISTIC DREAM OR JUST

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Microcontrollers and Embedded Processors Module No: CS/ES/2 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Microcontrollers and Embedded Processors Module No: CS/ES/2 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Microcontrollers and Embedded Processors Module No: CS/ES/2 Quadrant 1 e-text In this module, microcontrollers and embedded processors

More information

Failure Diagnosis and Prognosis for Automotive Systems. Tom Fuhrman General Motors R&D IFIP Workshop June 25-27, 2010

Failure Diagnosis and Prognosis for Automotive Systems. Tom Fuhrman General Motors R&D IFIP Workshop June 25-27, 2010 Failure Diagnosis and Prognosis for Automotive Systems Tom Fuhrman General Motors R&D IFIP Workshop June 25-27, 2010 Automotive Challenges and Goals Driver Challenges Goals Energy Rising cost of petroleum

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Introduction to Embedded Systems Outline Embedded systems overview What is embedded system Characteristics Elements of embedded system Trends in embedded system Design cycle 2 Computing Systems Most of

More information

Hardware Design and Simulation for Verification

Hardware Design and Simulation for Verification Hardware Design and Simulation for Verification by N. Bombieri, F. Fummi, and G. Pravadelli Universit`a di Verona, Italy (in M. Bernardo and A. Cimatti Eds., Formal Methods for Hardware Verification, Lecture

More information

Test and Verification Solutions. ARM Based SOC Design and Verification

Test and Verification Solutions. ARM Based SOC Design and Verification Test and Verification Solutions ARM Based SOC Design and Verification 7 July 2008 1 7 July 2008 14 March 2 Agenda System Verification Challenges ARM SoC DV Methodology ARM SoC Test bench Construction Conclusion

More information

Testing & Continuous Integration. Kenneth M. Anderson University of Colorado, Boulder CSCI 5828 Lecture 20 03/19/2010

Testing & Continuous Integration. Kenneth M. Anderson University of Colorado, Boulder CSCI 5828 Lecture 20 03/19/2010 esting & Continuous Integration Kenneth M. Anderson University of Colorado, Boulder CSCI 5828 Lecture 20 03/1/20 University of Colorado, 20 1 Goals 2 Review material from Chapter of Pilone & Miles esting

More information

White Paper: VANTIQ Digital Twin Architecture

White Paper: VANTIQ Digital Twin Architecture Vantiq White Paper www.vantiq.com White Paper: VANTIQ Digital Twin Architecture By Paul Butterworth November 2017 TABLE OF CONTENTS Introduction... 3 Digital Twins... 3 Definition... 3 Examples... 5 Logical

More information

Complexity-Reducing Design Patterns for Cyber-Physical Systems. DARPA META Project. AADL Standards Meeting January 2011 Steven P.

Complexity-Reducing Design Patterns for Cyber-Physical Systems. DARPA META Project. AADL Standards Meeting January 2011 Steven P. Complexity-Reducing Design Patterns for Cyber-Physical Systems DARPA META Project AADL Standards Meeting 24-27 January 2011 Steven P. Miller Delivered to the Government in Accordance with Contract FA8650-10-C-7081

More information

ACCELERATING DO-254 VERIFICATION

ACCELERATING DO-254 VERIFICATION ACCELERATING DO-254 VERIFICATION ACCELERATING DO-254 VERIFICATION INTRODUCTION Automated electronic control systems or avionics allow lighter, more efficient aircraft to operate more effectively in the

More information

José Costa What is an embedded system? Examples of embedded systems. Characteristics of embedded systems

José Costa What is an embedded system? Examples of embedded systems. Characteristics of embedded systems José Costa (DEI/IST) What is an Embedded System? 2012-02-14 2 / 40 What is an Embedded System? José Costa Software for Embedded Systems Department of Computer Science and Engineering (DEI) Instituto Superior

More information

Lecture 3: Design Methodologies

Lecture 3: Design Methodologies Lecture 3: Design Methodologies Embedded Computing Systems Mikko Lipasti, adapted from M. Schulte Based on slides and textbook from Wayne Wolf High Performance Embedded Computing 2007 Elsevier Topics Design

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Introduction to Embedded Systems Minsoo Ryu Hanyang University Outline 1. Definition of embedded systems 2. History and applications 3. Characteristics of embedded systems Purposes and constraints User

More information

Certification of Model Transformations

Certification of Model Transformations Certification of Transformations Dániel Varró 1st Workshop on the Analysis of Transformations (AMT 2012) Sharing some challenges of the CERTIMOT project Budapest University of Technology and Economics

More information

Embedded system. Microprocessor System Design EHB432E Lecture -1. Embedded system. Embedded system. Istanbul Technical University

Embedded system. Microprocessor System Design EHB432E Lecture -1. Embedded system. Embedded system. Istanbul Technical University Embedded system Microprocessor System Design EHB432E Lecture -1 Billions of computing systems which are built every year for a very di erent purpose are embedded within larger electronic devices, repeatedly

More information

다중센서기반자율시스템의모델설계및개발 이제훈차장 The MathWorks, Inc. 2

다중센서기반자율시스템의모델설계및개발 이제훈차장 The MathWorks, Inc. 2 1 다중센서기반자율시스템의모델설계및개발 이제훈차장 2017 The MathWorks, Inc. 2 What we will see today 3 Functional Segmentation of Autonomous System Aircraft/ Platform Sense Perceive Plan & Decide Control Connect/ Communicate

More information

On the Role of Formal Methods in Software Certification: An Experience Report

On the Role of Formal Methods in Software Certification: An Experience Report Electronic Notes in Theoretical Computer Science 238 (2009) 3 9 www.elsevier.com/locate/entcs On the Role of Formal Methods in Software Certification: An Experience Report Constance L. Heitmeyer 1,2 Naval

More information

ISO compliant verification of functional requirements in the model-based software development process

ISO compliant verification of functional requirements in the model-based software development process requirements in the model-based software development process Hans J. Holberg SVP Marketing & Sales, BTC Embedded Systems AG An der Schmiede 4, 26135 Oldenburg, Germany hans.j.holberg@btc-es.de Dr. Udo

More information

Test and Evaluation of Autonomous Systems in a Model Based Engineering Context

Test and Evaluation of Autonomous Systems in a Model Based Engineering Context Test and Evaluation of Autonomous Systems in a Model Based Engineering Context Raytheon Michael Nolan USAF AFRL Aaron Fifarek Jonathan Hoffman 3 March 2016 Copyright 2016. Unpublished Work. Raytheon Company.

More information

Digital Systems Design. System on a Programmable Chip

Digital Systems Design. System on a Programmable Chip Digital Systems Design Introduction to System on a Programmable Chip Dr. D. J. Jackson Lecture 11-1 System on a Programmable Chip Generally involves utilization of a large FPGA Large number of logic elements

More information

Hierarchical FSMs with Multiple CMs

Hierarchical FSMs with Multiple CMs Hierarchical FSMs with Multiple CMs Manaloor Govindarajan Balasubramanian Manikantan Bharathwaj Muthuswamy (aka Bharath) Reference: Hierarchical FSMs with Multiple Concurrency Models. Alain Girault, Bilung

More information

Modeling Requirements

Modeling Requirements Modeling Requirements Critical Embedded Systems Dr. Balázs Polgár Prepared by Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics Dept. of Measurement and

More information

Chapter 13: Reference. Why reference Typing Evaluation Store Typings Safety Notes

Chapter 13: Reference. Why reference Typing Evaluation Store Typings Safety Notes Chapter 13: Reference Why reference Typing Evaluation Store Typings Safety Notes References Computational Effects Also known as side effects. A function or expression is said to have a side effect if,

More information