EECS 140 Laboratory Exercise 5 Prime Number Recognition

Size: px
Start display at page:

Download "EECS 140 Laboratory Exercise 5 Prime Number Recognition"

Transcription

1 1. Objectives EECS 140 Laboratory Exercise 5 Prime Number Recognition A. Become familiar with a design process B. Practice designing, building, and testing a simple combinational circuit 2. Discussion In this exercise you will design and build a simple combinational circuit that recognizes 4-bit binary prime numbers. The circuit must be implemented exclusively with NAND gates and INVERTERs in a two level logic format. Part of your objective in this design is to implement the circuit with as few gates as possible. To test your recognizer, you will use the outputs from your 4-bit counter from Lab 4 to cycle through all possible 4-bit values. Designing and implementing a combinational circuit at first can seem like a daunting task. You are given a verbal description of a system, and asked to build it. Luckily, designers have developed a standard approach for attacking these types of design problems that helps take the guess work out of the design process, and provides a roadmap for steering you through. The general approach consists of: 1) Determining Requirements This step answers the general question of what is it that you are designing. It is very important to understand what you are trying to design before you start to formulate a solution and build hardware. 2) Performing the Design This step answers the general question of where and how. In formal structured design processes, this step consists of first performing a top-level design that breaks the overall system into more manageable subsystems, followed by a detailed design of each subsystem. Breaking the system into subsystems answers the question of where, and designing each subsystem answers the how. For this lab, we are only concerned with the how of designing a particular subsystem, so no top-level design is needed. A critical component of this step is generating supporting documentation. From this point on in the design process, you will work solely from this documentation. For this lab, the documentation will consist of properly formatted schematics and a netlist. 3) Implementation

2 This step represents the transition from a paper design, to implementing your design with chips, wires, and physical components. This step depends on you having performed your design correctly and having generated accurate and complete documentation. 4) Testing and Verification This step represents the point where you demonstrate that your design is correct. It may seem obvious to you why you would need this step, but you would be surprised at how often this step is not performed correctly. It is necessary for you to choose test inputs that exercise your design as completely as possible. Remember that it is up to you to demonstrate that your design works properly. 5) Report Results After you have designed and tested your circuit, you should write up the results of your effort. If you do an excellent design and do not document the results, you might as well have skipped the entire exercise. A good report should state what the circuit was designed to do (requirements), include all supporting documentation (schematics, netlist), and the results of the testing and verification. A well written technical report is organized, clear, concise, and complete. Think about what an engineer modifying your design would need to know to quickly understand your design. Generally, the first step in performing a design is to understand what the verbal description of the problem is asking. The verbal description is then translated into a set of technical requirements. Understanding the verbal description and deriving the technical requirements is the hardest part of a design. These steps generally require much head scratching, and a certain amount of experience in order to be performed efficiently. After the technical requirements have been derived, then standard techniques can be applied to guide you through the remainder of the design. From this point on, the design process proceeds through very organized steps. For this lab, you have been given a fairly detailed technical description of the desired circuit, and you should be able to begin applying the standard techniques you have learned in lecture to design your circuit. This is a two week lab exercise. During week one you will design your prime number recognition circuit. During week two, you will implement and test your circuit. Please note that all design steps can be completed prior to week one. 3. Description Design a combinational circuit that inputs a 4-bit binary number, and outputs TRUE whenever the input value is a prime number, e.g. 1, 2, 3, 5, 7, 11, or 13. The four inputs to your circuit will be the outputs QA, QB, QC, QD from the counter circuit designed in Lab 3. To view the four outputs together as a single binary number, we will assume that QA is the least significant bit (1's), QB is the next least significant (2's), QC is the next (4's), and QD is the most significant bit (8's). So, if QA and QC are on and QB and QD are off, we add to get a value of 5. By looking at the

3 outputs in this manner, the counter will cycle through the numbers 0, 1, 2,... 14, 15, 0, 1, 2,... continuously. Week 1: Designing a Prime Recognizer Circuit During week 1 you will complete the design of a prime number recognition circuit. In the following steps, you will use standard techniques presented in class to design a simple two level logic circuit. At the end of week one, you will be required to show your lab TA the results of your design. Note that all steps can be completed prior to coming to lab. It is highly recommended that you start your design before the lab session. Step 1 - Design your Prime Recognizer Circuit So far, the standard design techniques you have been given are: (i) Truth tables for specifying the behavior of a circuit in terms of inputs and outputs; (ii) K-maps for generating efficient and minimal expressions; and (iii) AND/OR, NAND/NOR circuits to implement logic expressions. You should also be familiar with the basic Axioms of Boolean Algebra and Karnaugh maps that can be used to manipulate and reduce logic expressions. Your design should flow through each of these techniques, starting from the truth table representation, through K-maps and the Axioms of Boolean Algebra. In order to practice this part of the design flow, perform the following steps in order for your design: 1. Generate a truth table for the prime number recognition function. For each possible input combination, specify what the respective output should be. Remember to identify the most significant and least significant input bit. 2. From the truth table, generate a Boolean algebra expression for the Prime Recognizer Circuit (PRC) function using sum of products notation. 3. Simplify your PRC function using Boolean algebra simplification techniques or Karnaugh maps. When simplifying, remember that you must implement a two level logic system. Additionally, you will be using only NAND gates and inverters in your implementation. As you simplify, make certain you maintain the general sum of products form. Remember, you are searching for a minimal circuit. 4. Convert your function into a two level logic circuit using standard components. As you design your circuit, remember that you want as simple a circuit as possible. Using Boolean algebra simplification may not assure a minimal circuit. Proper use of Karnaugh maps will guarantee a minimal circuit. Think about the characteristics of a Karnaugh map that indicate when it is minimal. At the end of this step in the design process, you should be comfortable with how your circuit will work. The successful completion of this step is an important point in the design process. All remaining steps will be focused on documenting and implementing the resulting design. If the design is

4 good, then the amount of effort from now on will be reasonable. If the design has flaws, you will spend considerable time in correcting and re-doing each of the following steps. Therefore, you should spend enough time in this first step to convince yourself that you have a really good design! Spending an additional hour in this step convincing yourself that you have a proper design will save you many hours of head scratching trying to debug and correct a faulty design. Step 2 Draw a schematic for your Prime Recognizer Circuit Documenting a design is also very important in the design process. A well documented design can be picked up by any competent engineer and understood. This is important as most designs are performed in teams. Each team must be able to pick up and understand other teams designs in order to modify the original design, add an additional component, or debug and test the design. You may also have to pick up a schematic you have previously drawn, and continue on with the design. Although companies generally develop their own unique standards, all schematics adhere to basic rules and contain the same information. The standard developed for this class was given in Lab 4, and contains the same basic information found in all schematics. Draw a schematic for your PRC. Show each gate in the design and all interconnects between gates. Follow the instructions for drawing schematics given in Lab 4. Step 3 - Select your components Decide which components you need to build your circuit. For this exercise, you must use only NAND and INVERTER operations. Select from the following available components to construct your circuit: For the INVERT function, use 74LS04 or equivalent For 2-input NAND function, use 74LS00 or equivalent For 3-input NAND function, use 74LS10 or equivalent For 4-input NAND function, use 74LS20 or equivalent Cost is an important issue in any engineering design. Therefore, you should implement your circuit using as few packages as possible. Recall that any two level logic circuit implementing a function in sum of products form can be implemented using NAND gates and INVERTERs exclusively. This technique can be understood using either DeMorgan s Law or by using rules for bubble manipulation in a schematic diagram as covered in class. Step 4 Develop a netlist for your circuit In addition to schematics, netlists are also an important component of a properly documented design. Develop a netlist describing how your components will be interconnected using techniques learned in Lab 4. Assign each gate in your schematic to a device on a chip. Label your schematic to indicate the chip and pin numbers associated with each logic gate. Use these

5 results to generate a netlist. Don t forget to include power and ground connections in your netlist. No Lab Report is required at the end of week one. However, you are required to show your TA the results of your preliminary design activities. This includes truth tables, equations, K-maps and/or logic simplification, schematic, parts list and netlist. Note that much of this can be completed prior to coming to lab. Week 2: Build and Test Your PRC Circuit Having completed your design in week one, it is now time to construct and test your implementation. The construction of your circuit proceeds in the same manner as previous weeks. However, testing and debugging this circuit may be more complicated than previous circuits. Remember that each NAND gate corresponds to a single product term in your design. This can dramatically simplify your circuit debugging task. Step 1 Build your combinatorial circuit Now you are finally ready to start implementing your design! At this point, you have invested a considerable amount of time in developing and documenting your design. If each previous step has been performed correctly, you should be able to directly implement your design from your schematics and netlist without modification. In this case, if the circuit does not function properly, errors are due to improper connections or faulty parts. Although this is what the designer ultimately shoots for, slight modifications to the original design are sometimes required, and are not uncommon. If you have design errors (as opposed to errors resulting from wiring or bad chips) you may be required to traverse back to the very first step in the design process to uncover logic errors etc. If you are convinced that your design was correct and the circuit is properly wired, then you may have incorrectly drawn your schematic or netlist. In any of these cases, you must update your previous documentation to reflect any required fixes or modifications. Obtain the ICs you selected in Step 4 and wirewrap sockets for each chip from the EECS Shop. Make a list of the components and for each IC obtain a 14-pin or 16-pin wirewrap socket. Take your list to the EECS Shop and obtain the parts you need. You must be specific in asking for the circuits you need. Build your combinatorial circuit by stepping through each connection in your netlist and making the indicated connection. As you make each connection, make a check mark by that connection in your netlist. Finally, ring out your circuit to determine if your wiring is correct. To test your circuit, you will use the outputs from your 4-bit counter implemented in Lab 4. Connect QD to the most significant bit, QC to the 4 s bit, QB to the 2 s bit, and QA to the least significant bit of your recognizer. Observe the outputs of the counter and the output of your PRC to determine if the PRC is operating correctly. Note that we choose to test the PRC with the counter because it systematically steps through each possible 4-bit value. By observing the

6 circuit output associated with each input, you are assured that your testing will cover all possible input values. Step 3 - Verify operation Once reached, this step represents the final stage of your design effort. You should feel a strong sense of accomplishment after this step has been successfully completed. This is what design is all about!! Check the operation of your circuit. First, verify that your counter is still operating: A. Verify that your oscillator is operating. Note the frequency of your oscillator. B. Verify that your counter is counting. Second, verify that your prime number recognition circuit is correct: D. For each product in you minimized Boolean expression, check the output of the NAND gate generating that product. Does it match what you expect? Does the NAND gate output a positive or a negative logic value? How does this affect your testing activity? If any of your NAND gates produce incorrect values, stop and determine why the gate is producing an incorrect value. E. Check the output of the entire circuit. Does it match your expected output? To check the circuit output you may want to put the RCO (Ripple Carry Out) signal from your counter on Channel 1 of the oscilloscope and the output of your circuit on Channel 2. Trigger the 'scope on the positive edge of Channel 1 and move the trigger point to the left side of the display. Adjust the horizontal scale to see a second RCO pulse on the right side of the display. You should see RCO go high when the counter contains the value 15. You can then relate your expected output to what you observe on the scope. Draw the output signal form. If you have questions about using the oscilloscope in this manner, please ask your TA for help. Step 3 - Write your lab report Write your lab report per instructions from your TA. Remember to include all of your schematics, netlists and other design documentation. Use a logic template and straight edge to neatly draw each circuit.

EECS 140 Laboratory Exercise 4 3-to-11 Counter Implementation

EECS 140 Laboratory Exercise 4 3-to-11 Counter Implementation EECS 140 Laboratory Exercise 4 3-to-11 Counter Implementation 1. Objectives A. To apply knowledge of combinatorial design. B. Gain expertise in designing and building a simple combinatorial circuit This

More information

(Refer Slide Time: 00:01:53)

(Refer Slide Time: 00:01:53) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 36 Design of Circuits using MSI Sequential Blocks (Refer Slide Time:

More information

A B A+B

A B A+B ECE 25 Lab 2 One-bit adder Design Introduction The goal of this lab is to design a one-bit adder using programmable logic on the BASYS board. Due to the limitations of the chips we have in stock, we need

More information

PART 1. Simplification Using Boolean Algebra

PART 1. Simplification Using Boolean Algebra Name EET 1131 Lab #5 Logic Simplification Techniques OBJECTIVES: Upon completing this lab, you ll be able to: 1) Obtain the experimental truth table of a logic circuit. 2) Use Boolean algebra to simplify

More information

COMP combinational logic 1 Jan. 18, 2016

COMP combinational logic 1 Jan. 18, 2016 In lectures 1 and 2, we looked at representations of numbers. For the case of integers, we saw that we could perform addition of two numbers using a binary representation and using the same algorithm that

More information

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

More information

Combinational Circuits Digital Logic (Materials taken primarily from:

Combinational Circuits Digital Logic (Materials taken primarily from: Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a

More information

Logic Gates and Boolean Algebra ENT263

Logic Gates and Boolean Algebra ENT263 Logic Gates and Boolean Algebra ENT263 Logic Gates and Boolean Algebra Now that we understand the concept of binary numbers, we will study ways of describing how systems using binary logic levels make

More information

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012 Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012 1 Digital vs Analog Digital signals are binary; analog

More information

Experiment 3: Logic Simplification

Experiment 3: Logic Simplification Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed El-Saied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions

More information

Chapter 2. Boolean Expressions:

Chapter 2. Boolean Expressions: Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean

More information

Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 04. Boolean Expression Simplification and Implementation

Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 04. Boolean Expression Simplification and Implementation Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 04 Boolean Expression Simplification and Implementation OBJECTIVES: To understand the utilization

More information

IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

More information

Overview. Multiplexor. cs281: Introduction to Computer Systems Lab02 Basic Combinational Circuits: The Mux and the Adder

Overview. Multiplexor. cs281: Introduction to Computer Systems Lab02 Basic Combinational Circuits: The Mux and the Adder cs281: Introduction to Computer Systems Lab02 Basic Combinational Circuits: The Mux and the Adder Overview The objective of this lab is to understand two basic combinational circuits the multiplexor and

More information

LAB #3: ADDERS and COMPARATORS using 3 types of Verilog Modeling

LAB #3: ADDERS and COMPARATORS using 3 types of Verilog Modeling LAB #3: ADDERS and COMPARATORS using 3 types of Verilog Modeling LAB OBJECTIVES 1. Practice designing more combinational logic circuits 2. More experience with equations and the use of K-maps and Boolean

More information

Chapter 3. Boolean Algebra and Digital Logic

Chapter 3. Boolean Algebra and Digital Logic Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how

More information

EECS150, Fall 2004, Midterm 1, Prof. Culler. Problem 1 (15 points) 1.a. Circle the gate-level circuits that DO NOT implement a Boolean AND function.

EECS150, Fall 2004, Midterm 1, Prof. Culler. Problem 1 (15 points) 1.a. Circle the gate-level circuits that DO NOT implement a Boolean AND function. Problem 1 (15 points) 1.a. Circle the gate-level circuits that DO NOT implement a Boolean AND function. 1.b. Show that a 2-to-1 MUX is universal (i.e. that any Boolean expression can be implemented with

More information

Propositional Calculus. Math Foundations of Computer Science

Propositional Calculus. Math Foundations of Computer Science Propositional Calculus Math Foundations of Computer Science Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus so that they can use it to

More information

Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

A3 A2 A1 A0 Sum4 Sum3 Sum2 Sum1 Sum

A3 A2 A1 A0 Sum4 Sum3 Sum2 Sum1 Sum LAB #3: ADDERS and COMPARATORS using 3 types of Verilog Modeling LAB OBJECTIVES 1. Practice designing more combinational logic circuits 2. More experience with equations and the use of K-maps and Boolean

More information

Boolean Analysis of Logic Circuits

Boolean Analysis of Logic Circuits Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 7 Lecture Title:

More information

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

More information

Combinational Logic Worksheet

Combinational Logic Worksheet Combinational Logic Worksheet Concept Inventory: Truth tables sum-of-products equations implementation using NOT/AND/OR Demorgan s Law, implementation using NAND/NOR Simplification, truth tables w/ don

More information

(Refer Slide Time 3:31)

(Refer Slide Time 3:31) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 5 Logic Simplification In the last lecture we talked about logic functions

More information

(Refer Slide Time: 1:43)

(Refer Slide Time: 1:43) (Refer Slide Time: 1:43) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 27 Pattern Detector So, we talked about Moore

More information

Variable, Complement, and Literal are terms used in Boolean Algebra.

Variable, Complement, and Literal are terms used in Boolean Algebra. We have met gate logic and combination of gates. Another way of representing gate logic is through Boolean algebra, a way of algebraically representing logic gates. You should have already covered the

More information

EECS 150 Homework 7 Solutions Fall (a) 4.3 The functions for the 7 segment display decoder given in Section 4.3 are:

EECS 150 Homework 7 Solutions Fall (a) 4.3 The functions for the 7 segment display decoder given in Section 4.3 are: Problem 1: CLD2 Problems. (a) 4.3 The functions for the 7 segment display decoder given in Section 4.3 are: C 0 = A + BD + C + BD C 1 = A + CD + CD + B C 2 = A + B + C + D C 3 = BD + CD + BCD + BC C 4

More information

Programmable Logic Design Techniques I

Programmable Logic Design Techniques I PHY 440 Lab14: Programmable Logic Design Techniques I The design of digital circuits is a multi-step process. It starts with specifications describing what the circuit must do. Defining what a circuit

More information

Contents. Chapter 3 Combinational Circuits Page 1 of 34

Contents. Chapter 3 Combinational Circuits Page 1 of 34 Chapter 3 Combinational Circuits Page of 34 Contents Contents... 3 Combinational Circuits... 2 3. Analysis of Combinational Circuits... 2 3.. Using a Truth Table... 2 3..2 Using a Boolean unction... 4

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

structure syntax different levels of abstraction

structure syntax different levels of abstraction This and the next lectures are about Verilog HDL, which, together with another language VHDL, are the most popular hardware languages used in industry. Verilog is only a tool; this course is about digital

More information

Here is a list of lecture objectives. They are provided for you to reflect on what you are supposed to learn, rather than an introduction to this

Here is a list of lecture objectives. They are provided for you to reflect on what you are supposed to learn, rather than an introduction to this This and the next lectures are about Verilog HDL, which, together with another language VHDL, are the most popular hardware languages used in industry. Verilog is only a tool; this course is about digital

More information

Combinational Devices and Boolean Algebra

Combinational Devices and Boolean Algebra Combinational Devices and Boolean Algebra Silvina Hanono Wachman M.I.T. L02-1 6004.mit.edu Home: Announcements, course staff Course information: Lecture and recitation times and locations Course materials

More information

UNCA CSCI 255 Exam 1 Spring February, This is a closed book and closed notes exam. It is to be turned in by 1:45 PM.

UNCA CSCI 255 Exam 1 Spring February, This is a closed book and closed notes exam. It is to be turned in by 1:45 PM. UNCA CSCI 255 Exam 1 Spring 2017 27 February, 2017 This is a closed book and closed notes exam. It is to be turned in by 1:45 PM. Communication with anyone other than the instructor is not allowed during

More information

Ch. 5 : Boolean Algebra &

Ch. 5 : Boolean Algebra & Ch. 5 : Boolean Algebra & Reduction elektronik@fisika.ui.ac.id Objectives Should able to: Write Boolean equations for combinational logic applications. Utilize Boolean algebra laws and rules for simplifying

More information

Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 09 MULTIPLEXERS

Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 09 MULTIPLEXERS Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 09 MULTIPLEXERS OBJECTIVES: To experimentally verify the proper operation of a multiplexer.

More information

E85: Digital Design and Computer Engineering Lab 1: Electrical Characteristics of Logic Gates

E85: Digital Design and Computer Engineering Lab 1: Electrical Characteristics of Logic Gates E85: Digital Design and Computer Engineering Lab 1: Electrical Characteristics of Logic Gates Objective The purpose of this lab is to become comfortable with logic gates as physical objects, to interpret

More information

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION 2. BOOLEAN ALGEBRA 2.1 INTRODUCTION In the previous chapter, we introduced binary numbers and binary arithmetic. As you saw in binary arithmetic and in the handling of floating-point numbers, there is

More information

Starting Boolean Algebra

Starting Boolean Algebra Boolean Algebra March 2, 27 Diagram for FunChip2 Here is a picture of FunChip2 that we created more or less randomly in class on /25 (used in various Activities): Starting Boolean Algebra Boolean algebra

More information

4. Write a sum-of-products representation of the following circuit. Y = (A + B + C) (A + B + C)

4. Write a sum-of-products representation of the following circuit. Y = (A + B + C) (A + B + C) COP 273, Winter 26 Exercises 2 - combinational logic Questions. How many boolean functions can be defined on n input variables? 2. Consider the function: Y = (A B) (A C) B (a) Draw a combinational logic

More information

EEE130 Digital Electronics I Lecture #4_1

EEE130 Digital Electronics I Lecture #4_1 EEE130 Digital Electronics I Lecture #4_1 - Boolean Algebra and Logic Simplification - By Dr. Shahrel A. Suandi 4-6 Standard Forms of Boolean Expressions There are two standard forms: Sum-of-products form

More information

Digital Techniques. Lecture 1. 1 st Class

Digital Techniques. Lecture 1. 1 st Class Digital Techniques Lecture 1 1 st Class Digital Techniques Digital Computer and Digital System: Digital computer is a part of digital system, it based on binary system. A block diagram of digital computer

More information

Combinational Logic & Circuits

Combinational Logic & Circuits Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

More information

ENEE245 Digital Circuits and Systems Lab Manual

ENEE245 Digital Circuits and Systems Lab Manual ENEE245 Digital Circuits and Systems Lab Manual Department of Engineering, Physical & Computer Sciences Montgomery College Version 1.1 Copyright Prof. Lan Xiang (Do not distribute without permission) 1

More information

Simplification of Boolean Functions

Simplification of Boolean Functions COM111 Introduction to Computer Engineering (Fall 2006-2007) NOTES 5 -- page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean

More information

Lab #2: Building the System

Lab #2: Building the System Lab #: Building the System Goal: In this second lab exercise, you will design and build a minimal microprocessor system, consisting of the processor, an EPROM chip for the program, necessary logic chips

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

More information

Following the advice of breaking the longest (uppermost) bar first, I'll begin by breaking the bar covering the entire expression as a first step:

Following the advice of breaking the longest (uppermost) bar first, I'll begin by breaking the bar covering the entire expression as a first step: DeMorgans Theorems A mathematician named DeMorgan developed a pair of important rules regarding group complementation in Boolean algebra. By group complementation, I'm referring to the complement of a

More information

LECTURE 4. Logic Design

LECTURE 4. Logic Design LECTURE 4 Logic Design LOGIC DESIGN The language of the machine is binary that is, sequences of 1 s and 0 s. But why? At the hardware level, computers are streams of signals. These signals only have two

More information

EECE 2411/2211-Introduction to Electrical and Computer Engineering Lab. Lab 3

EECE 2411/2211-Introduction to Electrical and Computer Engineering Lab. Lab 3 EECE 2411/2211-Introduction to Electrical and Computer Engineering Lab Lab 3 Building Multi-Gate Logic Circuits Introduction: In this lab we will look at combining the simple logic gates we used in the

More information

Chapter 3. Gate-Level Minimization. Outlines

Chapter 3. Gate-Level Minimization. Outlines Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level

More information

Learning Objectives: Topic Karnaugh Maps. At the end of this topic you will be able to;

Learning Objectives: Topic Karnaugh Maps. At the end of this topic you will be able to; Topic.2.3 Karnaugh Maps Learning Objectives: t the end of this topic you will be able to; Draw a Karnaugh map for a logic system with up to four inputs and use it to minimise the number of gates required;

More information

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 2020 Fall 2017 Lab #1: Digital Logic Module

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 2020 Fall 2017 Lab #1: Digital Logic Module GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 2020 Fall 2017 Lab #1: Digital Logic Module GOAL To introduce the physical implementation of digital logic circuits including

More information

ECE 152A LABORATORY 2

ECE 152A LABORATORY 2 ECE 152A LABORATORY 2 Objectives : 1. Understand the trade-off between time- and space-efficiency in the design of adders. In this lab, adders operate on unsigned numbers. 2. Learn how to write Verilog

More information

Summary. Boolean Addition

Summary. Boolean Addition Summary Boolean Addition In Boolean algebra, a variable is a symbol used to represent an action, a condition, or data. A single variable can only have a value of or 0. The complement represents the inverse

More information

Lecture (05) Boolean Algebra and Logic Gates

Lecture (05) Boolean Algebra and Logic Gates Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either

More information

ENEE245 Digital Circuits and Systems Lab Manual

ENEE245 Digital Circuits and Systems Lab Manual ENEE245 Digital Circuits and Systems Lab Manual Department of Engineering, Physical & Computer Sciences Montgomery College Modified Fall 2017 Copyright Prof. Lan Xiang (Do not distribute without permission)

More information

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( ) 6. Combinational Circuits George Boole (85 864) Claude Shannon (96 2) Digital signals Binary (or logical ) values: or, on or off, high or low voltage Wires. Propagate logical values from place to place.

More information

Gate-Level Minimization. section instructor: Ufuk Çelikcan

Gate-Level Minimization. section instructor: Ufuk Çelikcan Gate-Level Minimization section instructor: Ufuk Çelikcan Compleity of Digital Circuits Directly related to the compleity of the algebraic epression we use to build the circuit. Truth table may lead to

More information

(Refer Slide Time 6:48)

(Refer Slide Time 6:48) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

More information

Homework. Update on website issue Reading: Chapter 7 Homework: All exercises at end of Chapter 7 Due 9/26

Homework. Update on website issue Reading: Chapter 7 Homework: All exercises at end of Chapter 7 Due 9/26 Homework Update on website issue Reading: hapter 7 Homework: All exercises at end of hapter 7 Due 9/26 opyright c 22 28 UMaine omputer Science Department / 2 OS 4: Foundations of omputer Science Karnaugh

More information

Objectives: 1. Design procedure. 2. Fundamental circuits. 1. Design procedure

Objectives: 1. Design procedure. 2. Fundamental circuits. 1. Design procedure Objectives: 1. Design procedure. 2. undamental circuits. 1. Design procedure Design procedure has five steps: o Specification. o ormulation. o Optimization. o Technology mapping. o Verification. Specification:

More information

Lab 4: Digital Electronics BMEn 2151 Introductory Medical Device Prototyping Prof. Steven S. Saliterman

Lab 4: Digital Electronics BMEn 2151 Introductory Medical Device Prototyping Prof. Steven S. Saliterman Lab 4: Digital Electronics BMEn 2151 Introductory Medical Device Prototyping Prof. Steven S. Saliterman Exercise 4-1: Familiarization with Lab Box Contents & Reference Books 4-1-1 CMOS Cookbook (In the

More information

CARLETON UNIVERSITY. Laboratory 2.0

CARLETON UNIVERSITY. Laboratory 2.0 CARLETON UNIVERSITY Department of Electronics ELEC 267 Switching Circuits Jan 3, 28 Overview Laboratory 2. A 3-Bit Binary Sign-Extended Adder/Subtracter A binary adder sums two binary numbers for example

More information

Introduction to MATLABs Data Acquisition Toolbox, the USB DAQ, and accelerometers

Introduction to MATLABs Data Acquisition Toolbox, the USB DAQ, and accelerometers Introduction to MATLABs Data Acquisition Toolbox, the USB DAQ, and accelerometers This week we will start to learn the software that we will use through the course, MATLAB s Data Acquisition Toolbox. This

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, First Semester: 2018/2019 Dept. of Computer Engineering Course Title: Logic Circuits Date: 03/01/2019

More information

Combinational Circuits

Combinational Circuits Combinational Circuits Jason Filippou CMSC250 @ UMCP 06-02-2016 ason Filippou (CMSC250 @ UMCP) Circuits 06-02-2016 1 / 1 Outline ason Filippou (CMSC250 @ UMCP) Circuits 06-02-2016 2 / 1 Hardware design

More information

(Refer Slide Time 5:19)

(Refer Slide Time 5:19) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 7 Logic Minimization using Karnaugh Maps In the last lecture we introduced

More information

Digital Logic Design (3)

Digital Logic Design (3) Digital Logic Design (3) ENGG1015 1 st Semester, 2010 Dr. Kenneth Wong Dr. Hayden So Department of Electrical and Electronic Engineering Last lecture ll logic functions can be represented as (1) truth

More information

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

More information

Hardware Modeling using Verilog Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Hardware Modeling using Verilog Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Hardware Modeling using Verilog Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture 01 Introduction Welcome to the course on Hardware

More information

Objectives: 1- Bolean Algebra. Eng. Ayman Metwali

Objectives: 1- Bolean Algebra. Eng. Ayman Metwali Objectives: Chapter 3 : 1- Boolean Algebra Boolean Expressions Boolean Identities Simplification of Boolean Expressions Complements Representing Boolean Functions 2- Logic gates 3- Digital Components 4-

More information

Chapter 6. Logic Design Optimization Chapter 6

Chapter 6. Logic Design Optimization Chapter 6 Chapter 6 Logic Design Optimization Chapter 6 Optimization The second part of our design process. Optimization criteria: Performance Size Power Two-level Optimization Manipulating a function until it is

More information

DIGITAL CIRCUIT LOGIC UNIT 7: MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES

DIGITAL CIRCUIT LOGIC UNIT 7: MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES DIGITAL CIRCUIT LOGIC UNIT 7: MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES 1 iclicker Question 13 Considering the K-Map, f can be simplified as (2 minutes): A) f = b c + a b c B) f = ab d + a b d AB CD

More information

Introduction to Computer Engineering (E114)

Introduction to Computer Engineering (E114) Introduction to Computer Engineering (E114) Lab 1: Full Adder Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for

More information

DE Solution Set QP Code : 00904

DE Solution Set QP Code : 00904 DE Solution Set QP Code : 00904 1. Attempt any three of the following: 15 a. Define digital signal. (1M) With respect to digital signal explain the terms digits and bits.(2m) Also discuss active high and

More information

Physics 364, Fall 2012, reading due your answers to before the end of Wednesday s lab.

Physics 364, Fall 2012, reading due your answers to before the end of Wednesday s lab. Physics 364, Fall 2012, reading due 2012-11-28. Email your answers to ashmansk@hep.upenn.edu before the end of Wednesday s lab. Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment:

More information

Slide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 5 for ENEL 353 Fall 207 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 207 SN s ENEL 353 Fall 207 Slide Set 5 slide

More information

Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic

Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic Question 1: Due October 19 th, 2009 A convenient shorthand for specifying

More information

ENEE 245 Lab 1 Report Rubrics

ENEE 245 Lab 1 Report Rubrics ENEE 4 Lab 1 Report Rubrics Design Clearly state the design requirements Derive the minimum SOP Show the circuit implementation. Draw logic diagram and wiring diagram neatly Label all the diagrams/tables

More information

Synthesis of combinational logic

Synthesis of combinational logic Page 1 of 14 Synthesis of combinational logic indicates problems that have been selected for discussion in section, time permitting. Problem 1. A certain function F has the following truth table: A B C

More information

LAB #1 BASIC DIGITAL CIRCUIT

LAB #1 BASIC DIGITAL CIRCUIT LAB #1 BASIC DIGITAL CIRCUIT OBJECTIVES 1. To study the operation of basic logic gates. 2. To build a logic circuit from Boolean expressions. 3. To introduce some basic concepts and laboratory techniques

More information

Engin 100 (section 250), Winter 2015, Technical Lecture 3 Page 1 of 5. Use pencil!

Engin 100 (section 250), Winter 2015, Technical Lecture 3 Page 1 of 5. Use pencil! Engin 100 (section 250), Winter 2015, Technical Lecture 3 Page 1 of 5 Use pencil! Last time Introduced basic logic and some terms including bus, word, register and combinational logic. Talked about schematic

More information

Physics 364, Fall 2014, reading due your answers to by 11pm on Sunday

Physics 364, Fall 2014, reading due your answers to by 11pm on Sunday Physics 364, Fall 2014, reading due 2014-11-23. Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday Course materials and schedule are at positron.hep.upenn.edu/p364 Assignment: (a) First read

More information

Lab 16: Data Busses, Tri-State Outputs and Memory

Lab 16: Data Busses, Tri-State Outputs and Memory Lab 16: Data Busses, Tri-State Outputs and Memory UC Davis Physics 116B Rev. 0.9, Feb. 2006 1 Introduction 1.1 Data busses Data busses are ubiquitous in systems which must communicate digital data. Examples

More information

University of California, Davis Department of Electrical and Computer Engineering. EEC180B DIGITAL SYSTEMS Spring Quarter 2018

University of California, Davis Department of Electrical and Computer Engineering. EEC180B DIGITAL SYSTEMS Spring Quarter 2018 University of California, Davis Department of Electrical and Computer Engineering EEC180B DIGITAL SYSTEMS Spring Quarter 2018 LAB 2: FPGA Synthesis and Combinational Logic Design Objective: This lab covers

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

More information

1 Discussion. 2 Pre-Lab

1 Discussion. 2 Pre-Lab CSE 275 Digital Design Lab Lab 3 Implementation of a Combinational Logic Circuit Penn State Erie, The Behrend College Fall Semester 2007 Number of Lab Periods: 1 1 Discussion The purpose of this lab is

More information

2/8/2017. SOP Form Gives Good Performance. ECE 120: Introduction to Computing. K-Maps Can Identify Single-Gate Functions

2/8/2017. SOP Form Gives Good Performance. ECE 120: Introduction to Computing. K-Maps Can Identify Single-Gate Functions University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Two-Level Logic SOP Form Gives Good Performance s you know, one can use a K-map

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements Today: PS 7 Lab 8: Sound Lab tonight bring machines and headphones! PA 7 Tomorrow: Lab 9 Friday: PS8 Today (Short) Floating point review Boolean

More information

COMP12111 Fundamentals of Computer Engineering Paul Nutter Vasilis Pavlidis Comments

COMP12111 Fundamentals of Computer Engineering Paul Nutter Vasilis Pavlidis Comments Fundamentals of Computer Engineering Paul Nutter Vasilis Pavlidis Comments Please see the attached report. 12 February 2016 Page 2 of 7 Exam Feedback 2015/16 Q1 set by Paul Nutter Q2 set by Vasilis Pavlidis

More information

EECS Components and Design Techniques for Digital Systems. Lec 07 PLAs and FSMs 9/ Big Idea: boolean functions <> gates.

EECS Components and Design Techniques for Digital Systems. Lec 07 PLAs and FSMs 9/ Big Idea: boolean functions <> gates. Review: minimum sum-of-products expression from a Karnaugh map EECS 5 - Components and Design Techniques for Digital Systems Lec 7 PLAs and FSMs 9/2- David Culler Electrical Engineering and Computer Sciences

More information

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

More information

AMD actual programming and testing on a system board. We will take a simple design example and go through the various stages of this design process.

AMD actual programming and testing on a system board. We will take a simple design example and go through the various stages of this design process. actual programming and testing on a system board. We will take a simple design example and go through the various stages of this design process. Conceptualize A Design Problem Select Device Implement Design

More information

Digital Logic Design Exercises. Assignment 1

Digital Logic Design Exercises. Assignment 1 Assignment 1 For Exercises 1-5, match the following numbers with their definition A Number Natural number C Integer number D Negative number E Rational number 1 A unit of an abstract mathematical system

More information

2.1 Binary Logic and Gates

2.1 Binary Logic and Gates 1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary

More information

Bilkent University. CS 319 Object-Oriented Software Engineering. Fall Logic Design and Breadboard Simulator. Final Report 21 November 2009

Bilkent University. CS 319 Object-Oriented Software Engineering. Fall Logic Design and Breadboard Simulator. Final Report 21 November 2009 Bilkent University CS 319 Object-Oriented Software Engineering Fall 2009 Logic Design and Breadboard Simulator Final Report 21 November 2009 Group #2 20602112 korpeoglu@ug.bilkent.edu.tr Erdinç Körpeoğlu

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

More information

CSC 258 lab notes, Fall 2003

CSC 258 lab notes, Fall 2003 CSC 258 lab notes, Fall 2003 Instructor: E. R. C. Hehner Lab demonstrators: Nicolas Kokkalis, Andrés Lagar Cavilla Successful completion of the three graded labs in this course involves a significant amount

More information