Multi-Objective Optimization using Evolutionary Algorithms

Size: px
Start display at page:

Download "Multi-Objective Optimization using Evolutionary Algorithms"

Transcription

1 Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim Brisbane Singapore Toronto

2 Contents Foreword Preface xv xvii 1 Prologue Single and Multi-Objective Optimization Fundamental Differences Two Approaches to Multi-Objective Optimization Why Evolutionary? Rise of Multi-Objective Evolutionary Algorithms Organization of the Book 9 Exercise Problems 11 2 Multi-Objective Optimization Multi-Objective Optimization Problem Linear and Nonlinear MOOP Convex and Nonconvex MOOP Principles of Multi-Objective Optimization Illustrating Pareto-Optimal Solutions Objectives in Multi-Objective Optimization Non-Conflicting Objectives Difference with Single-Objective Optimization Two Goals Instead of One Dealing with Two Search Spaces No Artificial Fix-Ups Dominance and Pareto-Optimality Special Solutions Concept of Domination Properties of Dominance Relation Pareto-Optimality Strong Dominance and Weak Pareto-Optimality Procedures for Finding a Non-Dominated Set Non-Dominated Sorting of a Population 40

3 viii CONTENTS 2.5 Optimality Conditions Summary 46 Exercise Problems 46 3 Classical Methods Weighted Sum Method Hand Calculations Advantages Disadvantages Difficulties with Nonconvex Problems e-constraint Method Hand Calculations Advantages Disadvantages Weighted Metric Methods Hand Calculations Advantages Disadvantages Rotated Weighted Metric Method Dynamically Changing the Ideal Solution Benson's Method Advantages Disadvantages Value Function Method Advantages Disadvantages Goal Programming Methods Weighted Goal Programming Lexicographic Goal Programming Min-Max Goal Programming Interactive Methods Review of Classical Methods Summary 77 Exercise Problems 78 4 Evolutionary Algorithms Difficulties with Classical Optimization Algorithms Genetic Algorithms Binary Genetic Algorithms Real-Parameter Genetic Algorithms Constraint-Handling in Genetic Algorithms Evolution Strategies Non-Recombinative Evolution Strategies Recombinative Evolution Strategies 136

4 CONTENTS ix Self-Adaptive Evolution Strategies Connection Between Real-Parameter GAs and Self-Adaptive ESs Evolutionary Programming (EP) Genetic Programming (GP) Multi-Modal Function Optimization Diversity Through Mutation Preselection Crowding Model ; Sharing Function Model Ecological GA Other Models Need for Mating Restriction Summary 163 Exercise Problems Non-Elitist Multi-Objective Evolutionary Algorithms Motivation for Finding Multiple Pareto-Optimal Solutions Early Suggestions Example Problems Minimization Example Problem: Min-Ex Maximization Example Problem: Max-Ex Vector Evaluated Genetic Algorithm Hand Calculations Computational Complexity Advantages Disadvantages Simulation Results Non-Dominated Selection Heuristic Mate Selection Heuristic Vector-Optimized Evolution Strategy Advantages and Disadvantages Weight-Based Genetic Algorithm Sharing Function Approach Vector Evaluated Approach Random Weighted GA Multiple Objective Genetic Algorithm Hand Calculations Computational Complexity Advantages Disadvantages Simulation Results Dynamic Update of the Sharing Parameter Non-Dominated Sorting Genetic Algorithm 209

5 x CONTENTS Hand Calculations Computational Complexity Advantages Disadvantages Simulation Results Niched-Pareto Genetic Algorithm Hand Calculations Computational Complexity Advantages Disadvantages Simulation Results Predator-Prey Evolution Strategy Hand Calculations Advantages Disadvantages Simulation Results A Modified Predator-Prey Evolution Strategy Other Methods Distributed Sharing GA Distributed Reinforcement Learning Approach Neighborhood Constrained GA Modified NESSY Algorithm Nash GA Summary 234 Exercise Problems Elitist Multi-Objective Evolutionary Algorithms Rudolph's Elitist Multi-Objective Evolutionary Algorithm Hand Calculations Computational Complexity Advantages Disadvantages Elitist Non-Dominated Sorting Genetic Algorithm Crowded Tournament Selection Operator Hand Calculations Computational Complexity Advantages Disadvantages Simulation Results Distance-Based Pareto Genetic Algorithm Hand Calculations Computational Complexity Advantages 258

6 6.3.4 Disadvantages Simulation Results Strength Pareto Evolutionary Algorithm Clustering Algorithm Hand Calculations Computational Complexity Advantages Disadvantages Simulation Results Thermodynamical Genetic Algorithm Computational Complexity Advantages and Disadvantages Pareto-Archived Evolution Strategy Hand Calculations Computational Complexity Advantages Disadvantages Simulation Results Multi-Membered PAES Multi-Objective Messy Genetic Algorithm Original Single-Objective Messy GAs Modification for Multi-Objective Optimization Other Elitist Multi-Objective Evolutionary Algorithms Non-Dominated Sorting in Annealing GA Pareto Converging GA Multi-Objective Micro-GA Elitist MOEA with Coevolutionary Sharing Summary 285 Exercise Problems Constrained Multi-Objective Evolutionary Algorithms An Example Problem Ignoring Infeasible Solutions Penalty Function Approach Simulation Results Jimenez-Verdegay-Gomez-Skarmeta's Method Hand Calculations Advantages Disadvantages Simulation Results Constrained Tournament Method Constrained Tournament Selection Operator Hand Calculations 305 xi

7 xii CONTENTS Advantages and Disadvantages Simulation Results Ray-Tai-Seow's Method Hand Calculations Computational Complexity Advantages Disadvantages Simulation Results Summary 312 Exercise Problems Salient Issues of Multi-Objective Evolutionary Algorithms Illustrative Representation of Non-Dominated Solutions Scatter-Plot Matrix Method Value Path Method Bar Chart Method Star Coordinate Method Visual Method Performance Metrics Metrics Evaluating Closeness to the Pareto-Optimal Front Metrics Evaluating Diversity Among Non-Dominated Solutions Metrics Evaluating Closeness and Diversity Test Problem Design Difficulties in Converging to the Pareto-Optimal Front Difficulties in Maintaining Diverse Pareto-Optimal Solutions Tunable Two-Objective Optimization Problems Test Problems with More Than Two Objectives Test Problems for Constrained Optimization Comparison of Multi-Objective Evolutionary Algorithms Zitzler, Deb and Thiele's Study Veldhuizen's Study Knowles and Corne's Study Deb, Agrawal, Pratap and Meyarivan's Study Constrained Optimization Studies Objective Versus Decision-Space Niching Searching for Preferred Solutions Post-Optimal Techniques Optimization-Level Techniques Exploiting Multi-Objective Evolutionary Optimization Constrained Single-Objective Optimization Goal Programming Using Multi-Objective Optimization Scaling Issues Non-Dominated Solutions in a Population 416

8 CONTENTS xiii Population Sizing Convergence Issues Convergent MOEAs An MOEA with Spread Controlling Elitism Controlled Elitism in NSGA-II Multi-Objective Scheduling Algorithms Random-Weight Based Genetic Local Search Multi-Objective Genetic Local Search NSGA and Elitist NSGA (ENGA) Summary 438 Exercise Problems Applications of Multi-Objective Evolutionary Algorithms An Overview of Different Applications Mechanical Component Design Two-Bar Truss Design Gear Train Design Spring Design Truss-Structure Design A Combined Optimization Approach Microwave Absorber Design Low-Thrust Spacecraft Trajectory Optimization A Hybrid MOEA for Engineering Shape Design Better Convergence Reducing the Size of the Non-Dominated Set Optimal Shape Design Hybrid MOEAs Summary Epilogue 481 References 489 Index 509

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department ofmechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms Multi-Objective Evolutionary Algorithms Kalyanmoy Deb a Kanpur Genetic Algorithm Laboratory (KanGAL) Indian Institute o Technology Kanpur Kanpur, Pin 0806 INDIA deb@iitk.ac.in http://www.iitk.ac.in/kangal/deb.html

More information

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Kalyanmoy Deb, Amrit Pratap, and Subrajyoti Moitra Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute

More information

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague.

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague. Evolutionary Algorithms: Lecture 4 Jiří Kubaĺık Department of Cybernetics, CTU Prague http://labe.felk.cvut.cz/~posik/xe33scp/ pmulti-objective Optimization :: Many real-world problems involve multiple

More information

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Kalyanmoy Deb, Amrit Pratap, and Subrajyoti Moitra Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute

More information

Multi-objective Optimization

Multi-objective Optimization Jugal K. Kalita Single vs. Single vs. Single Objective Optimization: When an optimization problem involves only one objective function, the task of finding the optimal solution is called single-objective

More information

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Hisao Ishibuchi Graduate School of Engineering Osaka Prefecture University Sakai, Osaka 599-853,

More information

Multi-objective Optimization

Multi-objective Optimization Some introductory figures from : Deb Kalyanmoy, Multi-Objective Optimization using Evolutionary Algorithms, Wiley 2001 Multi-objective Optimization Implementation of Constrained GA Based on NSGA-II Optimization

More information

EVOLUTIONARY algorithms (EAs) are a class of

EVOLUTIONARY algorithms (EAs) are a class of An Investigation on Evolutionary Gradient Search for Multi-objective Optimization C. K. Goh, Y. S. Ong and K. C. Tan Abstract Evolutionary gradient search is a hybrid algorithm that exploits the complementary

More information

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems Repair and Repair in EMO Algorithms for Multiobjective 0/ Knapsack Problems Shiori Kaige, Kaname Narukawa, and Hisao Ishibuchi Department of Industrial Engineering, Osaka Prefecture University, - Gakuen-cho,

More information

NCGA : Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems

NCGA : Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems : Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems Shinya Watanabe Graduate School of Engineering, Doshisha University 1-3 Tatara Miyakodani,Kyo-tanabe, Kyoto, 10-031,

More information

Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts

Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts IEEE Symposium Series on Computational Intelligence Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts Heiner Zille Institute of Knowledge and Language Engineering University of Magdeburg, Germany

More information

SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2

SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 Mifa Kim 1, Tomoyuki Hiroyasu 2, Mitsunori Miki 2, and Shinya Watanabe 3 1 Graduate School, Department of Knowledge Engineering

More information

Evolutionary multi-objective algorithm design issues

Evolutionary multi-objective algorithm design issues Evolutionary multi-objective algorithm design issues Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical Information Technology Karthik.sindhya@jyu.fi

More information

An Evolutionary Multi-Objective Crowding Algorithm (EMOCA): Benchmark Test Function Results

An Evolutionary Multi-Objective Crowding Algorithm (EMOCA): Benchmark Test Function Results Syracuse University SURFACE Electrical Engineering and Computer Science College of Engineering and Computer Science -0-005 An Evolutionary Multi-Objective Crowding Algorithm (EMOCA): Benchmark Test Function

More information

A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II

A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan Kanpur Genetic Algorithms Laboratory (KanGAL)

More information

Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls

Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls Florian Siegmund, Amos H.C. Ng Virtual Systems Research Center University of Skövde P.O. 408, 541 48 Skövde,

More information

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms H. Ishibuchi, T. Doi, and Y. Nojima, Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms, Lecture Notes in Computer Science 4193: Parallel Problem Solving

More information

Recombination of Similar Parents in EMO Algorithms

Recombination of Similar Parents in EMO Algorithms H. Ishibuchi and K. Narukawa, Recombination of parents in EMO algorithms, Lecture Notes in Computer Science 341: Evolutionary Multi-Criterion Optimization, pp. 265-279, Springer, Berlin, March 25. (Proc.

More information

A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization

A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization Hisao Ishibuchi and Youhei Shibata Department of Industrial Engineering, Osaka Prefecture University, - Gakuen-cho, Sakai,

More information

Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm

Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm Ankur Sinha and Kalyanmoy Deb Helsinki School of Economics, PO Box, FIN-, Helsinki, Finland (e-mail: ankur.sinha@hse.fi,

More information

Lecture Set 1B. S.D. Sudhoff Spring 2010

Lecture Set 1B. S.D. Sudhoff Spring 2010 Lecture Set 1B More Basic Tools S.D. Sudhoff Spring 2010 1 Outline Time Domain Simulation (ECE546, MA514) Basic Methods for Time Domain Simulation MATLAB ACSL Single and Multi-Objective Optimization (ECE580)

More information

An Improved Multi-Objective Evolutionary Algorithm with Adaptable Parameters

An Improved Multi-Objective Evolutionary Algorithm with Adaptable Parameters Nova Southeastern University NSUWorks CEC Theses and Dissertations College of Engineering and Computing 26 An Improved Multi-Objective Evolutionary Algorithm with Adaptable Parameters Khoa Duc Tran Nova

More information

Overview of NSGA-II for Optimizing Machining Process Parameters

Overview of NSGA-II for Optimizing Machining Process Parameters Available online at www.sciencedirect.com Procedia Engineering 15 (2011 ) 3978 3983 Overview of NSGA-II for Optimizing Machining Process Parameters Yusliza Yusoff *, Mohd Salihin Ngadiman, Azlan Mohd Zain

More information

Multi-Objective Memetic Algorithm using Pattern Search Filter Methods

Multi-Objective Memetic Algorithm using Pattern Search Filter Methods Multi-Objective Memetic Algorithm using Pattern Search Filter Methods F. Mendes V. Sousa M.F.P. Costa A. Gaspar-Cunha IPC/I3N - Institute of Polymers and Composites, University of Minho Guimarães, Portugal

More information

Investigating the Effect of Parallelism in Decomposition Based Evolutionary Many-Objective Optimization Algorithms

Investigating the Effect of Parallelism in Decomposition Based Evolutionary Many-Objective Optimization Algorithms Investigating the Effect of Parallelism in Decomposition Based Evolutionary Many-Objective Optimization Algorithms Lei Chen 1,2, Kalyanmoy Deb 2, and Hai-Lin Liu 1 1 Guangdong University of Technology,

More information

PERFORMANCE SCALING OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS. Vineet Khare

PERFORMANCE SCALING OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS. Vineet Khare PERFORMANCE SCALING OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS Vineet Khare School of Computer Science The University of Birmingham Edgbaston, Birmingham B15 2TT, U.K. msc39vxk@cs.bham.ac.uk Project Supervisors

More information

STUDY OF MULTI-OBJECTIVE OPTIMIZATION AND ITS IMPLEMENTATION USING NSGA-II

STUDY OF MULTI-OBJECTIVE OPTIMIZATION AND ITS IMPLEMENTATION USING NSGA-II STUDY OF MULTI-OBJECTIVE OPTIMIZATION AND ITS IMPLEMENTATION USING NSGA-II A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology in Electrical Engineering.

More information

Evolutionary Multi-Objective Optimization Without Additional Parameters

Evolutionary Multi-Objective Optimization Without Additional Parameters Evolutionary Multi-Objective Optimization Without Additional Parameters Kalyanmoy Deb Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur, PIN 8, India Email: deb@iitk.ac.in

More information

DCMOGADES: Distributed Cooperation model of Multi-Objective Genetic Algorithm with Distributed Scheme

DCMOGADES: Distributed Cooperation model of Multi-Objective Genetic Algorithm with Distributed Scheme : Distributed Cooperation model of Multi-Objective Genetic Algorithm with Distributed Scheme Tamaki Okuda, Tomoyuki HIROYASU, Mitsunori Miki, Jiro Kamiura Shinaya Watanabe Department of Knowledge Engineering,

More information

Balancing Survival of Feasible and Infeasible Solutions in Evolutionary Optimization Algorithms

Balancing Survival of Feasible and Infeasible Solutions in Evolutionary Optimization Algorithms Balancing Survival of Feasible and Infeasible Solutions in Evolutionary Optimization Algorithms Zhichao Lu,, Kalyanmoy Deb, and Hemant Singh Electrical and Computer Engineering Michigan State University,

More information

Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm

Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm Nasreddine Hallam, Graham Kendall, and Peter Blanchfield School of Computer Science and IT, The Univeristy

More information

Multi-objective Optimization Algorithm based on Magnetotactic Bacterium

Multi-objective Optimization Algorithm based on Magnetotactic Bacterium Vol.78 (MulGrab 24), pp.6-64 http://dx.doi.org/.4257/astl.24.78. Multi-obective Optimization Algorithm based on Magnetotactic Bacterium Zhidan Xu Institute of Basic Science, Harbin University of Commerce,

More information

Finding Sets of Non-Dominated Solutions with High Spread and Well-Balanced Distribution using Generalized Strength Pareto Evolutionary Algorithm

Finding Sets of Non-Dominated Solutions with High Spread and Well-Balanced Distribution using Generalized Strength Pareto Evolutionary Algorithm 16th World Congress of the International Fuzzy Systems Association (IFSA) 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) Finding Sets of Non-Dominated Solutions with High

More information

Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems

Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems Saku Kukkonen and Kalyanmoy Deb Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute

More information

Improved S-CDAS using Crossover Controlling the Number of Crossed Genes for Many-objective Optimization

Improved S-CDAS using Crossover Controlling the Number of Crossed Genes for Many-objective Optimization Improved S-CDAS using Crossover Controlling the Number of Crossed Genes for Many-objective Optimization Hiroyuki Sato Faculty of Informatics and Engineering, The University of Electro-Communications -5-

More information

An Experimental Multi-Objective Study of the SVM Model Selection problem

An Experimental Multi-Objective Study of the SVM Model Selection problem An Experimental Multi-Objective Study of the SVM Model Selection problem Giuseppe Narzisi Courant Institute of Mathematical Sciences New York, NY 10012, USA narzisi@nyu.edu Abstract. Support Vector machines

More information

Multi-objective optimization using Trigonometric mutation multi-objective differential evolution algorithm

Multi-objective optimization using Trigonometric mutation multi-objective differential evolution algorithm Multi-objective optimization using Trigonometric mutation multi-objective differential evolution algorithm Ashish M Gujarathi a, Ankita Lohumi, Mansi Mishra, Digvijay Sharma, B. V. Babu b* a Lecturer,

More information

DEVELOPMENT OF NEW MATHEMATICAL METHODS FOR POST-PARETO OPTIMALITY. Program in Computational Science

DEVELOPMENT OF NEW MATHEMATICAL METHODS FOR POST-PARETO OPTIMALITY. Program in Computational Science DEVELOPMENT OF NEW MATHEMATICAL METHODS FOR POST-PARETO OPTIMALITY VICTOR M. CARRILLO Program in Computational Science APPROVED: Heidi Taboada, Ph.D., Chair Jose F. Espiritu, Ph.D., Ph.D. Salvador Hernandez.,

More information

Dynamic Uniform Scaling for Multiobjective Genetic Algorithms

Dynamic Uniform Scaling for Multiobjective Genetic Algorithms Dynamic Uniform Scaling for Multiobjective Genetic Algorithms Gerulf K. M. Pedersen 1 and David E. Goldberg 2 1 Aalborg University, Department of Control Engineering, Fredrik Bajers Vej 7, DK-922 Aalborg

More information

Part II. Computational Intelligence Algorithms

Part II. Computational Intelligence Algorithms Part II Computational Intelligence Algorithms 126 Chapter 5 Population-based Single-objective Algorithms One bee makes no swarm. French proverb This chapter provides an overview of two CI algorithms that

More information

A Domain-Specific Crossover and a Helper Objective for Generating Minimum Weight Compliant Mechanisms

A Domain-Specific Crossover and a Helper Objective for Generating Minimum Weight Compliant Mechanisms A Domain-Specific Crossover and a Helper Objective for Generating Minimum Weight Compliant Mechanisms Deepak Sharma Kalyanmoy Deb N. N. Kishore KanGAL Report Number K28 Indian Institute of Technology Kanpur

More information

Performance Assessment of the Hybrid Archive-based Micro Genetic Algorithm (AMGA) on the CEC09 Test Problems

Performance Assessment of the Hybrid Archive-based Micro Genetic Algorithm (AMGA) on the CEC09 Test Problems Perormance Assessment o the Hybrid Archive-based Micro Genetic Algorithm (AMGA) on the CEC9 Test Problems Santosh Tiwari, Georges Fadel, Patrick Koch, and Kalyanmoy Deb 3 Department o Mechanical Engineering,

More information

An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design

An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design Engineering Optimization Vol. 39, No. 1, January 2007, 49 68 An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design M. JANGA REDDY and D. NAGESH KUMAR* Department

More information

Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms

Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms Kalyanmoy Deb and Ankur Sinha Department of Mechanical Engineering Indian Institute of Technology Kanpur PIN 2816, India

More information

Two Heuristic Operations to Improve the Diversity of Two-objective Pareto Solutions

Two Heuristic Operations to Improve the Diversity of Two-objective Pareto Solutions Two Heuristic Operations to Improve the Diversity of Two-objective Pareto Solutions Rinku Dewri and Darrell Whitley Computer Science, Colorado State University Fort Collins, CO 80524 {rinku,whitley}@cs.colostate.edu

More information

Approximation Model Guided Selection for Evolutionary Multiobjective Optimization

Approximation Model Guided Selection for Evolutionary Multiobjective Optimization Approximation Model Guided Selection for Evolutionary Multiobjective Optimization Aimin Zhou 1, Qingfu Zhang 2, and Guixu Zhang 1 1 Each China Normal University, Shanghai, China 2 University of Essex,

More information

Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization

Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization Marco Laumanns laumanns@tik.ee.ethz.ch Department of Information Technology and Electrical Engineering, Swiss Federal Institute

More information

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Tony Maciejewski, Kyle Tarplee, Ryan Friese, and Howard Jay Siegel Department of Electrical and Computer Engineering Colorado

More information

Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design

Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design Matthew

More information

Development of Evolutionary Multi-Objective Optimization

Development of Evolutionary Multi-Objective Optimization A. Mießen Page 1 of 13 Development of Evolutionary Multi-Objective Optimization Andreas Mießen RWTH Aachen University AVT - Aachener Verfahrenstechnik Process Systems Engineering Turmstrasse 46 D - 52056

More information

Late Parallelization and Feedback Approaches for Distributed Computation of Evolutionary Multiobjective Optimization Algorithms

Late Parallelization and Feedback Approaches for Distributed Computation of Evolutionary Multiobjective Optimization Algorithms Late arallelization and Feedback Approaches for Distributed Computation of Evolutionary Multiobjective Optimization Algorithms O. Tolga Altinoz Department of Electrical and Electronics Engineering Ankara

More information

Multiobjective Prototype Optimization with Evolved Improvement Steps

Multiobjective Prototype Optimization with Evolved Improvement Steps Multiobjective Prototype Optimization with Evolved Improvement Steps Jiri Kubalik 1, Richard Mordinyi 2, and Stefan Biffl 3 1 Department of Cybernetics Czech Technical University in Prague Technicka 2,

More information

X/$ IEEE

X/$ IEEE IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 1, FEBRUARY 2008 41 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of Distribution Algorithm Qingfu Zhang, Senior Member, IEEE,

More information

DEMO: Differential Evolution for Multiobjective Optimization

DEMO: Differential Evolution for Multiobjective Optimization DEMO: Differential Evolution for Multiobjective Optimization Tea Robič and Bogdan Filipič Department of Intelligent Systems, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia tea.robic@ijs.si

More information

SPEA2: Improving the strength pareto evolutionary algorithm

SPEA2: Improving the strength pareto evolutionary algorithm Research Collection Working Paper SPEA2: Improving the strength pareto evolutionary algorithm Author(s): Zitzler, Eckart; Laumanns, Marco; Thiele, Lothar Publication Date: 2001 Permanent Link: https://doi.org/10.3929/ethz-a-004284029

More information

Reference Point Based Evolutionary Approach for Workflow Grid Scheduling

Reference Point Based Evolutionary Approach for Workflow Grid Scheduling Reference Point Based Evolutionary Approach for Workflow Grid Scheduling R. Garg and A. K. Singh Abstract Grid computing facilitates the users to consume the services over the network. In order to optimize

More information

I-MODE: An Interactive Multi-Objective Optimization and Decision-Making using Evolutionary Methods

I-MODE: An Interactive Multi-Objective Optimization and Decision-Making using Evolutionary Methods I-MODE: An Interactive Multi-Objective Optimization and Decision-Making using Evolutionary Methods Kalyanmoy Deb and Shamik Chaudhuri Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute of Technology,

More information

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem An Evolutionary Algorithm for the Multi-objective Shortest Path Problem Fangguo He Huan Qi Qiong Fan Institute of Systems Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

More information

GECCO 2007 Tutorial / Evolutionary Multiobjective Optimization. Eckart Zitzler ETH Zürich. weight = 750g profit = 5.

GECCO 2007 Tutorial / Evolutionary Multiobjective Optimization. Eckart Zitzler ETH Zürich. weight = 750g profit = 5. Tutorial / Evolutionary Multiobjective Optimization Tutorial on Evolutionary Multiobjective Optimization Introductory Example: The Knapsack Problem weight = 75g profit = 5 weight = 5g profit = 8 weight

More information

Indicator-Based Selection in Multiobjective Search

Indicator-Based Selection in Multiobjective Search Indicator-Based Selection in Multiobjective Search Eckart Zitzler and Simon Künzli Swiss Federal Institute of Technology Zurich Computer Engineering and Networks Laboratory (TIK) Gloriastrasse 35, CH 8092

More information

An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems

An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems Marcio H. Giacomoni Assistant Professor Civil and Environmental Engineering February 6 th 7 Zechman,

More information

An Efficient Constraint Handling Method for Genetic Algorithms

An Efficient Constraint Handling Method for Genetic Algorithms An Efficient Constraint Handling Method for Genetic Algorithms Kalyanmoy Deb Kanpur Genetic Algorithms Laboratory (KanGAL) Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur,

More information

A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences

A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences Upali K. Wickramasinghe and Xiaodong Li School of Computer Science and Information Technology, RMIT University,

More information

An Algorithm Based on Differential Evolution for Multi-Objective Problems

An Algorithm Based on Differential Evolution for Multi-Objective Problems International Journal of Computational Intelligence Research. ISSN 973-873 Vol., No.2 (25), pp. 5 69 c Research India Publications http://www.ijcir.info An Algorithm Based on Differential Evolution for

More information

The Multi-Objective Genetic Algorithm Based Techniques for Intrusion Detection

The Multi-Objective Genetic Algorithm Based Techniques for Intrusion Detection ISSN (Online): 2409-4285 www.ijcsse.org Page: 23-29 The Multi-Objective Genetic Algorithm Based Techniques for Intrusion Detection Gulshan Kumar Department of Computer Application, SBS State Technical

More information

International Journal of Computer Techniques - Volume 3 Issue 2, Mar-Apr 2016

International Journal of Computer Techniques - Volume 3 Issue 2, Mar-Apr 2016 RESEARCH ARTICLE International Journal of Computer Techniques - Volume 3 Issue 2, Mar-Apr 2016 OPEN ACCESS A Comprehensive Review on Multi-Objective Optimization Using Genetic Algorithms Amarbir Singh*

More information

CHAPTER 2 MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION

CHAPTER 2 MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION 19 CHAPTER 2 MULTI-OBJECTIE REACTIE POWER OPTIMIZATION 2.1 INTRODUCTION In this chapter, a fundamental knowledge of the Multi-Objective Optimization (MOO) problem and the methods to solve are presented.

More information

OPTIMIZATION EVOLUTIONARY ALGORITHMS. Biologically-Inspired and. Computer Intelligence. Wiley. Population-Based Approaches to.

OPTIMIZATION EVOLUTIONARY ALGORITHMS. Biologically-Inspired and. Computer Intelligence. Wiley. Population-Based Approaches to. EVOLUTIONARY OPTIMIZATION ALGORITHMS Biologically-Inspired and Population-Based Approaches to Computer Intelligence Dan Simon Cleveland State University Wiley DETAILED TABLE OF CONTENTS Acknowledgments

More information

Mechanical Component Design for Multiple Objectives Using Generalized Differential Evolution

Mechanical Component Design for Multiple Objectives Using Generalized Differential Evolution Mechanical Component Design for Multiple Objectives Using Generalized Differential Evolution Saku Kukkonen, Jouni Lampinen Department of Information Technology Lappeenranta University of Technology P.O.

More information

Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds REFERENCE POINT-BASED EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION FOR INDUSTRIAL

More information

Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows

Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows Abel Garcia-Najera and John A. Bullinaria School of Computer Science, University of Birmingham Edgbaston, Birmingham

More information

Adaptive Multi-objective Particle Swarm Optimization Algorithm

Adaptive Multi-objective Particle Swarm Optimization Algorithm Adaptive Multi-objective Particle Swarm Optimization Algorithm P. K. Tripathi, Sanghamitra Bandyopadhyay, Senior Member, IEEE and S. K. Pal, Fellow, IEEE Abstract In this article we describe a novel Particle

More information

NEW DECISION MAKER MODEL FOR MULTIOBJECTIVE OPTIMIZATION INTERACTIVE METHODS

NEW DECISION MAKER MODEL FOR MULTIOBJECTIVE OPTIMIZATION INTERACTIVE METHODS NEW DECISION MAKER MODEL FOR MULTIOBJECTIVE OPTIMIZATION INTERACTIVE METHODS Andrejs Zujevs 1, Janis Eiduks 2 1 Latvia University of Agriculture, Department of Computer Systems, Liela street 2, Jelgava,

More information

Assessing the Convergence Properties of NSGA-II for Direct Crashworthiness Optimization

Assessing the Convergence Properties of NSGA-II for Direct Crashworthiness Optimization 10 th International LS-DYNA Users Conference Opitmization (1) Assessing the Convergence Properties of NSGA-II for Direct Crashworthiness Optimization Guangye Li 1, Tushar Goel 2, Nielen Stander 2 1 IBM

More information

Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems

Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems Kalyanmoy Deb Kanpur Genetic Algorithms Laboratory (KanGAL) Department of Mechanical Engineering Indian Institute

More information

Discovering Knowledge Rules with Multi-Objective Evolutionary Computing

Discovering Knowledge Rules with Multi-Objective Evolutionary Computing 2010 Ninth International Conference on Machine Learning and Applications Discovering Knowledge Rules with Multi-Objective Evolutionary Computing Rafael Giusti, Gustavo E. A. P. A. Batista Instituto de

More information

Evolutionary Computation

Evolutionary Computation Evolutionary Computation Lecture 9 Mul+- Objec+ve Evolu+onary Algorithms 1 Multi-objective optimization problem: minimize F(X) = ( f 1 (x),..., f m (x)) The objective functions may be conflicting or incommensurable.

More information

MULTI-OBJECTIVE OPTIMIZATION

MULTI-OBJECTIVE OPTIMIZATION MULTI-OBJECTIVE OPTIMIZATION Introduction Many real-world problems require the simultaneous optimization of a number of objective functions. Some of these objectives may be in conflict. Example 1:optimal

More information

OPTIMIZATION METHODS. For more information visit: or send an to:

OPTIMIZATION METHODS. For more information visit:  or send an  to: OPTIMIZATION METHODS modefrontier is a registered product of ESTECO srl Copyright ESTECO srl 1999-2007 For more information visit: www.esteco.com or send an e-mail to: modefrontier@esteco.com NEOS Optimization

More information

Particle Swarm Optimization to Solve Optimization Problems

Particle Swarm Optimization to Solve Optimization Problems Particle Swarm Optimization to Solve Optimization Problems Gregorio Toscano-Pulido and Carlos A. Coello Coello Evolutionary Computation Group at CINVESTAV-IPN (EVOCINV) Electrical Eng. Department, Computer

More information

A Search Method with User s Preference Direction using Reference Lines

A Search Method with User s Preference Direction using Reference Lines A Search Method with User s Preference Direction using Reference Lines Tomohiro Yoshikawa Graduate School of Engineering, Nagoya University, Nagoya, Japan, {yoshikawa}@cse.nagoya-u.ac.jp Abstract Recently,

More information

International Conference on Computer Applications in Shipbuilding (ICCAS-2009) Shanghai, China Vol.2, pp

International Conference on Computer Applications in Shipbuilding (ICCAS-2009) Shanghai, China Vol.2, pp AUTOMATIC DESIGN FOR PIPE ARRANGEMENT CONSIDERING VALVE OPERATIONALITY H Kimura, Kyushu University, Japan S Iehira, Kyushu University, Japan SUMMARY We propose a novel evaluation method of valve operationality

More information

A Parameterless-Niching-Assisted Bi-objective Approach to Multimodal Optimization

A Parameterless-Niching-Assisted Bi-objective Approach to Multimodal Optimization A Parameterless-Niching-Assisted Bi-objective Approach to Multimodal Optimization Sunith Bandaru and Kalyanmoy Deb Kanpur Genetic Algorithms Laboratory Indian Institute of Technology Kanpur Kanpur 86,

More information

Multiobjective hboa, Clustering, and Scalability. Martin Pelikan Kumara Sastry David E. Goldberg. IlliGAL Report No February 2005

Multiobjective hboa, Clustering, and Scalability. Martin Pelikan Kumara Sastry David E. Goldberg. IlliGAL Report No February 2005 Multiobjective hboa, Clustering, and Scalability Martin Pelikan Kumara Sastry David E. Goldberg IlliGAL Report No. 2005005 February 2005 Illinois Genetic Algorithms Laboratory University of Illinois at

More information

Efficient Hybrid Multi-Objective Evolutionary Algorithm

Efficient Hybrid Multi-Objective Evolutionary Algorithm IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.3, March 2018 19 Efficient Hybrid Multi-Objective Evolutionary Algorithm Tareq Abed Mohammed,, Oguz BAYAT, Osman N UÇAN

More information

Towards an Estimation of Nadir Objective Vector Using Hybrid Evolutionary and Local Search Approaches

Towards an Estimation of Nadir Objective Vector Using Hybrid Evolutionary and Local Search Approaches Towards an Estimation of Nadir Objective Vector Using Hybrid Evolutionary and Local Search Approaches Kalyanmoy Deb, Kaisa Miettinen, and Shamik Chaudhuri KanGAL Report Number 279 Abstract Nadir objective

More information

Finding Knees in Multi-objective Optimization

Finding Knees in Multi-objective Optimization Finding Knees in Multi-objective Optimization Jürgen Branke 1, Kalyanmoy Deb 2, Henning Dierolf 1, and Matthias Osswald 1 1 Institute AIFB, University of Karlsruhe, Germany branke@aifb.uni-karlsruhe.de

More information

A Multi-objective Evolutionary Algorithm of Principal Curve Model Based on Clustering Analysis

A Multi-objective Evolutionary Algorithm of Principal Curve Model Based on Clustering Analysis A Multi-objective Evolutionary Algorithm of Principal Curve Model Based on Clustering Analysis Qiong Yuan1,2, Guangming Dai1,2* 1 School of Computer Science, China University of Geosciences, Wuhan 430074,

More information

On The Effects of Archiving, Elitism, And Density Based Selection in Evolutionary Multi-Objective Optimization

On The Effects of Archiving, Elitism, And Density Based Selection in Evolutionary Multi-Objective Optimization On The Effects of Archiving, Elitism, And Density Based Selection in Evolutionary Multi-Objective Optimization Marco Laumanns, Eckart Zitzler, and Lothar Thiele ETH Zürich, Institut TIK, CH 8092 Zürich,

More information

Critical Comparison of Multi-objective Optimization Methods: Genetic Algorithms versus Swarm Intelligence

Critical Comparison of Multi-objective Optimization Methods: Genetic Algorithms versus Swarm Intelligence RADIOENGINEERING, VOL. 9, NO., SEPTEMBER 9 Critical Comparison of Multi-objective Optimization Methods: Genetic Algorithms versus Swarm Intelligence Vladimír ŠEDĚNKA, Zbyněk RAIDA Dept. of Radio Electronics,

More information

Exploration of Pareto Frontier Using a Fuzzy Controlled Hybrid Line Search

Exploration of Pareto Frontier Using a Fuzzy Controlled Hybrid Line Search Seventh International Conference on Hybrid Intelligent Systems Exploration of Pareto Frontier Using a Fuzzy Controlled Hybrid Line Search Crina Grosan and Ajith Abraham Faculty of Information Technology,

More information

Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem

Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem Felix Streichert, Holger Ulmer, and Andreas Zell Center for Bioinformatics Tübingen (ZBIT), University of Tübingen,

More information

Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach

Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach Richard Allmendinger,XiaodongLi 2,andJürgen Branke University of Karlsruhe, Institute AIFB, Karlsruhe, Germany 2 RMIT University,

More information

Using Different Many-Objective Techniques in Particle Swarm Optimization for Many Objective Problems: An Empirical Study

Using Different Many-Objective Techniques in Particle Swarm Optimization for Many Objective Problems: An Empirical Study International Journal of Computer Information Systems and Industrial Management Applications ISSN 2150-7988 Volume 3 (2011) pp.096-107 MIR Labs, www.mirlabs.net/ijcisim/index.html Using Different Many-Objective

More information

Application of Genetic Algorithm in Multiobjective Optimization of an Indeterminate Structure with Discontinuous Space for Support Locations

Application of Genetic Algorithm in Multiobjective Optimization of an Indeterminate Structure with Discontinuous Space for Support Locations Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 8-2016 Application of Genetic Algorithm in Multiobjective Optimization of an Indeterminate Structure

More information

Comparing Algorithms, Representations and Operators for the Multi-Objective Knapsack Problem

Comparing Algorithms, Representations and Operators for the Multi-Objective Knapsack Problem Comparing s, Representations and Operators for the Multi-Objective Knapsack Problem Gualtiero Colombo School of Computer Science Cardiff University United Kingdom G.Colombo@cs.cardiff.ac.uk Christine L.

More information

A Review towards Evolutionary Multiobjective optimization Algorithms

A Review towards Evolutionary Multiobjective optimization Algorithms 191 A Review towards Evolutionary Multiobjective optimization Algorithms Mr. Sunny Sharma Assistant Professor, Department of Computer Science & Engineering, Guru Nanak Dev University, Amritsar, Punjab

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Australasian Conference on Robotics and Automation (ACRA), December -4, 009, Sydney, Australia Optimal Mission Path Planning (MPP) For An Air Sampling Unmanned Aerial System Luis Felipe Gonzalez School

More information

Multi-Objective Path Planning using Spline Representation

Multi-Objective Path Planning using Spline Representation Multi-Objective Path Planning using Spline Representation Faez Ahmed and Kalyanmoy Deb KanGAL Report Number Abstract Off-line point to point navigation to calculate feasible paths and optimize them for

More information