A Neural Network Model Of Insurance Customer Ratings

Size: px
Start display at page:

Download "A Neural Network Model Of Insurance Customer Ratings"

Transcription

1 A Neural Network Model Of Insurance Customer Ratings Jan Jantzen 1 Abstract Given a set of data on customers the engineering problem in this study is to model the data and classify customers into two classes. The data were split into a training set and a test set, and the training set was modelled by a multilayer perceptron network. The model classified 62 percent of the unseen test data correctly. Contents 1 Introduction 2 2 Method And Equipment 3 3 Results and discussion Discussion 6 4 Conclusions 7 1 Technical University of Denmark, Department of Automation, Bldg 326, DK-2800 Lyngby, DENMARK (project report), 16 Nov

2 1. Introduction The study concerns data from an insurance company, and the problem at hand can be characterised as a data mining problem. That is, given a fair amount of customer information, is it possible to extract a model of customer goodness (rating) from those data? If yes, the model could be used to predict the goodness of new customers, for instance. A neural network approach is one of several possible ways to attack such a problem, and there are many commercial software packages that can assist the designer in building the model. Neural network models are quite difficult to build, since there are many parameters to tune in order to get the best fit of the data. Alternative methods exist, for example within the fields of pattern recognition, computational intelligence, or soft computing. A new alternative is to use Dimac s patented classification algorithm ( which is simpler and faster than neural network training. The objective of this study is primarily to provide a reference for benchmarking of modelling approaches, in particular the Dimac classifier. The benchmark data consists of more than 50 features (columns) on each customer (rows) along with a binary classification into good / less good related to the historical indemnity paid to the policy holder. Similar problems exist in the literature. For example customer segmentation in a bank ( The bank created customer profiles for banking products such as telephone banking and home banking. The objective was to improve the direct marketing. The approach was to search for clusters or groups of typical product users using a Fuzzy-C-Means Algorithm. Several other financial applications exist, for example assessment of credit worthiness ( In this case another bank wished to enforce a consistent decision-making procedure in all branches of the bank, by means of a model rather than human decisions. There are many commercial tools for building and using neural networks, either alone or together with fuzzy logic tools; for an overview, see the database CITE (MIT, 1995) available free of charge from the Web ( Neural network computations are naturally expressed in matrix notation, and there are several toolboxes in the matrix language Matlab, for example the commercial neural network toolbox (Demuth & Beale, 1992), and a university developed toolbox for identification and control, downloadable from the World Wide Web (Nørgaard, NNSYSID with NNCTRL ). DataEngine is a software tool for data analysis combining fuzzy rules, fuzzy clustering, neural networks and fuzzy neural systems with mathematics, statistics and signal processing (MIT, 1997; It has a plug-in, FeatureSelector, which automatically selects the most relevant set of features for a given application. This study is somewhat different from the ones mentioned since it had to be completed in two man-days, so the focus is on the modelling aspect rather than the application aspect. The nature of the task is thus rather ordinary: to apply an established method to a set of given data. The task does not require knowledge of the insurance business, since the data features (the columns of the data) have symbolic names which make no sense to an outsider. Insight and skill are required, however, to build the neural network model. The work plan was the following. 2

3 Input layer Hidden layer Output layer Figure 1: Fully connected multi-layer perceptron. Step 1. cleaning of data Step 2. feature selection Step 3. training Step 4. test The usual practice is to divide the data into a training set and a test set. The neural network is supposed to learn from the training data so that it can reproduce the classes in the test data. Inputs to the network are a subset of features, and output is a label for each unseen customer: good or less good. An error rate, a number, is produced to assess the performance of the classifier. 2. Method And Equipment A neural network is basically a model structure and an algorithm for fitting the model to a given set of data. The network uses a generic nonlinearity and allows all the parameters to be adjusted. In this manner it can deal with a wide range of nonlinearities. Learning is the procedure of training a neural network to represent a model of the data. For an introduction to networks, see the textbook by Haykin (1994), the overview article by Lippmann (1987), or the downloadable introduction by Jantzen (1997, The multilayer perceptron (MLP) network was chosen for the study. It has one or more hidden layers of neurons. The graph in Fig. 1 illustrates a multilayer network with one hidden layer, and fully connected, as every node in a layer is connected to all nodes in the next layer. A neuron is the fundamental processor of a neural network (Fig. 2). It has three basic elements: 1. A set of connecting links (or synapses ); each link carries a weight (or gain) w 0,w 1,w A summation (or adder) sums the input signals after they are multiplied by their respective weights. 3. An activation function f (x) limits the output of the neuron. Typically the output is limited to the interval [0, 1] or alternatively [ 1, 1]. 3

4 f(x) 1 w 0 1 Hard limiter w 1 w 2 + f(x) x (a) (b) Figure 2: Perceptron consisting of a neuron (a) with an offset w 0 and an activation function f (x), which is a hard limiter (b). The summation in the neuron also includes an offset w 0 for lowering or raising the net input to the activation function. Learning (training) is a matter of adjusting the weights in order to get the best fit of the input-output relationship in the training data. The MLP architecture is chosen here, because it is widely used and it is a standard textbook method. An MLP network can approximate functions and it can perform discrete classifications. It does require that the training data and the test data are similar; it cannot reproduce instances outside of the modelled region of the feature space. In other words: it can interpolate, not extrapolate. The software used is DataEngine with FeatureSelector. It is compiled software which makes it difficult for the user to include personal programs, but it is specifically developed for the type of problem at hand. 3. Results and discussion The given data are in a table containing an identification column (SE) and 52 features in the 53 first columns. Additionally, there is a class assignment column (GOD) in the remaining columns. The data are contained in a comma separated file (erhverv.csv)whichcanbe processed by a spreadsheet program (Microsoft Excel) and then imported into DataEngine. Cleaning of data There are further columns, including columns with textual information, but these columns are disregarded. There are 300 rows having a class assignment, the rest of the rows are without a class assignment in the raw data, and those rows are disregarded. All data within the feature space are numerical. There are, however, some practical problems and engineering choices have to be made. Many cells are empty. The MLP has no built-in mechanism for coping with missing data, so the data had to be cleaned or completed. The data are most likely contaminated with noise, and one can also assume that some of the data are faulty, resulting in outlier points 4

5 Parameter Value Errors 26 of 69 Neurons (input-hidden-output) Connections 7 Activation functions tanh Features V4, V10, V13, V14, V29_2, S31 Training epochs 1000 RMS test error Learning method backpropagation Strategy Cumulative (batch) Learning rate, hidden layer 0.1 Learning rate, output layer Table 1: Final results with no logical connection with the rest of the data. The training set was built from original data. Five columns (V30_1 to V30_5) were discovered to contain many empty cells, and those columns were deleted from the data. The remaining rows, having no empty cells, were then split into a training set and a test set, and all columns were standardised (scaled to a mean value of zero, standard deviation one). Feature selection In principle, the MLP can cope with as many features (inputs) as necessary, but in practice the training is sensitive to noise and outliers. The less features, the less noise, and the clearer becomes any functional relationships. Selection of a few and significant features, is thus an important, but difficult task. The Feature Selector produces a ranked list of combinations of good features. It does not necessarily find the best features, but it does provide a selection of good feature combinations, that the designer can test. For example, it has happened that one suggested set of features had a fairly strong correlation between two features, and leaving one of them out improved the classifier. In the final model six features were selected out of the 52 original features. Training The network has three layers: an input layer, one hidden layer, and an output layer. It is a small network and the training proceeds smoothly and relatively fast (Fig. 3). It learns the training data very well (bottom curve), while the reproduction of the test data results is difficult (middle curve). That indicates a weak functional relationship in the data. The training is stopped when the test error starts to increase. Test The final solution misclassified 26 rows out of 69 (38%) or, conversely, it classified 43 out of 69 (62%) correctly (TABLE 1). This number can be compared with the worst case: a random selection would result in 50 percent correct classifications, since there are only two classes. The result is thus 12 percent better than random. 5

6 Epoch RMS Training Error Max. Training Error RMS Test Error Max. Test Error Figure 3: Learning curve. After 1000 epochs the test error is more or less stable; further training is in vain. 3.1 Discussion The network has a total of 7 connection weights to adjust, and thus the ratio of weights to training examples is about 1:10, which is acceptable. The training produces slightly different results after retraining, due to the random initialisation of the weights; the result varies between 25 and 30 misclassifications. The learning method has been supplemented with the momentum and learning rate decay options, but it seemed that for a small network, a simple learning method works best. The network is remarkably simple; it has an input for each feature, one output to represent the two classes, and thus only one extra node. To interpret, the data are most likely noisy such that a larger network will learn the noise, spoiling the generalisation ability, and increase the test error. The result is less sensitive to the network parameters than to the choice of training data and test data. The strategy has been to avoid empty cells in the raw data. This is in order to facilitate the benchmarking of methods. For example, better classification rates can be achieved by filling the missing data according to some rule, but then one runs the risk of introducing an artificial bias in the data. To illustrate the sensitivity to the data, a simple swap of training and test data produced worse results. The sensitivity is explained by the presence of noise, again. If faulty data could be removed, and empty cells could be filled, it would improve the situation. It would probably also help to know what the features are and how they were derived. For example, it might be possible to combine two or more features into one, more significant indicator using expert knowledge. The major sensitivity item is the choice of features. A small set of features must be selected, and Feature Selector turned out to be a time saver in this respect. Ideally, many of Feature Selector s suggestions ought to be tried out in order to find a near optimal set, but only a few were tested due to the tight schedule. The feature selection is the major subproblem in a neural network approach. 6

7 4. Conclusions The objective was to provide a reference for benchmarking. The achieved solution is believed to be near-optimal, although better solutions are conceivable because of the lack of a systematic design approach. The training data and the test data can be used by other testers in order to make a fair comparison of approaches. The objective focused on neural networks, but other approaches may work better. Especially hybrid approaches, a combination of established approaches, should be tried if the goal is to find the best classifier. References Demuth, H. and Beale, M. (1992). Neural Network Toolbox: For Use with Matlab, The Math- Works, Inc, Natick, MA, USA. Haykin, S. (1994). Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, Inc., 866 Third Ave, New York, NY Lippmann, R. (1987). An introduction to computing with neural nets, IEEE ASSP Magazine pp Meier, W., Weber, R. and Zimmermann, H.-J. (1994). Fuzzy data analysis-methods and industrial applications, Fuzzy Sets and Systems 61: MIT (1995). CITE Literature and Products Database, MIT GmbH / ELITE, Promenade 9, D Aachen, Germany. MIT (1997). DataEngine: Part II, Tutorials, MIT GmbH, Promenade 9, D Aachen, Germany. Nørgaard,P.M.(n.d.a).NNCTRL Toolkit, Technical University of Denmark: Dept. of Automation, Nørgaard, P. M. (n.d.b). NNSYSID Toolbox, Technical University of Denmark: Dept. of Automation, 7

Climate Precipitation Prediction by Neural Network

Climate Precipitation Prediction by Neural Network Journal of Mathematics and System Science 5 (205) 207-23 doi: 0.7265/259-529/205.05.005 D DAVID PUBLISHING Juliana Aparecida Anochi, Haroldo Fraga de Campos Velho 2. Applied Computing Graduate Program,

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

Learning and Generalization in Single Layer Perceptrons

Learning and Generalization in Single Layer Perceptrons Learning and Generalization in Single Layer Perceptrons Neural Computation : Lecture 4 John A. Bullinaria, 2015 1. What Can Perceptrons do? 2. Decision Boundaries The Two Dimensional Case 3. Decision Boundaries

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,  ISSN Comparative study of fuzzy logic and neural network methods in modeling of simulated steady-state data M. Järvensivu and V. Kanninen Laboratory of Process Control, Department of Chemical Engineering, Helsinki

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

A Systematic Overview of Data Mining Algorithms

A Systematic Overview of Data Mining Algorithms A Systematic Overview of Data Mining Algorithms 1 Data Mining Algorithm A well-defined procedure that takes data as input and produces output as models or patterns well-defined: precisely encoded as a

More information

11/14/2010 Intelligent Systems and Soft Computing 1

11/14/2010 Intelligent Systems and Soft Computing 1 Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

A Systematic Overview of Data Mining Algorithms. Sargur Srihari University at Buffalo The State University of New York

A Systematic Overview of Data Mining Algorithms. Sargur Srihari University at Buffalo The State University of New York A Systematic Overview of Data Mining Algorithms Sargur Srihari University at Buffalo The State University of New York 1 Topics Data Mining Algorithm Definition Example of CART Classification Iris, Wine

More information

EE 589 INTRODUCTION TO ARTIFICIAL NETWORK REPORT OF THE TERM PROJECT REAL TIME ODOR RECOGNATION SYSTEM FATMA ÖZYURT SANCAR

EE 589 INTRODUCTION TO ARTIFICIAL NETWORK REPORT OF THE TERM PROJECT REAL TIME ODOR RECOGNATION SYSTEM FATMA ÖZYURT SANCAR EE 589 INTRODUCTION TO ARTIFICIAL NETWORK REPORT OF THE TERM PROJECT REAL TIME ODOR RECOGNATION SYSTEM FATMA ÖZYURT SANCAR 1.Introductıon. 2.Multi Layer Perception.. 3.Fuzzy C-Means Clustering.. 4.Real

More information

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset.

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset. Glossary of data mining terms: Accuracy Accuracy is an important factor in assessing the success of data mining. When applied to data, accuracy refers to the rate of correct values in the data. When applied

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

Data mining with Support Vector Machine

Data mining with Support Vector Machine Data mining with Support Vector Machine Ms. Arti Patle IES, IPS Academy Indore (M.P.) artipatle@gmail.com Mr. Deepak Singh Chouhan IES, IPS Academy Indore (M.P.) deepak.schouhan@yahoo.com Abstract: Machine

More information

Exercise: Training Simple MLP by Backpropagation. Using Netlab.

Exercise: Training Simple MLP by Backpropagation. Using Netlab. Exercise: Training Simple MLP by Backpropagation. Using Netlab. Petr Pošík December, 27 File list This document is an explanation text to the following script: demomlpklin.m script implementing the beckpropagation

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

Logical Rhythm - Class 3. August 27, 2018

Logical Rhythm - Class 3. August 27, 2018 Logical Rhythm - Class 3 August 27, 2018 In this Class Neural Networks (Intro To Deep Learning) Decision Trees Ensemble Methods(Random Forest) Hyperparameter Optimisation and Bias Variance Tradeoff Biological

More information

Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002

Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002 Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002 Introduction Neural networks are flexible nonlinear models that can be used for regression and classification

More information

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.3, May Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.3, May Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani LINK MINING PROCESS Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani Higher Colleges of Technology, United Arab Emirates ABSTRACT Many data mining and knowledge discovery methodologies and process models

More information

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples.

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples. Supervised Learning with Neural Networks We now look at how an agent might learn to solve a general problem by seeing examples. Aims: to present an outline of supervised learning as part of AI; to introduce

More information

Introduction to Data Mining and Data Analytics

Introduction to Data Mining and Data Analytics 1/28/2016 MIST.7060 Data Analytics 1 Introduction to Data Mining and Data Analytics What Are Data Mining and Data Analytics? Data mining is the process of discovering hidden patterns in data, where Patterns

More information

CHAPTER 8 COMPOUND CHARACTER RECOGNITION USING VARIOUS MODELS

CHAPTER 8 COMPOUND CHARACTER RECOGNITION USING VARIOUS MODELS CHAPTER 8 COMPOUND CHARACTER RECOGNITION USING VARIOUS MODELS 8.1 Introduction The recognition systems developed so far were for simple characters comprising of consonants and vowels. But there is one

More information

KINEMATIC ANALYSIS OF ADEPT VIPER USING NEURAL NETWORK

KINEMATIC ANALYSIS OF ADEPT VIPER USING NEURAL NETWORK Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, YMCA Institute of Engineering, Faridabad, Haryana., Dec 9-10, 2006. KINEMATIC ANALYSIS OF ADEPT VIPER USING NEURAL

More information

Establishing Virtual Private Network Bandwidth Requirement at the University of Wisconsin Foundation

Establishing Virtual Private Network Bandwidth Requirement at the University of Wisconsin Foundation Establishing Virtual Private Network Bandwidth Requirement at the University of Wisconsin Foundation by Joe Madden In conjunction with ECE 39 Introduction to Artificial Neural Networks and Fuzzy Systems

More information

7. Decision or classification trees

7. Decision or classification trees 7. Decision or classification trees Next we are going to consider a rather different approach from those presented so far to machine learning that use one of the most common and important data structure,

More information

Radial Basis Function Neural Network Classifier

Radial Basis Function Neural Network Classifier Recognition of Unconstrained Handwritten Numerals by a Radial Basis Function Neural Network Classifier Hwang, Young-Sup and Bang, Sung-Yang Department of Computer Science & Engineering Pohang University

More information

In this assignment, we investigated the use of neural networks for supervised classification

In this assignment, we investigated the use of neural networks for supervised classification Paul Couchman Fabien Imbault Ronan Tigreat Gorka Urchegui Tellechea Classification assignment (group 6) Image processing MSc Embedded Systems March 2003 Classification includes a broad range of decision-theoric

More information

Why MultiLayer Perceptron/Neural Network? Objective: Attributes:

Why MultiLayer Perceptron/Neural Network? Objective: Attributes: Why MultiLayer Perceptron/Neural Network? Neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are

More information

Module 4. Computer-Aided Design (CAD) systems

Module 4. Computer-Aided Design (CAD) systems Module 4. Computer-Aided Design (CAD) systems Nowadays the design of complex systems is unconceivable without computers. The fast computers, the sophisticated developing environments and the well elaborated

More information

Data Mining. Neural Networks

Data Mining. Neural Networks Data Mining Neural Networks Goals for this Unit Basic understanding of Neural Networks and how they work Ability to use Neural Networks to solve real problems Understand when neural networks may be most

More information

FACE RECOGNITION USING FUZZY NEURAL NETWORK

FACE RECOGNITION USING FUZZY NEURAL NETWORK FACE RECOGNITION USING FUZZY NEURAL NETWORK TADI.CHANDRASEKHAR Research Scholar, Dept. of ECE, GITAM University, Vishakapatnam, AndraPradesh Assoc. Prof., Dept. of. ECE, GIET Engineering College, Vishakapatnam,

More information

Intelligent Methods in Modelling and Simulation of Complex Systems

Intelligent Methods in Modelling and Simulation of Complex Systems SNE O V E R V I E W N OTE Intelligent Methods in Modelling and Simulation of Complex Systems Esko K. Juuso * Control Engineering Laboratory Department of Process and Environmental Engineering, P.O.Box

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

Artificial Neural Network based Curve Prediction

Artificial Neural Network based Curve Prediction Artificial Neural Network based Curve Prediction LECTURE COURSE: AUSGEWÄHLTE OPTIMIERUNGSVERFAHREN FÜR INGENIEURE SUPERVISOR: PROF. CHRISTIAN HAFNER STUDENTS: ANTHONY HSIAO, MICHAEL BOESCH Abstract We

More information

Linear Models. Lecture Outline: Numeric Prediction: Linear Regression. Linear Classification. The Perceptron. Support Vector Machines

Linear Models. Lecture Outline: Numeric Prediction: Linear Regression. Linear Classification. The Perceptron. Support Vector Machines Linear Models Lecture Outline: Numeric Prediction: Linear Regression Linear Classification The Perceptron Support Vector Machines Reading: Chapter 4.6 Witten and Frank, 2nd ed. Chapter 4 of Mitchell Solving

More information

The Mathematics Behind Neural Networks

The Mathematics Behind Neural Networks The Mathematics Behind Neural Networks Pattern Recognition and Machine Learning by Christopher M. Bishop Student: Shivam Agrawal Mentor: Nathaniel Monson Courtesy of xkcd.com The Black Box Training the

More information

Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification

Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification Robustness of Selective Desensitization Perceptron Against Irrelevant and Partially Relevant Features in Pattern Classification Tomohiro Tanno, Kazumasa Horie, Jun Izawa, and Masahiko Morita University

More information

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Exploratory Machine Learning studies for disruption prediction on DIII-D by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Presented at the 2 nd IAEA Technical Meeting on

More information

Character Recognition

Character Recognition Character Recognition 5.1 INTRODUCTION Recognition is one of the important steps in image processing. There are different methods such as Histogram method, Hough transformation, Neural computing approaches

More information

Visual object classification by sparse convolutional neural networks

Visual object classification by sparse convolutional neural networks Visual object classification by sparse convolutional neural networks Alexander Gepperth 1 1- Ruhr-Universität Bochum - Institute for Neural Dynamics Universitätsstraße 150, 44801 Bochum - Germany Abstract.

More information

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6)

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6) International Journals of Advanced Research in Computer Science and Software Engineering Research Article June 17 Artificial Neural Network in Classification A Comparison Dr. J. Jegathesh Amalraj * Assistant

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

COMPUTATIONAL INTELLIGENCE

COMPUTATIONAL INTELLIGENCE COMPUTATIONAL INTELLIGENCE Fundamentals Adrian Horzyk Preface Before we can proceed to discuss specific complex methods we have to introduce basic concepts, principles, and models of computational intelligence

More information

9. Lecture Neural Networks

9. Lecture Neural Networks Soft Control (AT 3, RMA) 9. Lecture Neural Networks Application in Automation Engineering Outline of the lecture 1. Introduction to Soft Control: definition and limitations, basics of "smart" systems 2.

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Keywords: ANN; network topology; bathymetric model; representability.

Keywords: ANN; network topology; bathymetric model; representability. Proceedings of ninth International Conference on Hydro-Science and Engineering (ICHE 2010), IIT Proceedings Madras, Chennai, of ICHE2010, India. IIT Madras, Aug 2-5,2010 DETERMINATION OF 2 NETWORK - 5

More information

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty)

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty) Supervised Learning (contd) Linear Separation Mausam (based on slides by UW-AI faculty) Images as Vectors Binary handwritten characters Treat an image as a highdimensional vector (e.g., by reading pixel

More information

Identifying Important Communications

Identifying Important Communications Identifying Important Communications Aaron Jaffey ajaffey@stanford.edu Akifumi Kobashi akobashi@stanford.edu Abstract As we move towards a society increasingly dependent on electronic communication, our

More information

A neural network that classifies glass either as window or non-window depending on the glass chemistry.

A neural network that classifies glass either as window or non-window depending on the glass chemistry. A neural network that classifies glass either as window or non-window depending on the glass chemistry. Djaber Maouche Department of Electrical Electronic Engineering Cukurova University Adana, Turkey

More information

Automatic basis selection for RBF networks using Stein s unbiased risk estimator

Automatic basis selection for RBF networks using Stein s unbiased risk estimator Automatic basis selection for RBF networks using Stein s unbiased risk estimator Ali Ghodsi School of omputer Science University of Waterloo University Avenue West NL G anada Email: aghodsib@cs.uwaterloo.ca

More information

Classification and Regression using Linear Networks, Multilayer Perceptrons and Radial Basis Functions

Classification and Regression using Linear Networks, Multilayer Perceptrons and Radial Basis Functions ENEE 739Q SPRING 2002 COURSE ASSIGNMENT 2 REPORT 1 Classification and Regression using Linear Networks, Multilayer Perceptrons and Radial Basis Functions Vikas Chandrakant Raykar Abstract The aim of the

More information

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey.

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey. Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism)

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism) Artificial Neural Networks Analogy to biological neural systems, the most robust learning systems we know. Attempt to: Understand natural biological systems through computational modeling. Model intelligent

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Classification using Weka (Brain, Computation, and Neural Learning)

Classification using Weka (Brain, Computation, and Neural Learning) LOGO Classification using Weka (Brain, Computation, and Neural Learning) Jung-Woo Ha Agenda Classification General Concept Terminology Introduction to Weka Classification practice with Weka Problems: Pima

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Neural Networks Classifier Introduction INPUT: classification data, i.e. it contains an classification (class) attribute. WE also say that the class

More information

This leads to our algorithm which is outlined in Section III, along with a tabular summary of it's performance on several benchmarks. The last section

This leads to our algorithm which is outlined in Section III, along with a tabular summary of it's performance on several benchmarks. The last section An Algorithm for Incremental Construction of Feedforward Networks of Threshold Units with Real Valued Inputs Dhananjay S. Phatak Electrical Engineering Department State University of New York, Binghamton,

More information

Simulation of Back Propagation Neural Network for Iris Flower Classification

Simulation of Back Propagation Neural Network for Iris Flower Classification American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-1, pp-200-205 www.ajer.org Research Paper Open Access Simulation of Back Propagation Neural Network

More information

Exploring Econometric Model Selection Using Sensitivity Analysis

Exploring Econometric Model Selection Using Sensitivity Analysis Exploring Econometric Model Selection Using Sensitivity Analysis William Becker Paolo Paruolo Andrea Saltelli Nice, 2 nd July 2013 Outline What is the problem we are addressing? Past approaches Hoover

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

ECLT 5810 Clustering

ECLT 5810 Clustering ECLT 5810 Clustering What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis Grouping

More information

ALGORITHMS FOR INITIALIZATION OF NEURAL NETWORK WEIGHTS

ALGORITHMS FOR INITIALIZATION OF NEURAL NETWORK WEIGHTS ALGORITHMS FOR INITIALIZATION OF NEURAL NETWORK WEIGHTS A. Pavelka and A. Procházka Institute of Chemical Technology, Department of Computing and Control Engineering Abstract The paper is devoted to the

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Decision Tree Example Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short} Class: Country = {Gromland, Polvia} CS4375 --- Fall 2018 a

More information

April 3, 2012 T.C. Havens

April 3, 2012 T.C. Havens April 3, 2012 T.C. Havens Different training parameters MLP with different weights, number of layers/nodes, etc. Controls instability of classifiers (local minima) Similar strategies can be used to generate

More information

Traffic Signs Recognition using HP and HOG Descriptors Combined to MLP and SVM Classifiers

Traffic Signs Recognition using HP and HOG Descriptors Combined to MLP and SVM Classifiers Traffic Signs Recognition using HP and HOG Descriptors Combined to MLP and SVM Classifiers A. Salhi, B. Minaoui, M. Fakir, H. Chakib, H. Grimech Faculty of science and Technology Sultan Moulay Slimane

More information

Basic Data Mining Technique

Basic Data Mining Technique Basic Data Mining Technique What is classification? What is prediction? Supervised and Unsupervised Learning Decision trees Association rule K-nearest neighbor classifier Case-based reasoning Genetic algorithm

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 20: 10/12/2015 Data Mining: Concepts and Techniques (3 rd ed.) Chapter

More information

Hybrid Feature Selection for Modeling Intrusion Detection Systems

Hybrid Feature Selection for Modeling Intrusion Detection Systems Hybrid Feature Selection for Modeling Intrusion Detection Systems Srilatha Chebrolu, Ajith Abraham and Johnson P Thomas Department of Computer Science, Oklahoma State University, USA ajith.abraham@ieee.org,

More information

MLPQNA-LEMON Multi Layer Perceptron neural network trained by Quasi Newton or Levenberg-Marquardt optimization algorithms

MLPQNA-LEMON Multi Layer Perceptron neural network trained by Quasi Newton or Levenberg-Marquardt optimization algorithms MLPQNA-LEMON Multi Layer Perceptron neural network trained by Quasi Newton or Levenberg-Marquardt optimization algorithms 1 Introduction In supervised Machine Learning (ML) we have a set of data points

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer Model Assessment and Selection Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Model Training data Testing data Model Testing error rate Training error

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

Notes on Multilayer, Feedforward Neural Networks

Notes on Multilayer, Feedforward Neural Networks Notes on Multilayer, Feedforward Neural Networks CS425/528: Machine Learning Fall 2012 Prepared by: Lynne E. Parker [Material in these notes was gleaned from various sources, including E. Alpaydin s book

More information

Performance Analysis of Data Mining Classification Techniques

Performance Analysis of Data Mining Classification Techniques Performance Analysis of Data Mining Classification Techniques Tejas Mehta 1, Dr. Dhaval Kathiriya 2 Ph.D. Student, School of Computer Science, Dr. Babasaheb Ambedkar Open University, Gujarat, India 1 Principal

More information

Cse634 DATA MINING TEST REVIEW. Professor Anita Wasilewska Computer Science Department Stony Brook University

Cse634 DATA MINING TEST REVIEW. Professor Anita Wasilewska Computer Science Department Stony Brook University Cse634 DATA MINING TEST REVIEW Professor Anita Wasilewska Computer Science Department Stony Brook University Preprocessing stage Preprocessing: includes all the operations that have to be performed before

More information

Tanagra Tutorial. Determining the right number of neurons and layers in a multilayer perceptron.

Tanagra Tutorial. Determining the right number of neurons and layers in a multilayer perceptron. 1 Introduction Determining the right number of neurons and layers in a multilayer perceptron. At first glance, artificial neural networks seem mysterious. The references I read often spoke about biological

More information

Classification with Diffuse or Incomplete Information

Classification with Diffuse or Incomplete Information Classification with Diffuse or Incomplete Information AMAURY CABALLERO, KANG YEN Florida International University Abstract. In many different fields like finance, business, pattern recognition, communication

More information

MULTI-FINGER PENETRATION RATE AND ROC VARIABILITY FOR AUTOMATIC FINGERPRINT IDENTIFICATION SYSTEMS

MULTI-FINGER PENETRATION RATE AND ROC VARIABILITY FOR AUTOMATIC FINGERPRINT IDENTIFICATION SYSTEMS MULTI-FINGER PENETRATION RATE AND ROC VARIABILITY FOR AUTOMATIC FINGERPRINT IDENTIFICATION SYSTEMS I. Introduction James L. Wayman, Director U.S. National Biometric Test Center College of Engineering San

More information

CS 4510/9010 Applied Machine Learning. Neural Nets. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Neural Nets. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Neural Nets Paula Matuszek Fall 2016 Neural Nets, the very short version 2 A neural net consists of layers of nodes, or neurons, each of which has an activation

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Combined Weak Classifiers

Combined Weak Classifiers Combined Weak Classifiers Chuanyi Ji and Sheng Ma Department of Electrical, Computer and System Engineering Rensselaer Polytechnic Institute, Troy, NY 12180 chuanyi@ecse.rpi.edu, shengm@ecse.rpi.edu Abstract

More information

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N.

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N. ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N. Dartmouth, MA USA Abstract: The significant progress in ultrasonic NDE systems has now

More information

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation Learning Learning agents Inductive learning Different Learning Scenarios Evaluation Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil Material from Russell & Norvig, chapters

More information

DESIGN AND EVALUATION OF MACHINE LEARNING MODELS WITH STATISTICAL FEATURES

DESIGN AND EVALUATION OF MACHINE LEARNING MODELS WITH STATISTICAL FEATURES EXPERIMENTAL WORK PART I CHAPTER 6 DESIGN AND EVALUATION OF MACHINE LEARNING MODELS WITH STATISTICAL FEATURES The evaluation of models built using statistical in conjunction with various feature subset

More information

IMPLEMENTATION OF RBF TYPE NETWORKS BY SIGMOIDAL FEEDFORWARD NEURAL NETWORKS

IMPLEMENTATION OF RBF TYPE NETWORKS BY SIGMOIDAL FEEDFORWARD NEURAL NETWORKS IMPLEMENTATION OF RBF TYPE NETWORKS BY SIGMOIDAL FEEDFORWARD NEURAL NETWORKS BOGDAN M.WILAMOWSKI University of Wyoming RICHARD C. JAEGER Auburn University ABSTRACT: It is shown that by introducing special

More information

An Integer Recurrent Artificial Neural Network for Classifying Feature Vectors

An Integer Recurrent Artificial Neural Network for Classifying Feature Vectors An Integer Recurrent Artificial Neural Network for Classifying Feature Vectors Roelof K Brouwer PEng, PhD University College of the Cariboo, Canada Abstract: The main contribution of this report is the

More information

Artificial Neural Network Evolutionary Algorithm (ANNEVA) Abstract

Artificial Neural Network Evolutionary Algorithm (ANNEVA) Abstract Artificial Neural Network Evolutionary Algorithm (ANNEVA) Tyler Haugen Dr. Jeff McGough Math and Computer Science Department South Dakota School of Mines and Technology Rapid City, SD 57701 tyler.haugen@mines.sdsmt.edu

More information

Enterprise Miner Tutorial Notes 2 1

Enterprise Miner Tutorial Notes 2 1 Enterprise Miner Tutorial Notes 2 1 ECT7110 E-Commerce Data Mining Techniques Tutorial 2 How to Join Table in Enterprise Miner e.g. we need to join the following two tables: Join1 Join 2 ID Name Gender

More information

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why?

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why? Data Mining Deep Learning Deep Learning provided breakthrough results in speech recognition and image classification. Why? Because Speech recognition and image classification are two basic examples of

More information

Neural Nets. General Model Building

Neural Nets. General Model Building Neural Nets To give you an idea of how new this material is, let s do a little history lesson. The origins of neural nets are typically dated back to the early 1940 s and work by two physiologists, McCulloch

More information

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999 1271 Inverting Feedforward Neural Networks Using Linear and Nonlinear Programming Bao-Liang Lu, Member, IEEE, Hajime Kita, and Yoshikazu

More information

Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network

Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 11, November 2014,

More information

Transactions on Information and Communications Technologies vol WIT Press, ISSN

Transactions on Information and Communications Technologies vol WIT Press,   ISSN A comparison of methods for customer classification Maria Celia S.Lopes, Myrian C.A.Costa & Nelson F.F.Ebecken COPPE/Federal University ofrio de Janeiro Caixa Postal 68506 CEP 21945-970 Rio de Janeiro

More information

Time Series prediction with Feed-Forward Neural Networks -A Beginners Guide and Tutorial for Neuroph. Laura E. Carter-Greaves

Time Series prediction with Feed-Forward Neural Networks -A Beginners Guide and Tutorial for Neuroph. Laura E. Carter-Greaves http://neuroph.sourceforge.net 1 Introduction Time Series prediction with Feed-Forward Neural Networks -A Beginners Guide and Tutorial for Neuroph Laura E. Carter-Greaves Neural networks have been applied

More information

Character Recognition Using Convolutional Neural Networks

Character Recognition Using Convolutional Neural Networks Character Recognition Using Convolutional Neural Networks David Bouchain Seminar Statistical Learning Theory University of Ulm, Germany Institute for Neural Information Processing Winter 2006/2007 Abstract

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

Perceptron-Based Oblique Tree (P-BOT)

Perceptron-Based Oblique Tree (P-BOT) Perceptron-Based Oblique Tree (P-BOT) Ben Axelrod Stephen Campos John Envarli G.I.T. G.I.T. G.I.T. baxelrod@cc.gatech sjcampos@cc.gatech envarli@cc.gatech Abstract Decision trees are simple and fast data

More information

Neural Networks Laboratory EE 329 A

Neural Networks Laboratory EE 329 A Neural Networks Laboratory EE 329 A Introduction: Artificial Neural Networks (ANN) are widely used to approximate complex systems that are difficult to model using conventional modeling techniques such

More information

Detecting Spam with Artificial Neural Networks

Detecting Spam with Artificial Neural Networks Detecting Spam with Artificial Neural Networks Andrew Edstrom University of Wisconsin - Madison Abstract This is my final project for CS 539. In this project, I demonstrate the suitability of neural networks

More information

ECLT 5810 Clustering

ECLT 5810 Clustering ECLT 5810 Clustering What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis Grouping

More information