Sparse LU Factorization for Parallel Circuit Simulation on GPUs

Size: px
Start display at page:

Download "Sparse LU Factorization for Parallel Circuit Simulation on GPUs"

Transcription

1 Department of Electronic Engineering, Tsinghua University Sparse LU Factorization for Parallel Circuit Simulation on GPUs Ling Ren, Xiaoming Chen, Yu Wang, Chenxi Zhang, Huazhong Yang Nano-scale Integrated Circuit and System Lab., Department of Electronic Engineering, Tsinghua University Nano-scale Integrated Circuit and System Lab. 1

2 Motivation Parallel SPICE simulator bottleneck 2

3 Related works Dense LU [Volkov2008, Tomov2010] Very efficient on GPUs (850 Gflop/s) Sparse LU SuperLU and Pardiso: Supernode (dense blocks) [Christen2007] dense blocks on GPU UMFPACK, MUMPS, WSMP: multifrontal No dense blocks in extremely sparse matrices KLU, for circuit matrices, without Supernode G/P left-looking algorithm [G/P 1988] Sequential version only 3

4 Algorithm left-looking Each column (k) is sequentially updated (vector multiplyand-add, MAD) by all the columns on its left b b b c c a a = a c b read write nonzero Nonzero structure of U determines the dependency and the EGraph Egraph [chen2011] nodes: columns Edges: vector MAD 4 (a) Upper triangular matrix U (b)egraph

5 Algorithm analysis parallelism Divide EGraph into levels Columns in the same level are independent Cluster mode & pipeline mode A sample EGraph Timing order in pipeline mode 5

6 GPU implementation - avoid deadlock Traditionally, some warps Inactive at the beginning Activated when other active warps finish But in sparse LU, all warps must be active from the beginning An upper bound for concurrent columns 6

7 GPU implementation memory access pattern 7

8 GPU implementation - workflow 8

9 Performance analysis More concurrent columns, higher performance? No, inexecutable operations. 9

10 Experiments CPU: 2 Xeon X5680 GPU: NVIDIA GTX580 Testing matrices University of Florida Sparse Matrix Collection (not only circuit matrices) Hybrid solver 1-core / multi-core / many-core (GPU) Group Bandwidth (GB/s) GPU 1 CPU 4 CPUs 8 CPUs KLU A (flop < 200M) B (flop > 200M)

11 11

12 12

13 Hybrid Solver Based on the number of flops in the factorization Sequential or parallel? [Chen 2011] Single-core, multi-core or many-core (GPU) Accuracy: Pivoting once + several numerical factorization Since nonzero values do not change rapidly When nonzeros do vary greatly, pivot (preprocess) again 13

14 Summary Sparse LU solver on GPU Timing order and work partitioning on GPU The optimal number of concurrent columns Memory access pattern Hybrid Solver As FLOPS increase, left-looking algorithm should be done on 1-core, multi-core or many-core (GPU). 14

15 Limitation & Future work On distributed-memory machines (e.g. multiple GPU)? Limited memory on GPU Blocked Algorithm? Circuit partition + blocked factorization Boarded-Blocked-Diagonal (BBD) matrices Thank you! 15

16 Reference [Volkov2008] V.Volkov and J. Demmel, Benchmarking GPUs to tune dense linear algebra, SC '08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, IEEE Press, 2008, pp [Tomov2010] S. Tomov, J. Dongarra, and M. Baboulin, Towards dense linear algebra for hybrid GPU accelerated many-core systems, Parallel Comput., vol. 36, pp , June [Christen2007] M. Christen, O. Schenk, and H. Burkhart, General-purpose sparse matrix building blocks using the NVIDIA CUDA technology platform, [SuperLU1999] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal approach to sparse partial pivoting, SIAM J. Matrix Analysis and Applications, vol. 20, no. 3, pp , 1999 [Pardiso2002] O. Schenk and K. Gartner, Solving un-symmetric sparse systems of linear equations with PARDISO, Computational Science - ICCS 2002, vol. 2330, pp , [Florida] T. A. Davis and Y. Hu, The university of Florida sparse matrix collection, to appear in ACM Transactions on Mathematical Software. 16

17 Reference [G/P 1988] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic operations, SIAM J. Sci. Statist. Comput., vol. 9, pp , 1988 [KLU2010] T. A. Davis and E. Palamadai Natarajan, Algorithm 907: KLU, a direct sparse solver for circuit simulation problems, ACM Trans. Math. Softw., vol. 37, pp. 36:1 36:17, September [MC64] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal. and Applics, no. 4, pp , [AMD] P. R. Amestoy, Enseeiht-Irit, T. A. Davis, and I. S. Duff, Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM Trans. Math. Softw., vol. 30, pp , September [Chen 2011] X. Chen, W. Wu, Y. Wang, H. Yu, and H. Yang, An escheduler-based data dependence analysis and task scheduling for parallel circuit simulation, Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 58, no. 10, pp , oct

An Adaptive LU Factorization Algorithm for Parallel Circuit Simulation

An Adaptive LU Factorization Algorithm for Parallel Circuit Simulation An Adaptive LU Factorization Algorithm for Parallel Circuit Simulation Xiaoming Chen, Yu Wang, Huazhong Yang Department of Electronic Engineering Tsinghua National Laboratory for Information Science and

More information

Sparse LU Factorization for Parallel Circuit Simulation on GPU

Sparse LU Factorization for Parallel Circuit Simulation on GPU Sparse LU Factorization for Parallel Circuit Simulation on GPU Ling Ren, Xiaoming Chen, Yu Wang, Chenxi Zhang, Huazhong Yang Department of Electronic Engineering Tsinghua National Laboratory for Information

More information

User Guide for GLU V2.0

User Guide for GLU V2.0 User Guide for GLU V2.0 Lebo Wang and Sheldon Tan University of California, Riverside June 2017 Contents 1 Introduction 1 2 Using GLU within a C/C++ program 2 2.1 GLU flowchart........................

More information

THE Simulation Program with Integrated Circuit Emphasis

THE Simulation Program with Integrated Circuit Emphasis 786 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015 GPU-Accelerated Sparse LU Factorization for Circuit Simulation with Performance Modeling Xiaoming Chen, Student Member,

More information

GPU-Accelerated Parallel Sparse LU Factorization Method for Fast Circuit Analysis

GPU-Accelerated Parallel Sparse LU Factorization Method for Fast Circuit Analysis IEEE TRANSACTIONS ON VLSI, VOL XX, NO. XX, DECEMBER 201X 1 GPU-Accelerated Parallel Sparse LU Factorization Method for Fast Circuit Analysis Kai He Student Member, IEEE, Sheldon X.-D. Tan Senior Member,

More information

FPGA Accelerated Parallel Sparse Matrix Factorization for Circuit Simulations*

FPGA Accelerated Parallel Sparse Matrix Factorization for Circuit Simulations* FPGA Accelerated Parallel Sparse Matrix Factorization for Circuit Simulations* Wei Wu, Yi Shan, Xiaoming Chen, Yu Wang, and Huazhong Yang Department of Electronic Engineering, Tsinghua National Laboratory

More information

Direct Solvers for Sparse Matrices X. Li September 2006

Direct Solvers for Sparse Matrices X. Li September 2006 Direct Solvers for Sparse Matrices X. Li September 2006 Direct solvers for sparse matrices involve much more complicated algorithms than for dense matrices. The main complication is due to the need for

More information

A Configurable Architecture for Sparse LU Decomposition on Matrices with Arbitrary Patterns

A Configurable Architecture for Sparse LU Decomposition on Matrices with Arbitrary Patterns A Configurable Architecture for Sparse LU Decomposition on Matrices with Arbitrary Patterns Xinying Wang, Phillip H. Jones and Joseph Zambreno Department of Electrical and Computer Engineering Iowa State

More information

ASIMULATION program with integrated circuit emphasis

ASIMULATION program with integrated circuit emphasis IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013 261 NICSLU: An Adaptive Sparse Matrix Solver for Parallel Circuit Simulation Xiaoming Chen,

More information

GPU-Accelerated Parallel Sparse LU Factorization Method for Fast Circuit Analysis

GPU-Accelerated Parallel Sparse LU Factorization Method for Fast Circuit Analysis GPU-Accelerated Parallel Sparse LU Factorization Method for Fast Circuit Analysis Abstract: Lower upper (LU) factorization for sparse matrices is the most important computing step for circuit simulation

More information

Accelerating the Iterative Linear Solver for Reservoir Simulation

Accelerating the Iterative Linear Solver for Reservoir Simulation Accelerating the Iterative Linear Solver for Reservoir Simulation Wei Wu 1, Xiang Li 2, Lei He 1, Dongxiao Zhang 2 1 Electrical Engineering Department, UCLA 2 Department of Energy and Resources Engineering,

More information

MAGMA Library. version 0.1. S. Tomov J. Dongarra V. Volkov J. Demmel

MAGMA Library. version 0.1. S. Tomov J. Dongarra V. Volkov J. Demmel MAGMA Library version 0.1 S. Tomov J. Dongarra V. Volkov J. Demmel 2 -- MAGMA (version 0.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver June 2009 MAGMA project

More information

THE procedure used to solve inverse problems in areas such as Electrical Impedance

THE procedure used to solve inverse problems in areas such as Electrical Impedance 12TH INTL. CONFERENCE IN ELECTRICAL IMPEDANCE TOMOGRAPHY (EIT 2011), 4-6 MAY 2011, UNIV. OF BATH 1 Scaling the EIT Problem Alistair Boyle, Andy Adler, Andrea Borsic Abstract There are a number of interesting

More information

Basker: A Threaded Sparse LU Factorization Utilizing Hierarchical Parallelism and Data Layouts

Basker: A Threaded Sparse LU Factorization Utilizing Hierarchical Parallelism and Data Layouts Basker: A Threaded Sparse LU Factorization Utilizing Hierarchical Parallelism and Data Layouts Joshua Dennis Booth Sandia National Laboratories Albuquerque, New Mexico jdbooth@sandia.gov Sivasankaran Rajamanickam

More information

Sparse Matrix Algorithms

Sparse Matrix Algorithms Sparse Matrix Algorithms combinatorics + numerical methods + applications Math + X Tim Davis University of Florida June 2013 contributions to the field current work vision for the future Outline Math+X

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Algorithm 8xx: SuiteSparseQR, a multifrontal multithreaded sparse QR factorization package

Algorithm 8xx: SuiteSparseQR, a multifrontal multithreaded sparse QR factorization package Algorithm 8xx: SuiteSparseQR, a multifrontal multithreaded sparse QR factorization package TIMOTHY A. DAVIS University of Florida SuiteSparseQR is an implementation of the multifrontal sparse QR factorization

More information

Fast and reliable linear system solutions on new parallel architectures

Fast and reliable linear system solutions on new parallel architectures Fast and reliable linear system solutions on new parallel architectures Marc Baboulin Université Paris-Sud Chaire Inria Saclay Île-de-France Séminaire Aristote - Ecole Polytechnique 15 mai 2013 Marc Baboulin

More information

Sparse LU Decomposition using FPGA

Sparse LU Decomposition using FPGA Sparse LU Decomposition using FPGA Jeremy Johnson 1, Timothy Chagnon 1, Petya Vachranukunkiet 2, Prawat Nagvajara 2, and Chika Nwankpa 2 CS 1 and ECE 2 Departments Drexel University, Philadelphia, PA jjohnson@cs.drexel.edu,tchagnon@drexel.edu,pv29@drexel.edu,

More information

General-Purpose Sparse Matrix Building Blocks using the NVIDIA CUDA Technology Platform

General-Purpose Sparse Matrix Building Blocks using the NVIDIA CUDA Technology Platform 1 General-Purpose Sparse Matrix Building Blocks using the NVIDIA CUDA Technology Platform Matthias Christen, Olaf Schenk, Member, IEEE, and Helmar Burkhart, Member, IEEE Abstract We report on our experience

More information

Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development

Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Performance Analysis of BLAS Libraries in SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) Development M. Serdar Celebi

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

Accelerating Linear System Solutions Using Randomization Techniques

Accelerating Linear System Solutions Using Randomization Techniques Accelerating Linear System Solutions Using Randomization Techniques MARC BABOULIN, Inria Saclay - Île-de-France and University Paris-Sud JACK DONGARRA, University of Tennessee and Oak Ridge National Laboratory,

More information

Accelerating Linpack Performance with Mixed Precision Algorithm on CPU+GPGPU Heterogeneous Cluster

Accelerating Linpack Performance with Mixed Precision Algorithm on CPU+GPGPU Heterogeneous Cluster th IEEE International Conference on Computer and Information Technology (CIT ) Accelerating Linpack Performance with Mixed Precision Algorithm on CPU+GPGPU Heterogeneous Cluster WANG Lei ZHANG Yunquan

More information

Numerical methods for on-line power system load flow analysis

Numerical methods for on-line power system load flow analysis Energy Syst (2010) 1: 273 289 DOI 10.1007/s12667-010-0013-6 ORIGINAL PAPER Numerical methods for on-line power system load flow analysis Siddhartha Kumar Khaitan James D. McCalley Mandhapati Raju Received:

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Tim Davis (Texas A&M University) with Sanjay Ranka, Mohamed Gadou (University of Florida) Nuri Yeralan (Microsoft) NVIDIA

More information

A MATLAB Interface to the GPU

A MATLAB Interface to the GPU Introduction Results, conclusions and further work References Department of Informatics Faculty of Mathematics and Natural Sciences University of Oslo June 2007 Introduction Results, conclusions and further

More information

Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations

Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations D. Zheltkov, N. Zamarashkin INM RAS September 24, 2018 Scalability of Lanczos method Notations Matrix order

More information

Nested-Dissection Orderings for Sparse LU with Partial Pivoting

Nested-Dissection Orderings for Sparse LU with Partial Pivoting Nested-Dissection Orderings for Sparse LU with Partial Pivoting Igor Brainman 1 and Sivan Toledo 1 School of Mathematical Sciences, Tel-Aviv University Tel-Aviv 69978, ISRAEL Email: sivan@math.tau.ac.il

More information

Sparse Direct Solvers for Extreme-Scale Computing

Sparse Direct Solvers for Extreme-Scale Computing Sparse Direct Solvers for Extreme-Scale Computing Iain Duff Joint work with Florent Lopez and Jonathan Hogg STFC Rutherford Appleton Laboratory SIAM Conference on Computational Science and Engineering

More information

Computing the rank of big sparse matrices modulo p using gaussian elimination

Computing the rank of big sparse matrices modulo p using gaussian elimination Computing the rank of big sparse matrices modulo p using gaussian elimination Charles Bouillaguet 1 Claire Delaplace 2 12 CRIStAL, Université de Lille 2 IRISA, Université de Rennes 1 JNCF, 16 janvier 2017

More information

A Static Parallel Multifrontal Solver for Finite Element Meshes

A Static Parallel Multifrontal Solver for Finite Element Meshes A Static Parallel Multifrontal Solver for Finite Element Meshes Alberto Bertoldo, Mauro Bianco, and Geppino Pucci Department of Information Engineering, University of Padova, Padova, Italy {cyberto, bianco1,

More information

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Stan Tomov Innovative Computing Laboratory University of Tennessee, Knoxville OLCF Seminar Series, ORNL June 16, 2010

More information

arxiv: v1 [cs.ms] 2 Jun 2016

arxiv: v1 [cs.ms] 2 Jun 2016 Parallel Triangular Solvers on GPU Zhangxin Chen, Hui Liu, and Bo Yang University of Calgary 2500 University Dr NW, Calgary, AB, Canada, T2N 1N4 {zhachen,hui.j.liu,yang6}@ucalgary.ca arxiv:1606.00541v1

More information

Model Reduction for High Dimensional Micro-FE Models

Model Reduction for High Dimensional Micro-FE Models Model Reduction for High Dimensional Micro-FE Models Rudnyi E. B., Korvink J. G. University of Freiburg, IMTEK-Department of Microsystems Engineering, {rudnyi,korvink}@imtek.uni-freiburg.de van Rietbergen

More information

Algorithm 837: AMD, An Approximate Minimum Degree Ordering Algorithm

Algorithm 837: AMD, An Approximate Minimum Degree Ordering Algorithm Algorithm 837: AMD, An Approximate Minimum Degree Ordering Algorithm PATRICK R. AMESTOY, ENSEEIHT-IRIT, and TIMOTHY A. DAVIS University of Florida and IAIN S. DUFF CERFACS and Rutherford Appleton Laboratory

More information

A Sparse Symmetric Indefinite Direct Solver for GPU Architectures

A Sparse Symmetric Indefinite Direct Solver for GPU Architectures 1 A Sparse Symmetric Indefinite Direct Solver for GPU Architectures JONATHAN D. HOGG, EVGUENI OVTCHINNIKOV, and JENNIFER A. SCOTT, STFC Rutherford Appleton Laboratory In recent years, there has been considerable

More information

CGO: G: Decoupling Symbolic from Numeric in Sparse Matrix Computations

CGO: G: Decoupling Symbolic from Numeric in Sparse Matrix Computations CGO: G: Decoupling Symbolic from Numeric in Sparse Matrix Computations ABSTRACT Kazem Cheshmi PhD Student, Rutgers University kazem.ch@rutgers.edu Sympiler is a domain-specific code generator that optimizes

More information

GPU ACCELERATION OF CHOLMOD: BATCHING, HYBRID AND MULTI-GPU

GPU ACCELERATION OF CHOLMOD: BATCHING, HYBRID AND MULTI-GPU April 4-7, 2016 Silicon Valley GPU ACCELERATION OF CHOLMOD: BATCHING, HYBRID AND MULTI-GPU Steve Rennich, Darko Stosic, Tim Davis, April 6, 2016 OBJECTIVE Direct sparse methods are among the most widely

More information

Accelerating GPU kernels for dense linear algebra

Accelerating GPU kernels for dense linear algebra Accelerating GPU kernels for dense linear algebra Rajib Nath, Stanimire Tomov, and Jack Dongarra Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville {rnath1, tomov,

More information

Modern GPUs (Graphics Processing Units)

Modern GPUs (Graphics Processing Units) Modern GPUs (Graphics Processing Units) Powerful data parallel computation platform. High computation density, high memory bandwidth. Relatively low cost. NVIDIA GTX 580 512 cores 1.6 Tera FLOPs 1.5 GB

More information

A class of communication-avoiding algorithms for solving general dense linear systems on CPU/GPU parallel machines

A class of communication-avoiding algorithms for solving general dense linear systems on CPU/GPU parallel machines Available online at www.sciencedirect.com Procedia Computer Science 9 (2012 ) 17 26 International Conference on Computational Science, ICCS 2012 A class of communication-avoiding algorithms for solving

More information

Optimizing Memory-Bound Numerical Kernels on GPU Hardware Accelerators

Optimizing Memory-Bound Numerical Kernels on GPU Hardware Accelerators Optimizing Memory-Bound Numerical Kernels on GPU Hardware Accelerators Ahmad Abdelfattah 1, Jack Dongarra 2, David Keyes 1 and Hatem Ltaief 3 1 KAUST Division of Mathematical and Computer Sciences and

More information

A MATLAB Interface to the GPU

A MATLAB Interface to the GPU A MATLAB Interface to the GPU Second Winter School Geilo, Norway André Rigland Brodtkorb SINTEF ICT Department of Applied Mathematics 2007-01-24 Outline 1 Motivation and previous

More information

TinySPICE Plus: Scaling Up Statistical SPICE Simulations on GPU Leveraging Shared-Memory Based Sparse Matrix Solution Techniques

TinySPICE Plus: Scaling Up Statistical SPICE Simulations on GPU Leveraging Shared-Memory Based Sparse Matrix Solution Techniques TinySPICE Plus: Scaling Up Statistical SPICE Simulations on GPU Leveraging Shared-Memory Based Sparse Matrix Solution Techniques ABSTRACT Lengfei Han Department of ECE Michigan Technological University

More information

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang University of Massachusetts Amherst Introduction Singular Value Decomposition (SVD) A: m n matrix (m n) U, V: orthogonal

More information

Native mesh ordering with Scotch 4.0

Native mesh ordering with Scotch 4.0 Native mesh ordering with Scotch 4.0 François Pellegrini INRIA Futurs Project ScAlApplix pelegrin@labri.fr Abstract. Sparse matrix reordering is a key issue for the the efficient factorization of sparse

More information

A Performance Prediction and Analysis Integrated Framework for SpMV on GPUs

A Performance Prediction and Analysis Integrated Framework for SpMV on GPUs Procedia Computer Science Volume 80, 2016, Pages 178 189 ICCS 2016. The International Conference on Computational Science A Performance Prediction and Analysis Integrated Framework for SpMV on GPUs Ping

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

PARDISO - PARallel DIrect SOlver to solve SLAE on shared memory architectures

PARDISO - PARallel DIrect SOlver to solve SLAE on shared memory architectures PARDISO - PARallel DIrect SOlver to solve SLAE on shared memory architectures Solovev S. A, Pudov S.G sergey.a.solovev@intel.com, sergey.g.pudov@intel.com Intel Xeon, Intel Core 2 Duo are trademarks of

More information

TR An Overview of NVIDIA Tegra K1 Architecture. Ang Li, Radu Serban, Dan Negrut

TR An Overview of NVIDIA Tegra K1 Architecture. Ang Li, Radu Serban, Dan Negrut TR-2014-17 An Overview of NVIDIA Tegra K1 Architecture Ang Li, Radu Serban, Dan Negrut November 20, 2014 Abstract This paperwork gives an overview of NVIDIA s Jetson TK1 Development Kit and its Tegra K1

More information

Solving Dense Linear Systems on Graphics Processors

Solving Dense Linear Systems on Graphics Processors Solving Dense Linear Systems on Graphics Processors Sergio Barrachina Maribel Castillo Francisco Igual Rafael Mayo Enrique S. Quintana-Ortí High Performance Computing & Architectures Group Universidad

More information

Overview of MUMPS (A multifrontal Massively Parallel Solver)

Overview of MUMPS (A multifrontal Massively Parallel Solver) Overview of MUMPS (A multifrontal Massively Parallel Solver) E. Agullo, P. Amestoy, A. Buttari, P. Combes, A. Guermouche, J.-Y. L Excellent, T. Slavova, B. Uçar CERFACS, ENSEEIHT-IRIT, INRIA (LIP and LaBRI),

More information

Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy

Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy 17 Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy ALFREDO BUTTARI ENS Lyon JACK DONGARRA University of Tennessee Knoxville Oak Ridge National

More information

A General Sparse Sparse Linear System Solver and Its Application in OpenFOAM

A General Sparse Sparse Linear System Solver and Its Application in OpenFOAM Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe A General Sparse Sparse Linear System Solver and Its Application in OpenFOAM Murat Manguoglu * Middle East Technical University,

More information

SCALABLE ALGORITHMS for solving large sparse linear systems of equations

SCALABLE ALGORITHMS for solving large sparse linear systems of equations SCALABLE ALGORITHMS for solving large sparse linear systems of equations CONTENTS Sparse direct solvers (multifrontal) Substructuring methods (hybrid solvers) Jacko Koster, Bergen Center for Computational

More information

Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU

Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU The myth 10x-1000x speed up on GPU vs CPU Papers supporting the myth: Microsoft: N. K. Govindaraju, B. Lloyd, Y.

More information

PACKAGE SPECIFICATION HSL 2013

PACKAGE SPECIFICATION HSL 2013 MA41 PACKAGE SPECIFICATION HSL 2013 1 SUMMARY To solve a sparse unsymmetric system of linear equations. Given a square unsymmetric sparse matrix A of order n T and an n-vector b, this subroutine solves

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures

MAGMA. Matrix Algebra on GPU and Multicore Architectures MAGMA Matrix Algebra on GPU and Multicore Architectures Innovative Computing Laboratory Electrical Engineering and Computer Science University of Tennessee Piotr Luszczek (presenter) web.eecs.utk.edu/~luszczek/conf/

More information

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors Andrés Tomás 1, Zhaojun Bai 1, and Vicente Hernández 2 1 Department of Computer

More information

Mixed Precision Methods

Mixed Precision Methods Mixed Precision Methods Mixed precision, use the lowest precision required to achieve a given accuracy outcome " Improves runtime, reduce power consumption, lower data movement " Reformulate to find correction

More information

Frequency Scaling and Energy Efficiency regarding the Gauss-Jordan Elimination Scheme on OpenPower 8

Frequency Scaling and Energy Efficiency regarding the Gauss-Jordan Elimination Scheme on OpenPower 8 Frequency Scaling and Energy Efficiency regarding the Gauss-Jordan Elimination Scheme on OpenPower 8 Martin Köhler Jens Saak 2 The Gauss-Jordan Elimination scheme is an alternative to the LU decomposition

More information

Iterative Sparse Triangular Solves for Preconditioning

Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015, Vienna Aug 24-28, 2015 Iterative Sparse Triangular Solves for Preconditioning Hartwig Anzt, Edmond Chow and Jack Dongarra Incomplete Factorization Preconditioning Incomplete LU factorizations

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

Redesigning Triangular Dense Matrix Computations on GPUs

Redesigning Triangular Dense Matrix Computations on GPUs Redesigning Triangular Dense Matrix Computations on GPUs Ali Charara, Hatem Ltaief, and David Keyes Extreme Computing Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah,

More information

Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes Xavier Lacoste, Mathieu Faverge, Pierre Ramet, Samuel Thibault INRIA - IPB - LaBRI University of Bordeaux Talence, France

More information

Developing a High Performance Software Library with MPI and CUDA for Matrix Computations

Developing a High Performance Software Library with MPI and CUDA for Matrix Computations Developing a High Performance Software Library with MPI and CUDA for Matrix Computations Bogdan Oancea 1, Tudorel Andrei 2 1 Nicolae Titulescu University of Bucharest, e-mail: bogdanoancea@univnt.ro, Calea

More information

Sparse Matrices Direct methods

Sparse Matrices Direct methods Sparse Matrices Direct methods Iain Duff STFC Rutherford Appleton Laboratory and CERFACS Summer School The 6th de Brùn Workshop. Linear Algebra and Matrix Theory: connections, applications and computations.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Sparse Linear Systems and Factorization Methods Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Sparse

More information

DEVELOPMENT OF A RESTRICTED ADDITIVE SCHWARZ PRECONDITIONER FOR SPARSE LINEAR SYSTEMS ON NVIDIA GPU

DEVELOPMENT OF A RESTRICTED ADDITIVE SCHWARZ PRECONDITIONER FOR SPARSE LINEAR SYSTEMS ON NVIDIA GPU INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 5, Number 1-2, Pages 13 20 c 2014 Institute for Scientific Computing and Information DEVELOPMENT OF A RESTRICTED ADDITIVE SCHWARZ

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Accelerating GPU Kernels for Dense Linear Algebra

Accelerating GPU Kernels for Dense Linear Algebra Accelerating GPU Kernels for Dense Linear Algebra Rajib Nath, Stan Tomov, and Jack Dongarra Innovative Computing Lab University of Tennessee, Knoxville July 9, 21 xgemm performance of CUBLAS-2.3 on GTX28

More information

Accelerating Sparse Cholesky Factorization on GPUs

Accelerating Sparse Cholesky Factorization on GPUs Accelerating Sparse Cholesky Factorization on GPUs Submitted to IA 3 Workshop on Irregular Applications: Architectures & Algorithms, to be held Sunday, November 16, 2014, Colorado Convention Center, New

More information

Solving Sparse Linear Systems. Forward and backward substitution for solving lower or upper triangular systems

Solving Sparse Linear Systems. Forward and backward substitution for solving lower or upper triangular systems AMSC 6 /CMSC 76 Advanced Linear Numerical Analysis Fall 7 Direct Solution of Sparse Linear Systems and Eigenproblems Dianne P. O Leary c 7 Solving Sparse Linear Systems Assumed background: Gauss elimination

More information

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Ziming Zhong Vladimir Rychkov Alexey Lastovetsky Heterogeneous Computing

More information

High-Performance Out-of-Core Sparse LU Factorization

High-Performance Out-of-Core Sparse LU Factorization High-Performance Out-of-Core Sparse LU Factorization John R. Gilbert Sivan Toledo Abstract We present an out-of-core sparse nonsymmetric LU-factorization algorithm with partial pivoting. We have implemented

More information

PERFORMANCE ANALYSIS OF LOAD FLOW COMPUTATION USING FPGA 1

PERFORMANCE ANALYSIS OF LOAD FLOW COMPUTATION USING FPGA 1 PERFORMANCE ANALYSIS OF LOAD FLOW COMPUTATION USING FPGA 1 J. Johnson, P. Vachranukunkiet, S. Tiwari, P. Nagvajara, C. Nwankpa Drexel University Philadelphia, PA Abstract Full-AC load flow constitutes

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

High performance matrix inversion of SPD matrices on graphics processors

High performance matrix inversion of SPD matrices on graphics processors High performance matrix inversion of SPD matrices on graphics processors Peter Benner, Pablo Ezzatti, Enrique S. Quintana-Ortí and Alfredo Remón Max-Planck-Institute for Dynamics of Complex Technical Systems

More information

Hperformance. In hybrid architectures, more speed up is obtained by overlapping the computations of

Hperformance. In hybrid architectures, more speed up is obtained by overlapping the computations of Reviews of Literature ISSN:2347-2723 Impact Factor : 3.3754(UIF) Volume - 5 Issue - 5 DECEMBER - 2017 BALANCING THE LOAD IN HYBRID HIGH PERFORMANCE COMPUTING (HPC) SYSTEMS Shabnaz fathima Assistant Professor,

More information

A Fine-Grained Pipelined Implementation of LU Decomposition on SIMD Processors

A Fine-Grained Pipelined Implementation of LU Decomposition on SIMD Processors A Fine-Grained Pipelined Implementation of LU Decomposition on SIMD Processors Kai Zhang, ShuMing Chen*, Wei Liu, and Xi Ning School of Computer, National University of Defense Technology #109, Deya Road,

More information

Solution of the Transport Equation Using Graphical Processing Units

Solution of the Transport Equation Using Graphical Processing Units Solution of the Transport Equation Using Graphical Processing Units Gil Gonçalves Brandão October - 2009 1 Introduction Computational Fluid Dynamics (CFD) always have struggled for faster computing resources

More information

Null space computation of sparse singular matrices with MUMPS

Null space computation of sparse singular matrices with MUMPS Null space computation of sparse singular matrices with MUMPS Xavier Vasseur (CERFACS) In collaboration with Patrick Amestoy (INPT-IRIT, University of Toulouse and ENSEEIHT), Serge Gratton (INPT-IRIT,

More information

State of Art and Project Proposals Intensive Computation

State of Art and Project Proposals Intensive Computation State of Art and Project Proposals Intensive Computation Annalisa Massini - 2015/2016 Today s lecture Project proposals on the following topics: Sparse Matrix- Vector Multiplication Tridiagonal Solvers

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

Solving Large Regression Problems using an Ensemble of GPU-accelerated ELMs

Solving Large Regression Problems using an Ensemble of GPU-accelerated ELMs Solving Large Regression Problems using an Ensemble of GPU-accelerated ELMs Mark van Heeswijk 1 and Yoan Miche 2 and Erkki Oja 1 and Amaury Lendasse 1 1 Helsinki University of Technology - Dept. of Information

More information

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation 1 Cheng-Han Du* I-Hsin Chung** Weichung Wang* * I n s t i t u t e o f A p p l i e d M

More information

Parallel Sparse LU Factorization on Different Message Passing Platforms

Parallel Sparse LU Factorization on Different Message Passing Platforms Parallel Sparse LU Factorization on Different Message Passing Platforms Kai Shen Department of Computer Science, University of Rochester Rochester, NY 1467, USA Abstract Several message passing-based parallel

More information

Exploiting Mixed Precision Floating Point Hardware in Scientific Computations

Exploiting Mixed Precision Floating Point Hardware in Scientific Computations Exploiting Mixed Precision Floating Point Hardware in Scientific Computations Alfredo BUTTARI a Jack DONGARRA a;b;d Jakub KURZAK a Julie LANGOU a Julien LANGOU c Piotr LUSZCZEK a and Stanimire TOMOV a

More information

Advanced Numerical Techniques for Cluster Computing

Advanced Numerical Techniques for Cluster Computing Advanced Numerical Techniques for Cluster Computing Presented by Piotr Luszczek http://icl.cs.utk.edu/iter-ref/ Presentation Outline Motivation hardware Dense matrix calculations Sparse direct solvers

More information

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013 GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS Kyle Spagnoli Research Engineer @ EM Photonics 3/20/2013 INTRODUCTION» Sparse systems» Iterative solvers» High level benchmarks»

More information

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors Andrés Tomás 1, Zhaojun Bai 1, and Vicente Hernández 2 1 Department of Computer

More information

ABSTRACT 1. INTRODUCTION. * phone ; fax ; emphotonics.com

ABSTRACT 1. INTRODUCTION. * phone ; fax ; emphotonics.com CULA: Hybrid GPU Accelerated Linear Algebra Routines John R. Humphrey *, Daniel K. Price, Kyle E. Spagnoli, Aaron L. Paolini, Eric J. Kelmelis EM Photonics, Inc, 51 E Main St, Suite 203, Newark, DE, USA

More information

Structure-Adaptive Parallel Solution of Sparse Triangular Linear Systems

Structure-Adaptive Parallel Solution of Sparse Triangular Linear Systems Structure-Adaptive Parallel Solution of Sparse Triangular Linear Systems Ehsan Totoni, Michael T. Heath, and Laxmikant V. Kale Department of Computer Science, University of Illinois at Urbana-Champaign

More information

GPU-based Parallel Reservoir Simulators

GPU-based Parallel Reservoir Simulators GPU-based Parallel Reservoir Simulators Zhangxin Chen 1, Hui Liu 1, Song Yu 1, Ben Hsieh 1 and Lei Shao 1 Key words: GPU computing, reservoir simulation, linear solver, parallel 1 Introduction Nowadays

More information

A Comparative Study on Exact Triangle Counting Algorithms on the GPU

A Comparative Study on Exact Triangle Counting Algorithms on the GPU A Comparative Study on Exact Triangle Counting Algorithms on the GPU Leyuan Wang, Yangzihao Wang, Carl Yang, John D. Owens University of California, Davis, CA, USA 31 st May 2016 L. Wang, Y. Wang, C. Yang,

More information

A Standard for Batching BLAS Operations

A Standard for Batching BLAS Operations A Standard for Batching BLAS Operations Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 5/8/16 1 API for Batching BLAS Operations We are proposing, as a community

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information