Thinking parallel. Decomposition. Thinking parallel. COMP528 Ways of exploiting parallelism, or thinking parallel

Size: px
Start display at page:

Download "Thinking parallel. Decomposition. Thinking parallel. COMP528 Ways of exploiting parallelism, or thinking parallel"

Transcription

1 COMP528 Ways of exploiting parallelism, or thinking parallel Alexei Lisitsa Dept of computer science University of Liverpool Thinking parallel Think about inherent parallelism in the job/problem at hand first That will drive The choice of the algorithm; The choice of the implementation language The implementation itself... Thinking parallel Different aspects: Decomposition: how to decompose your problem into concurrent tasks; Scaling: how to ensure that there are enough concurrent tasks to keep all the processor cores busy; Correctness: how to ensure that the result is free from errors; Abstractions and Patterns: how to choose and utilize algorithms... Decomposition How do you find the parallelism? Data parallelism Task parallelism Pipelines Mixed solutions 1

2 Data parallelism Given: a data set and an operation that can be applied element by element; What to do: apply the same task concurrently to each element Task parallelism Several different independent tasks to be applied to the same data a b c d e f g h Average Minimum Maximum Geom- mean A B C D E F G H Pipelines Special kind of task/data parallelism: many independent tasks to be applied to a stream of data; Each data item is processed by stages as they passed through; Different items can pass through different stages and be processed at the same time; Pipelines data1 Data2 Data3 task 1 Task 2 2

3 Simple case study: Mixed solutions Task of folding, stuffing, sealing, addressing, stamping and mailing letters There are 6 people to perform the task Several natural solutions and their combinations are possible Mixed solutions (cont.) Pipeline: each person doing exactly one task (folding, stuffing, etc) Fine-grained parallelism: small individual tasks and frequent interactions Data parallelism: each person takes a portion of the envelops and performs all six tasks for this portion Coarse-grained parallelism: large individual tasks and infrequent interactions Mixed solutions (cont.) Mixed solution: Person 1 is doing folding and stuffing Person 2 is doing sealing Persons 3,4,5 are doing addressing Person 6 is doing stamping and mailing Neither data parallelism, nor task (pipeline) parallelism, but rather a combination of both Scalability and Speedup Speedup is a ratio of the time it takes to run a program without parallelism vs the time it runs in parallel; Scalability is a measure of how much speedup the program gets as one adds more processor cores; The program does not scale beyond certain point when adding more processors does not result in additional speedup. 3

4 How much parallelism is there? Amdahl s law (1967) The computer program will never go faster than the sum of the parts that do not run in parallel (the serial portions), no matter how many processors we have How much parallelism is there? J. Gustafson s observations (around Amdahl s law): For many problems as the problem size grows the work required for the parallel part grows faster then the work required for the serial part The serial fraction decreases, so by Amdahl s law scalability improves Amdahl vs Gustafson Both are right, but Amdahl s point is pessimistic: for a fixed problem/program there is limit of its acceleration by the parallelization; Gustafson s point is optimistic: for growing problems there is chance to keep up using parallelization Correctness Correctness of sequential programs is not a trivial issue, even more so is correctness of parallel programs If a program is executed in parallel, i.e using multiple threads of control, the precise order of operations potentially be different That may lead to.. 4

5 That may lead to Correctness (cont.) Non-deterministic behaviour Different results from run to run, not all of them may be correct; Round-off errors Failures in coordination of tasks Deadlocks Race conditions Concurrent access and Locks Locking is a mechanism for concurrent access control Acquiring a lock gives a tread an exclusive access to a data structure (e.g. variable) Locks can be used to ensure correct (required) behaviour of the multiple-threads programs Example of using locks Example of using locks (cont.) Thread A Thread B Value of X LOCK(X) (waiting) 44 Read X(44) (waiting) 44 add 10 (waiting) 44 Write X(54) (waiting) 54 UNLOCK(X) (waiting) 54 LOCK(X) 54 Read X (54) 54 subtract Write X(42) 42 UNLOCK(X) 42 Several variants ( = 2) of execution possible here, but The final value of X = 42 is guaranteed here 5

6 Race conditions Race conditions occur when multiple tasks read from and write to the same memory without proper synchronization; Depending on application can lead to incorrect results Example of race conditions Tread A Thread B Value of X Read X(44) 44 Add 10 Read X(44) 44 Write X(54) subtract Write X(32) 32 Tread A Tread B Value of X Read X(44) 44 Read X (44) subtract add 10 Write X(32) 32 Write X(54) 54 Deadlocks Deadlock occurs when at least two tasks wait for each other and each will not resume until the other task proceeds may occur when code requires the acquisition of multiple locks; Dining Philosophers example; Conclusion All discussed aspects of Thinking Parallel approach are non-trivial We need tools and instruments which support Thinking Parallel at appropriate level of abstraction 6

CMSC Computer Architecture Lecture 12: Multi-Core. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 12: Multi-Core. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 12: Multi-Core Prof. Yanjing Li University of Chicago Administrative Stuff! Lab 4 " Due: 11:49pm, Saturday " Two late days with penalty! Exam I " Grades out on

More information

An Introduction to Parallel Programming

An Introduction to Parallel Programming An Introduction to Parallel Programming Ing. Andrea Marongiu (a.marongiu@unibo.it) Includes slides from Multicore Programming Primer course at Massachusetts Institute of Technology (MIT) by Prof. SamanAmarasinghe

More information

Workloads Programmierung Paralleler und Verteilter Systeme (PPV)

Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Sommer 2015 Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze Workloads 2 Hardware / software execution environment

More information

Dealing with Concurrency Problems

Dealing with Concurrency Problems Dealing with Concurrency Problems Nalini Vasudevan Columbia University Dealing with Concurrency Problems, Nalini Vasudevan p. 1 What is the output? int x; foo(){ int m; m = qux(); x = x + m; bar(){ int

More information

High Performance Computing Systems

High Performance Computing Systems High Performance Computing Systems Shared Memory Doug Shook Shared Memory Bottlenecks Trips to memory Cache coherence 2 Why Multicore? Shared memory systems used to be purely the domain of HPC... What

More information

18-447: Computer Architecture Lecture 30B: Multiprocessors. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/22/2013

18-447: Computer Architecture Lecture 30B: Multiprocessors. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/22/2013 18-447: Computer Architecture Lecture 30B: Multiprocessors Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/22/2013 Readings: Multiprocessing Required Amdahl, Validity of the single processor

More information

Parallel algorithm templates. Threads, tasks and parallel patterns Programming with. From parallel algorithms templates to tasks

Parallel algorithm templates. Threads, tasks and parallel patterns Programming with. From parallel algorithms templates to tasks COMP528 Task-based programming in OpenMP www.csc.liv.ac.uk/~alexei/comp528 Alexei Lisitsa Dept of Computer Science University of Liverpool a.lisitsa@.liverpool.ac.uk Parallel algorithm templates We have

More information

Parallel Programming. Presentation to Linux Users of Victoria, Inc. November 4th, 2015

Parallel Programming. Presentation to Linux Users of Victoria, Inc. November 4th, 2015 Parallel Programming Presentation to Linux Users of Victoria, Inc. November 4th, 2015 http://levlafayette.com 1.0 What Is Parallel Programming? 1.1 Historically, software has been written for serial computation

More information

Programming at Scale: Concurrency

Programming at Scale: Concurrency Programming at Scale: Concurrency 1 Goal: Building Fast, Scalable Software How do we speed up software? 2 What is scalability? A system is scalable if it can easily adapt to increased (or reduced) demand

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Review: Creating a Parallel Program. Programming for Performance

Review: Creating a Parallel Program. Programming for Performance Review: Creating a Parallel Program Can be done by programmer, compiler, run-time system or OS Steps for creating parallel program Decomposition Assignment of tasks to processes Orchestration Mapping (C)

More information

CS4961 Parallel Programming. Lecture 5: Data and Task Parallelism, cont. 9/8/09. Administrative. Mary Hall September 8, 2009.

CS4961 Parallel Programming. Lecture 5: Data and Task Parallelism, cont. 9/8/09. Administrative. Mary Hall September 8, 2009. CS4961 Parallel Programming Lecture 5: Data and Task Parallelism, cont. Administrative Homework 2 posted, due September 10 before class - Use the handin program on the CADE machines - Use the following

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing This document consists of two parts. The first part introduces basic concepts and issues that apply generally in discussions of parallel computing. The second part consists

More information

Basics of Performance Engineering

Basics of Performance Engineering ERLANGEN REGIONAL COMPUTING CENTER Basics of Performance Engineering J. Treibig HiPerCH 3, 23./24.03.2015 Why hardware should not be exposed Such an approach is not portable Hardware issues frequently

More information

Motivation and definitions Processes Threads Synchronization constructs Speedup issues

Motivation and definitions Processes Threads Synchronization constructs Speedup issues Motivation and definitions Processes Threads Synchronization constructs Speedup issues Overhead Caches Amdahl s Law CS550: Advanced Operating Systems 2 If task can be completely decoupled into independent

More information

High Performance Computing

High Performance Computing The Need for Parallelism High Performance Computing David McCaughan, HPC Analyst SHARCNET, University of Guelph dbm@sharcnet.ca Scientific investigation traditionally takes two forms theoretical empirical

More information

Kernel Synchronization I. Changwoo Min

Kernel Synchronization I. Changwoo Min 1 Kernel Synchronization I Changwoo Min 2 Summary of last lectures Tools: building, exploring, and debugging Linux kernel Core kernel infrastructure syscall, module, kernel data structures Process management

More information

Chap. 4 Multiprocessors and Thread-Level Parallelism

Chap. 4 Multiprocessors and Thread-Level Parallelism Chap. 4 Multiprocessors and Thread-Level Parallelism Uniprocessor performance Performance (vs. VAX-11/780) 10000 1000 100 10 From Hennessy and Patterson, Computer Architecture: A Quantitative Approach,

More information

The Deadlock Lecture

The Deadlock Lecture Concurrent systems Lecture 4: Deadlock, Livelock, and Priority Inversion DrRobert N. M. Watson The Deadlock Lecture 1 Reminder from last time Multi-Reader Single-Writer (MRSW) locks Alternatives to semaphores/locks:

More information

Parallel Computing Concepts. CSInParallel Project

Parallel Computing Concepts. CSInParallel Project Parallel Computing Concepts CSInParallel Project July 26, 2012 CONTENTS 1 Introduction 1 1.1 Motivation................................................ 1 1.2 Some pairs of terms...........................................

More information

Processor speed. Concurrency Structure and Interpretation of Computer Programs. Multiple processors. Processor speed. Mike Phillips <mpp>

Processor speed. Concurrency Structure and Interpretation of Computer Programs. Multiple processors. Processor speed. Mike Phillips <mpp> Processor speed 6.037 - Structure and Interpretation of Computer Programs Mike Phillips Massachusetts Institute of Technology http://en.wikipedia.org/wiki/file:transistor_count_and_moore%27s_law_-

More information

Curriculum 2013 Knowledge Units Pertaining to PDC

Curriculum 2013 Knowledge Units Pertaining to PDC Curriculum 2013 Knowledge Units Pertaining to C KA KU Tier Level NumC Learning Outcome Assembly level machine Describe how an instruction is executed in a classical von Neumann machine, with organization

More information

Lecture 21: Transactional Memory. Topics: consistency model recap, introduction to transactional memory

Lecture 21: Transactional Memory. Topics: consistency model recap, introduction to transactional memory Lecture 21: Transactional Memory Topics: consistency model recap, introduction to transactional memory 1 Example Programs Initially, A = B = 0 P1 P2 A = 1 B = 1 if (B == 0) if (A == 0) critical section

More information

Parallel Programming Concepts. Parallel Algorithms. Peter Tröger

Parallel Programming Concepts. Parallel Algorithms. Peter Tröger Parallel Programming Concepts Parallel Algorithms Peter Tröger Sources: Ian Foster. Designing and Building Parallel Programs. Addison-Wesley. 1995. Mattson, Timothy G.; S, Beverly A.; ers,; Massingill,

More information

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 14 Parallelism in Software I

EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 14 Parallelism in Software I EE382 (20): Computer Architecture - Parallelism and Locality Spring 2015 Lecture 14 Parallelism in Software I Mattan Erez The University of Texas at Austin EE382: Parallelilsm and Locality, Spring 2015

More information

Computer Architecture: Parallel Processing Basics. Prof. Onur Mutlu Carnegie Mellon University

Computer Architecture: Parallel Processing Basics. Prof. Onur Mutlu Carnegie Mellon University Computer Architecture: Parallel Processing Basics Prof. Onur Mutlu Carnegie Mellon University Readings Required Hill, Jouppi, Sohi, Multiprocessors and Multicomputers, pp. 551-560 in Readings in Computer

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Portland State University ECE 588/688 Introduction to Parallel Computing Reference: Lawrence Livermore National Lab Tutorial https://computing.llnl.gov/tutorials/parallel_comp/ Copyright by Alaa Alameldeen

More information

Computer Architecture Lecture 27: Multiprocessors. Prof. Onur Mutlu Carnegie Mellon University Spring 2015, 4/6/2015

Computer Architecture Lecture 27: Multiprocessors. Prof. Onur Mutlu Carnegie Mellon University Spring 2015, 4/6/2015 18-447 Computer Architecture Lecture 27: Multiprocessors Prof. Onur Mutlu Carnegie Mellon University Spring 2015, 4/6/2015 Assignments Lab 7 out Due April 17 HW 6 Due Friday (April 10) Midterm II April

More information

Scheduler Activations. Robert Grimm New York University

Scheduler Activations. Robert Grimm New York University Scheduler Activations Robert Grimm New York University The Three Questions What is the problem? What is new or different? What are the contributions and limitations? Threads Provide a "natural" abstraction

More information

CSC630/COS781: Parallel & Distributed Computing

CSC630/COS781: Parallel & Distributed Computing CSC630/COS781: Parallel & Distributed Computing Algorithm Design Chapter 3 (3.1-3.3) 1 Contents Preliminaries of parallel algorithm design Decomposition Task dependency Task dependency graph Granularity

More information

Parallel Programming: Background Information

Parallel Programming: Background Information 1 Parallel Programming: Background Information Mike Bailey mjb@cs.oregonstate.edu parallel.background.pptx Three Reasons to Study Parallel Programming 2 1. Increase performance: do more work in the same

More information

Parallel Programming: Background Information

Parallel Programming: Background Information 1 Parallel Programming: Background Information Mike Bailey mjb@cs.oregonstate.edu parallel.background.pptx Three Reasons to Study Parallel Programming 2 1. Increase performance: do more work in the same

More information

Concurrency control CS 417. Distributed Systems CS 417

Concurrency control CS 417. Distributed Systems CS 417 Concurrency control CS 417 Distributed Systems CS 417 1 Schedules Transactions must have scheduled so that data is serially equivalent Use mutual exclusion to ensure that only one transaction executes

More information

Trends and Challenges in Multicore Programming

Trends and Challenges in Multicore Programming Trends and Challenges in Multicore Programming Eva Burrows Bergen Language Design Laboratory (BLDL) Department of Informatics, University of Bergen Bergen, March 17, 2010 Outline The Roadmap of Multicores

More information

Parallel Processing: Performance Limits & Synchronization

Parallel Processing: Performance Limits & Synchronization Parallel Processing: Performance Limits & Synchronization Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. May 8, 2018 L22-1 Administrivia Quiz 3: Thursday 7:30-9:30pm, room 50-340

More information

Issues in Parallel Processing. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Issues in Parallel Processing. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Issues in Parallel Processing Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction Goal: connecting multiple computers to get higher performance

More information

Parallelism. CS6787 Lecture 8 Fall 2017

Parallelism. CS6787 Lecture 8 Fall 2017 Parallelism CS6787 Lecture 8 Fall 2017 So far We ve been talking about algorithms We ve been talking about ways to optimize their parameters But we haven t talked about the underlying hardware How does

More information

Performance analysis basics

Performance analysis basics Performance analysis basics Christian Iwainsky Iwainsky@rz.rwth-aachen.de 25.3.2010 1 Overview 1. Motivation 2. Performance analysis basics 3. Measurement Techniques 2 Why bother with performance analysis

More information

Some aspects of parallel program design. R. Bader (LRZ) G. Hager (RRZE)

Some aspects of parallel program design. R. Bader (LRZ) G. Hager (RRZE) Some aspects of parallel program design R. Bader (LRZ) G. Hager (RRZE) Finding exploitable concurrency Problem analysis 1. Decompose into subproblems perhaps even hierarchy of subproblems that can simultaneously

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #12 2/21/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Last class Outline

More information

Design of Parallel Algorithms. Course Introduction

Design of Parallel Algorithms. Course Introduction + Design of Parallel Algorithms Course Introduction + CSE 4163/6163 Parallel Algorithm Analysis & Design! Course Web Site: http://www.cse.msstate.edu/~luke/courses/fl17/cse4163! Instructor: Ed Luke! Office:

More information

Parallel Computing Why & How?

Parallel Computing Why & How? Parallel Computing Why & How? Xing Cai Simula Research Laboratory Dept. of Informatics, University of Oslo Winter School on Parallel Computing Geilo January 20 25, 2008 Outline 1 Motivation 2 Parallel

More information

Parallel Programming Programowanie równoległe

Parallel Programming Programowanie równoległe Parallel Programming Programowanie równoległe Lecture 1: Introduction. Basic notions of parallel processing Paweł Rzążewski Grading laboratories (4 tasks, each for 3-4 weeks) total 50 points, final test

More information

Analytical Modeling of Parallel Programs

Analytical Modeling of Parallel Programs 2014 IJEDR Volume 2, Issue 1 ISSN: 2321-9939 Analytical Modeling of Parallel Programs Hardik K. Molia Master of Computer Engineering, Department of Computer Engineering Atmiya Institute of Technology &

More information

Reintroduction to Concurrency

Reintroduction to Concurrency Reintroduction to Concurrency The execution of a concurrent program consists of multiple processes active at the same time. 9/25/14 7 Dining philosophers problem Each philosopher spends some time thinking

More information

Deadlock Prevention (cont d) Deadlock Prevention. Example: Wait-Die. Wait-Die

Deadlock Prevention (cont d) Deadlock Prevention. Example: Wait-Die. Wait-Die Deadlock Prevention Deadlock Prevention (cont d) 82 83 When there is a high level of lock contention and an increased likelihood of deadlocks Prevent deadlocks by giving each Xact a priority Assign priorities

More information

CSL 860: Modern Parallel

CSL 860: Modern Parallel CSL 860: Modern Parallel Computation Course Information www.cse.iitd.ac.in/~subodh/courses/csl860 Grading: Quizes25 Lab Exercise 17 + 8 Project35 (25% design, 25% presentations, 50% Demo) Final Exam 25

More information

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008 SHARCNET Workshop on Parallel Computing Hugh Merz Laurentian University May 2008 What is Parallel Computing? A computational method that utilizes multiple processing elements to solve a problem in tandem

More information

Distributed Systems. 12. Concurrency Control. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 12. Concurrency Control. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 12. Concurrency Control Paul Krzyzanowski Rutgers University Fall 2017 2014-2017 Paul Krzyzanowski 1 Why do we lock access to data? Locking (leasing) provides mutual exclusion Only

More information

Design and Evaluation of Scalable Software

Design and Evaluation of Scalable Software Design and Evaluation of Scalable Software Damian Dechev 1,2 1: University of Central Florida, CSE S3 Lab, http://cse.eecs.ucf.edu Orlando, FL 2: Sandia Labs, Livermore, CA Traditional Scaling Process

More information

Parallel Numerics, WT 2017/ Introduction. page 1 of 127

Parallel Numerics, WT 2017/ Introduction. page 1 of 127 Parallel Numerics, WT 2017/2018 1 Introduction page 1 of 127 Scope Revise standard numerical methods considering parallel computations! Change method or implementation! page 2 of 127 Scope Revise standard

More information

HPX. High Performance ParalleX CCT Tech Talk Series. Hartmut Kaiser

HPX. High Performance ParalleX CCT Tech Talk Series. Hartmut Kaiser HPX High Performance CCT Tech Talk Hartmut Kaiser (hkaiser@cct.lsu.edu) 2 What s HPX? Exemplar runtime system implementation Targeting conventional architectures (Linux based SMPs and clusters) Currently,

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

Deadlock Bug Detection Techniques

Deadlock Bug Detection Techniques CS492B Analysis of Concurrent Programs Deadlock Bug Detection Techniques Prof. Moonzoo Kim CS KAIST 1 Bug Detection Techniques for Concurrent Programs Verification Precision SPIN jcute Fusion Java PathFinder

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming Linda Woodard CAC 19 May 2010 Introduction to Parallel Computing on Ranger 5/18/2010 www.cac.cornell.edu 1 y What is Parallel Programming? Using more than one processor

More information

Online Course Evaluation. What we will do in the last week?

Online Course Evaluation. What we will do in the last week? Online Course Evaluation Please fill in the online form The link will expire on April 30 (next Monday) So far 10 students have filled in the online form Thank you if you completed it. 1 What we will do

More information

Principles of Parallel Algorithm Design: Concurrency and Decomposition

Principles of Parallel Algorithm Design: Concurrency and Decomposition Principles of Parallel Algorithm Design: Concurrency and Decomposition John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 422/534 Lecture 2 12 January 2017 Parallel

More information

Lecture: Consistency Models, TM. Topics: consistency models, TM intro (Section 5.6)

Lecture: Consistency Models, TM. Topics: consistency models, TM intro (Section 5.6) Lecture: Consistency Models, TM Topics: consistency models, TM intro (Section 5.6) 1 Coherence Vs. Consistency Recall that coherence guarantees (i) that a write will eventually be seen by other processors,

More information

EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 11 Parallelism in Software II

EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 11 Parallelism in Software II EE382 (20): Computer Architecture - Parallelism and Locality Fall 2011 Lecture 11 Parallelism in Software II Mattan Erez The University of Texas at Austin EE382: Parallelilsm and Locality, Fall 2011 --

More information

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004 A Study of High Performance Computing and the Cray SV1 Supercomputer Michael Sullivan TJHSST Class of 2004 June 2004 0.1 Introduction A supercomputer is a device for turning compute-bound problems into

More information

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 13: Memory Consistency + a Course-So-Far Review Parallel Computer Architecture and Programming Today: what you should know Understand the motivation for relaxed consistency models Understand the

More information

EE382N (20): Computer Architecture - Parallelism and Locality Lecture 10 Parallelism in Software I

EE382N (20): Computer Architecture - Parallelism and Locality Lecture 10 Parallelism in Software I EE382 (20): Computer Architecture - Parallelism and Locality Lecture 10 Parallelism in Software I Mattan Erez The University of Texas at Austin EE382: Parallelilsm and Locality (c) Rodric Rabbah, Mattan

More information

Problem. Context. Hash table

Problem. Context. Hash table Problem In many problems, it is natural to use Hash table as their data structures. How can the hash table be efficiently accessed among multiple units of execution (UEs)? Context Hash table is used when

More information

Linked Lists: The Role of Locking. Erez Petrank Technion

Linked Lists: The Role of Locking. Erez Petrank Technion Linked Lists: The Role of Locking Erez Petrank Technion Why Data Structures? Concurrent Data Structures are building blocks Used as libraries Construction principles apply broadly This Lecture Designing

More information

Chapter 18: Database System Architectures.! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems!

Chapter 18: Database System Architectures.! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Chapter 18: Database System Architectures! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types 18.1 Centralized Systems! Run on a single computer system and

More information

Multiprocessor Systems. Chapter 8, 8.1

Multiprocessor Systems. Chapter 8, 8.1 Multiprocessor Systems Chapter 8, 8.1 1 Learning Outcomes An understanding of the structure and limits of multiprocessor hardware. An appreciation of approaches to operating system support for multiprocessor

More information

High Performance Computing. Introduction to Parallel Computing

High Performance Computing. Introduction to Parallel Computing High Performance Computing Introduction to Parallel Computing Acknowledgements Content of the following presentation is borrowed from The Lawrence Livermore National Laboratory https://hpc.llnl.gov/training/tutorials

More information

Design of Parallel Algorithms. Models of Parallel Computation

Design of Parallel Algorithms. Models of Parallel Computation + Design of Parallel Algorithms Models of Parallel Computation + Chapter Overview: Algorithms and Concurrency n Introduction to Parallel Algorithms n Tasks and Decomposition n Processes and Mapping n Processes

More information

Chapter 5. Concurrency Control Techniques. Adapted from the slides of Fundamentals of Database Systems (Elmasri et al., 2006)

Chapter 5. Concurrency Control Techniques. Adapted from the slides of Fundamentals of Database Systems (Elmasri et al., 2006) Chapter 5 Concurrency Control Techniques Adapted from the slides of Fundamentals of Database Systems (Elmasri et al., 2006) Chapter Outline Purpose of Concurrency Control Two-Phase Locking Techniques Concurrency

More information

CSE 613: Parallel Programming. Lecture 2 ( Analytical Modeling of Parallel Algorithms )

CSE 613: Parallel Programming. Lecture 2 ( Analytical Modeling of Parallel Algorithms ) CSE 613: Parallel Programming Lecture 2 ( Analytical Modeling of Parallel Algorithms ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2017 Parallel Execution Time & Overhead

More information

Cray XE6 Performance Workshop

Cray XE6 Performance Workshop Cray XE6 erformance Workshop odern HC Architectures David Henty d.henty@epcc.ed.ac.uk ECC, University of Edinburgh Overview Components History Flynn s Taxonomy SID ID Classification via emory Distributed

More information

Lecture: Transactional Memory. Topics: TM implementations

Lecture: Transactional Memory. Topics: TM implementations Lecture: Transactional Memory Topics: TM implementations 1 Summary of TM Benefits As easy to program as coarse-grain locks Performance similar to fine-grain locks Avoids deadlock 2 Design Space Data Versioning

More information

POSIX Threads: a first step toward parallel programming. George Bosilca

POSIX Threads: a first step toward parallel programming. George Bosilca POSIX Threads: a first step toward parallel programming George Bosilca bosilca@icl.utk.edu Process vs. Thread A process is a collection of virtual memory space, code, data, and system resources. A thread

More information

Lecture 21: Transactional Memory. Topics: Hardware TM basics, different implementations

Lecture 21: Transactional Memory. Topics: Hardware TM basics, different implementations Lecture 21: Transactional Memory Topics: Hardware TM basics, different implementations 1 Transactions New paradigm to simplify programming instead of lock-unlock, use transaction begin-end locks are blocking,

More information

A house of cards? Advanced Synchronization and Deadlock. Contra Threads: Events. Contra Threads: Events

A house of cards? Advanced Synchronization and Deadlock. Contra Threads: Events. Contra Threads: Events A house of cards? Advanced Synchronization and Deadlock Locks + CV/signal a great way to regulate access to a single shared object......but general multi-threaded programs touch multiple shared objects

More information

Review of previous examinations TMA4280 Introduction to Supercomputing

Review of previous examinations TMA4280 Introduction to Supercomputing Review of previous examinations TMA4280 Introduction to Supercomputing NTNU, IMF April 24. 2017 1 Examination The examination is usually comprised of: one problem related to linear algebra operations with

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

High Performance Computing (HPC) Introduction

High Performance Computing (HPC) Introduction High Performance Computing (HPC) Introduction Ontario Summer School on High Performance Computing Scott Northrup SciNet HPC Consortium Compute Canada June 25th, 2012 Outline 1 HPC Overview 2 Parallel Computing

More information

Analytical Modeling of Parallel Programs

Analytical Modeling of Parallel Programs Analytical Modeling of Parallel Programs Alexandre David Introduction to Parallel Computing 1 Topic overview Sources of overhead in parallel programs. Performance metrics for parallel systems. Effect of

More information

Software-Controlled Multithreading Using Informing Memory Operations

Software-Controlled Multithreading Using Informing Memory Operations Software-Controlled Multithreading Using Informing Memory Operations Todd C. Mowry Computer Science Department University Sherwyn R. Ramkissoon Department of Electrical & Computer Engineering University

More information

Concurrency: a crash course

Concurrency: a crash course Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer Concurrency: a crash course Concurrent computing Applications designed as a collection of computational units that may execute

More information

Concurrency: Principles of Deadlock. Processes and resources. Concurrency and deadlocks. Operating Systems Fall Processes need resources to run

Concurrency: Principles of Deadlock. Processes and resources. Concurrency and deadlocks. Operating Systems Fall Processes need resources to run Concurrency: Principles of Deadlock Operating Systems Fall 2002 Processes and resources Processes need resources to run CPU, memory, disk, etc process waiting for a resource cannot complete its execution

More information

USES AND ABUSES OF AMDAHL'S LAW *

USES AND ABUSES OF AMDAHL'S LAW * USES AND ABUSES OF AMDAHL'S LAW * S. Krishnaprasad Mathematical, Computing, and Information Sciences Jacksonville State University Jacksonville, AL 36265 Email: skp@jsucc.jsu.edu ABSTRACT Amdahl's law

More information

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads...

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads... OPENMP PERFORMANCE 2 A common scenario... So I wrote my OpenMP program, and I checked it gave the right answers, so I ran some timing tests, and the speedup was, well, a bit disappointing really. Now what?.

More information

Fundamentals of. Parallel Computing. Sanjay Razdan. Alpha Science International Ltd. Oxford, U.K.

Fundamentals of. Parallel Computing. Sanjay Razdan. Alpha Science International Ltd. Oxford, U.K. Fundamentals of Parallel Computing Sanjay Razdan Alpha Science International Ltd. Oxford, U.K. CONTENTS Preface Acknowledgements vii ix 1. Introduction to Parallel Computing 1.1-1.37 1.1 Parallel Computing

More information

Lecture 7: Parallel Processing

Lecture 7: Parallel Processing Lecture 7: Parallel Processing Introduction and motivation Architecture classification Performance evaluation Interconnection network Zebo Peng, IDA, LiTH 1 Performance Improvement Reduction of instruction

More information

Parallel access to linked data structures

Parallel access to linked data structures Parallel access to linked data structures [Solihin Ch. 5] Answer the questions below. Name some linked data structures. What operations can be performed on all of these structures? Why is it hard to parallelize

More information

Parallel Computing Basics, Semantics

Parallel Computing Basics, Semantics 1 / 15 Parallel Computing Basics, Semantics Landau s 1st Rule of Education Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support

More information

Chapter 18 - Multicore Computers

Chapter 18 - Multicore Computers Chapter 18 - Multicore Computers Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ Luis Tarrataca Chapter 18 - Multicore Computers 1 / 28 Table of Contents I 1 2 Where to focus your study Luis Tarrataca

More information

CSC630/CSC730 Parallel & Distributed Computing

CSC630/CSC730 Parallel & Distributed Computing CSC630/CSC730 Parallel & Distributed Computing Analytical Modeling of Parallel Programs Chapter 5 1 Contents Sources of Parallel Overhead Performance Metrics Granularity and Data Mapping Scalability 2

More information

COMP 308 Parallel Efficient Algorithms. Course Description and Objectives: Teaching method. Recommended Course Textbooks. What is Parallel Computing?

COMP 308 Parallel Efficient Algorithms. Course Description and Objectives: Teaching method. Recommended Course Textbooks. What is Parallel Computing? COMP 308 Parallel Efficient Algorithms Course Description and Objectives: Lecturer: Dr. Igor Potapov Chadwick Building, room 2.09 E-mail: igor@csc.liv.ac.uk COMP 308 web-page: http://www.csc.liv.ac.uk/~igor/comp308

More information

Lecture: Consistency Models, TM

Lecture: Consistency Models, TM Lecture: Consistency Models, TM Topics: consistency models, TM intro (Section 5.6) No class on Monday (please watch TM videos) Wednesday: TM wrap-up, interconnection networks 1 Coherence Vs. Consistency

More information

CSC 252: Computer Organization Spring 2018: Lecture 26

CSC 252: Computer Organization Spring 2018: Lecture 26 CSC 252: Computer Organization Spring 2018: Lecture 26 Instructor: Yuhao Zhu Department of Computer Science University of Rochester Action Items: Programming Assignment 4 grades out Programming Assignment

More information

Database Management System 21 Concurrency Control

Database Management System 21 Concurrency Control Concurrency Database Management System 21 Concurrency School of Computer Engineering, KIIT University 21.1 Concurrency Lost Update Problem This problem occurs when two transactions that access the same

More information

ECE 563 Spring 2016, Second Exam

ECE 563 Spring 2016, Second Exam 1 ECE 563 Spring 2016, Second Exam DO NOT START WORKING ON THIS UNTIL TOLD TO DO SO. LEAVE IT ON THE DESK. THE LAST PAGE IS THE ANSWER SHEET. TEAR IT OFF AND PUT ALL ANSWERS THERE. TURN IN BOTH PARTS OF

More information

Parallel Algorithm Design. CS595, Fall 2010

Parallel Algorithm Design. CS595, Fall 2010 Parallel Algorithm Design CS595, Fall 2010 1 Programming Models The programming model o determines the basic concepts of the parallel implementation and o abstracts from the hardware as well as from the

More information

CMSC 330: Organization of Programming Languages. Concurrency & Multiprocessing

CMSC 330: Organization of Programming Languages. Concurrency & Multiprocessing CMSC 330: Organization of Programming Languages Concurrency & Multiprocessing Multiprocessing Multiprocessing: The use of multiple parallel computations We have entered an era of multiple cores... Hyperthreading

More information

Contribution:javaMultithreading Multithreading Prof. Dr. Ralf Lämmel Universität Koblenz-Landau Software Languages Team

Contribution:javaMultithreading Multithreading Prof. Dr. Ralf Lämmel Universität Koblenz-Landau Software Languages Team http://101companies.org/wiki/ Contribution:javaMultithreading Multithreading Prof. Dr. Ralf Lämmel Universität Koblenz-Landau Software Languages Team Non-101samples available here: https://github.com/101companies/101repo/tree/master/technologies/java_platform/samples/javathreadssamples

More information

Interconnect Technology and Computational Speed

Interconnect Technology and Computational Speed Interconnect Technology and Computational Speed From Chapter 1 of B. Wilkinson et al., PARAL- LEL PROGRAMMING. Techniques and Applications Using Networked Workstations and Parallel Computers, augmented

More information

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it Lab 1 Starts Today Already posted on Canvas (under Assignment) Let s look at it CS 590: High Performance Computing Parallel Computer Architectures Fengguang Song Department of Computer Science IUPUI 1

More information