Using Multi-Level Graphs for Timetable Information. Frank Schulz, Dorothea Wagner, and Christos Zaroliagis

Size: px
Start display at page:

Download "Using Multi-Level Graphs for Timetable Information. Frank Schulz, Dorothea Wagner, and Christos Zaroliagis"

Transcription

1 Using Multi-Level Graphs for Timetable Information Frank Schulz, Dorothea Wagner, and Christos Zaroliagis

2 Overview 1 1. Introduction Timetable Information - A Shortest Path Problem 2. Multi-Level Graphs Speed-Up Technique for Shortest Path Algorithms 3. Timetable Information Graphs 4. Experiments 5. Conclusion & Outlook

3 Overview 2 1. Introduction Timetable Information - A Shortest Path Problem 2. Multi-Level Graphs Speed-Up Technique for Shortest Path Algorithms 3. Timetable Information Graphs 4. Experiments 5. Conclusion & Outlook

4 Application Scenario 3 Timetable Information System Large timetable (e.g., departures, stations) Central server (e.g., 100 on-line queries per second) Fast Algorithm Simple Queries Input: departure and arrival station, departure time Output: train connection with earliest arrival time

5 Shortest Path Problem 4 Graph model Solving a query finding a shortest path Speed-up techniques needed Commercial products Heuristics that don t guarantee optimality Scientific work Geometric techniques Hierarchical graph decomposition

6 Contribution 5 Multi-Level Graph Approach Hierarchical graph decomposition technique For general digraphs Idea Preprocessing: Construct multiple levels of additional edges On-Line Phase: Compute shortest paths in small subgraphs Experimental Evaluation For the given application scenario With real data

7 Overview 6 1. Introduction 2. Multi-Level Graphs 3. Timetable Information Graphs 4. Experiments 5. Conclusion & Outlook

8 Multi-Level Graphs 7 Given a weighted digraph G = (V, E) a sequence of subsets of V V S 1... S l Outline Construct l levels of additional edges M(G) Component Tree Define subgraph of M(G) for a pair s, t V Use subgraph to compute s-t shortest path

9 Multi-Level Graphs 7 Given a weighted digraph G = (V, E) a sequence of subsets of V V S 1... S l Outline Construct l levels of additional edges M(G) Component Tree Define subgraph of M(G) for a pair s, t V Use subgraph to compute s-t shortest path

10 Level Construction 8 a b c G G = (V, E), S 1 = {a, b, c}, S 2 = {a, c}

11 Level Construction 8 Level 1 Level 0 a b c G Connected Components in G S 1

12 Level Construction 8 Level 1 Level 0 a b c G No internal vertex of path belongs to S 1

13 Level Construction 8 Level 1 Level 0 a b c G Edge in level 1

14 Level Construction 8 Level 1 Level 0 a b c G No internal vertex of path belongs to S 1

15 Level Construction 8 Level 1 Level 0 a b c G Edge in level 1

16 Level Construction 8 Level 1 Level 0 a b c G No internal vertex of path belongs to S 1

17 Level Construction 8 Level 1 Level 0 a b c G Edge in level 1

18 Level Construction 8 Level 1 E 1 Level 0 a b c G All edges in level 1

19 Level Construction 8 Level 1 E 1 Consider now iteratively graph (S 1, E 1 )

20 Level Construction 8 Level 2 E 2 Level 1 E 1 Connected components in G S 2

21 Level Construction 8 Level 2 E 2 Level 1 E 1 No internal vertex of path belongs to S 2

22 Level Construction 8 Level 2 E 2 Level 1 E 1 Edge in level 2

23 Level Construction 8 Level 2 E 2 Level 1 E 1 All edges in level 2

24 Level Construction 8 Level 2 E 2 Level 1 E 1 Level 0 a b c G 3-Level Graph M(G, S 1, S 2 )

25 Multi-Level Graphs 9 Given a weighted digraph G = (V, E) a sequence of subsets of V V S 1... S l Outline Construct l levels of additional edges M(G) Component Tree Define subgraph of M(G) for a pair s, t V Use subgraph to compute s-t shortest path

26 Component Tree 10 Level 2 E 2 Level 1 E 1 Level 0 G

27 Component Tree 10 Level 2 Level 1 Level 0

28 Component Tree 10 root Level 2 Level 1 Level 0

29 Component Tree 10 root Level 2 Level 1 Level 0

30 Component Tree 10 root Level 2 Level 1 Level 0

31 Component Tree 10 root Level 2 Level 1 Level 0

32 Multi-Level Graphs 11 Given a weighted digraph G = (V, E) a sequence of subsets of V V S 1... S l Outline Construct l levels of additional edges M(G) Component Tree Define subgraph of M(G) for a pair s, t V Use subgraph to compute s-t shortest path

33 Define Subgraph 12 root Level 2 Level 1 Level 0 s t

34 Define Subgraph 12 root Level 2 Level 1 Level 0 s t

35 Define Subgraph 12 root Level 2 E 2 Level 1 E 1 Level 0 s t G

36 Define Subgraph 12 root Level 2 E 2 Level 1 E 1 Level 0 s t G

37 Define Subgraph 12 root Level 2 E 2 Level 1 E 1 Level 0 s t G

38 Define Subgraph 12 root Level 2 E 2 Level 1 E 1 Level 0 s t G

39 Multi-Level Graphs 13 Given a weighted digraph G = (V, E) a sequence of subsets of V V S 1... S l Outline Construct l levels of additional edges M(G) Component Tree Define subgraph of M(G) for a pair s, t V Use subgraph to compute s-t shortest path

40 Lemma 14 The length of a shortest s-t path is the same in the s-t subgraph of M(G) and G. Subgraph of M(G): s t Original Graph G: G

41 A Different Pair s, t 15 root Level 2 Level 1 Level 0 s t

42 A Different Pair s, t 15 Level 2 E 2 Level 1 E 1 Level 0 s t G

43 A Different Pair s, t 15 Level 2 Level 1 E 1 Level 0 s t

44 Overview Introduction 2. Multi-Level Graphs 3. Timetable Information Graphs 4. Experiments 5. Conclusion & Outlook

45 Station Graph 17 Patras Korinthos Athens

46 Train Graph 18 Patras Korinthos Athens

47 Train Graph 18 00:00 Patras Korinthos Athens 24:00 time

48 Train Graph 18 00:00 Patras Korinthos Athens 24:00 time

49 Train Graph 18 00:00 Patras Korinthos Athens 24:00 time

50 Query 19 Single-source some-targets shortest path problem 00:00 Patras Korinthos Athens 10:00 departure 24:00 time arrival

51 Multi-Level Train Graph 20 Given l subsets of stations Σ 1... Σ l Component tree in station graph Define subgraph for a pair of stations

52 Overview Introduction 2. Multi-Level Graphs 3. Timetable Information Graphs 4. Experiments 5. Conclusion & Outlook

53 Experiments 22 Given one instance G of a traingraph Timetable of German trains, winter 1996/ vertices, 7000 stations Evaluate multi-level train graph M(G, Σ 1,..., Σ l ) Investigate dependence on number of levels input sequence Σ 1... Σ l

54 23 Sets of stations Σ i Three criteria to sort stations A Importance regarding train changes B Degree in station graph C Random Consider the first n j stations according to A, B, C n 1 = 1974,..., n 10 = 50 Sets of stations Σ A j, ΣB j, ΣC j

55 2-Level Graphs M(G, Σ X j ) 24 Number of Additional Edges 7e+06 6e+06 importance degree random 5e+06 4e+06 3e+06 2e+06 1e

56 Evaluation of M(G, Σ 1,..., Σ l ) 25 Consider only criterion A in the following Average Speed-up over queries r = Runtime for Dijkstra in G q = Runtime for Dijkstra in subgraph of M Speed-up = r/q

57 2-Level Graphs M(G, Σ A j ) 26 Average Speed-up 4 speedup

58 27 Problem with small Σ A j Big components Level 1 rarely used Level 1 E 1 Level 0 s t G

59 2-Level Graphs M(G, Σ A j ) Queries Using Level 1 speedup of queries using level 1 percentage of queries using level

60 3-Level Graphs M(G, Σ A j, ΣA k ) 29 Average Speed-up

61 l-level Graphs M(G, Σ 1,..., Σ l 1 ) 30 Best Average Speed-up (CPU-time, #Edges hit) CPU-speedup edge-speedup

62 Overview Introduction 2. Multi-Level Graphs 3. Timetable Information Graphs 4. Experiments 5. Conclusion & Outlook

63 Conclusion & Outlook 32 Experimental evaluation of multi-level graphs Input graph from timetable information Best number of levels: 4, 5 Sizes of Σ i are crucial Outlook Other input graphs Relation (Σ 1,..., Σ l ) speed-up Here: Criteria A, B, C; Sizes of Σ i Theoretical analysis

64 Overview Introduction 2. Multi-Level Graphs 3. Timetable Information Graphs 4. Experiments 5. Conclusion & Outlook

Effiziente Algorithmen für ein Fahrplanauskunftsystem

Effiziente Algorithmen für ein Fahrplanauskunftsystem Universität Konstanz Effiziente Algorithmen für ein Fahrplanauskunftsystem Frank Schulz Konstanzer Schriften in Mathematik und Informatik Nr. 11, Januar 2 ISSN 143 3558 c Fakultät für Mathematik und Informatik

More information

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries Engineering Multi-Level Overlay Graphs for Shortest-Path Queries Martin Holzer Frank Schulz Dorothea Wagner Abstract An overlay graph of a given graph G =(V,E) on a subset S V is a graph with vertex set

More information

Dynamic Highway-Node Routing

Dynamic Highway-Node Routing Schultes/Sanders: Dynamic Highway-Node Routing 1 Dynamic Highway-Node Routing Dominik Schultes Peter Sanders Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe (TH) http://algo2.iti.uka.de/schultes/hwy/

More information

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries Engineering Multi-Level Overlay Graphs for Shortest-Path Queries MARTIN HOLZER, FRANK SCHULZ, and DOROTHEA WAGNER University of Karlsruhe An overlay graph of a given graph G = (V, E) on a subset S V is

More information

Point-to-Point Shortest Path Algorithms with Preprocessing

Point-to-Point Shortest Path Algorithms with Preprocessing Point-to-Point Shortest Path Algorithms with Preprocessing Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Joint work with Chris Harrelson, Haim Kaplan, and Retato

More information

Experimental Study on Speed-Up Techniques for Timetable Information Systems

Experimental Study on Speed-Up Techniques for Timetable Information Systems Experimental Study on Speed-Up Techniques for Timetable Information Systems Reinhard Bauer (rbauer@ira.uka.de) Daniel Delling (delling@ira.uka.de) Dorothea Wagner (wagner@ira.uka.de) ITI Wagner, Universität

More information

Highway Hierarchies (Dominik Schultes) Presented by: Andre Rodriguez

Highway Hierarchies (Dominik Schultes) Presented by: Andre Rodriguez Highway Hierarchies (Dominik Schultes) Presented by: Andre Rodriguez Central Idea To go from Tallahassee to Gainesville*: Get to the I-10 Drive on the I-10 Get to Gainesville (8.8 mi) (153 mi) (1.8 mi)

More information

Reach for A : an Efficient Point-to-Point Shortest Path Algorithm

Reach for A : an Efficient Point-to-Point Shortest Path Algorithm Reach for A : an Efficient Point-to-Point Shortest Path Algorithm Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Joint with Haim Kaplan and Renato Werneck Einstein

More information

Performance Analysis of Parallel Speedup Techniques for Shortest Path Queries in Networks of Random and Planar Types

Performance Analysis of Parallel Speedup Techniques for Shortest Path Queries in Networks of Random and Planar Types Performance Analysis of Parallel Speedup Techniques for Shortest Path Queries in Networks of Random and Planar Types R.Kalpana Department of CSE Pondicherry Engineering College Puducherry P.Thambidurai

More information

Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem

Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem Bin Hu Günther R. Raidl Vienna University of Technology Favoritenstraße 9 11/1861 1040

More information

The Theoretical Framework of the Optimization of Public Transport Travel

The Theoretical Framework of the Optimization of Public Transport Travel The Theoretical Framework of the Optimization of Public Transport Travel Jolanta Koszelew # # Faculty of Computer Science, Bialystok Technical University, Wiejska A, - Bialystok, Poland jolka@ii.pb.bialystok.pl

More information

Algorithm Engineering for Route Planning: An Update International Symposium on Algorithms and Computation 2011 Dorothea Wagner December 6, 2011

Algorithm Engineering for Route Planning: An Update International Symposium on Algorithms and Computation 2011 Dorothea Wagner December 6, 2011 Algorithm Engineering for Route Planning: An Update International Symposium on Algorithms and Computation 2011 Dorothea Wagner December 6, 2011 FACULTY FOR INFORMATICS INSTITUTE OF THEORETICAL INFORMATICS

More information

Engineering Time-Expanded Graphs for Faster Timetable Information

Engineering Time-Expanded Graphs for Faster Timetable Information Engineering Time-Expanded Graphs for Faster Timetable Information Daniel Delling, Thomas Pajor, and Dorothea Wagner Department of Computer Science, University of Karlsruhe, P.O. Box 6980, 76128 Karlsruhe,

More information

Dijkstra s Algorithm On Line: An Empirical Case Study from Public Railroad Transport

Dijkstra s Algorithm On Line: An Empirical Case Study from Public Railroad Transport Dijkstra s Algorithm On Line: An Empirical Case Study from Public Railroad Transport Frank Schulz, Dorothea Wagner, and Karsten Weihe Universität Konstanz, Fakultät für Mathematik und Informatik Fach D188,

More information

A real-time conflict resolution algorithm for the train rescheduling problem

A real-time conflict resolution algorithm for the train rescheduling problem A real-time conflict resolution algorithm for the train rescheduling problem Andrea Bettinelli, Alberto Santini, Daniele Vigo February 17, 2016 OR-Unibo Operational Research Group @OR_Unibo Thanks for

More information

Highway Hierarchies Hasten Exact Shortest Path Queries

Highway Hierarchies Hasten Exact Shortest Path Queries Sanders/Schultes: Highway Hierarchies 1 Highway Hierarchies Hasten Exact Shortest Path Queries Peter Sanders and Dominik Schultes Universität Karlsruhe October 2005 Sanders/Schultes: Highway Hierarchies

More information

Combining Speedup Techniques based on Landmarks and Containers

Combining Speedup Techniques based on Landmarks and Containers Combining Speedup Techniques based on Landmarks and Containers R. KALPANA Department of Computer Science & Engineering Pondicherry Engineering College Pondicherry, India rkalpana@pec.edu Dr. P. THAMBIDURAI

More information

R. Kalpana #1 P. Thambidurai *2. Puducherry, India. Karaikal, Puducherry, India

R. Kalpana #1 P. Thambidurai *2. Puducherry, India. Karaikal, Puducherry, India Re-optimizing the Performance of Shortest Path Queries Using ized Combining Speedup Technique based on Arc flags and Approach R. Kalpana # P. Thambidurai * # Department of Computer Science & Engineering,

More information

Engineering shortest-path algorithms for dynamic networks

Engineering shortest-path algorithms for dynamic networks Engineering shortest-path algorithms for dynamic networks Mattia D Emidio and Daniele Frigioni Department of Information Engineering, Computer Science and Mathematics, University of L Aquila, Via Gronchi

More information

Fast Hierarchical Clustering via Dynamic Closest Pairs

Fast Hierarchical Clustering via Dynamic Closest Pairs Fast Hierarchical Clustering via Dynamic Closest Pairs David Eppstein Dept. Information and Computer Science Univ. of California, Irvine http://www.ics.uci.edu/ eppstein/ 1 My Interest In Clustering What

More information

Objective of the present work

Objective of the present work Objective of the present work Optimize Road Network Optimize Airline Network Optimize Rail Network Optimize Computer Network Optimize Social Network Spanners and Emulators For most graph algorithms, the

More information

Computer Networks. Routing

Computer Networks. Routing Computer Networks Routing Topics Link State Routing (Continued) Hierarchical Routing Broadcast Routing Sending distinct packets Flooding Multi-destination routing Using spanning tree Reverse path forwarding

More information

Lecture 6 Basic Graph Algorithms

Lecture 6 Basic Graph Algorithms CS 491 CAP Intro to Competitive Algorithmic Programming Lecture 6 Basic Graph Algorithms Uttam Thakore University of Illinois at Urbana-Champaign September 30, 2015 Updates ICPC Regionals teams will be

More information

Route Planning in Road Networks

Route Planning in Road Networks Sanders/Schultes: Route Planning 1 Route Planning in Road Networks simple, flexible, efficient Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe (TH)

More information

Chapter 12. Routing and Routing Protocols 12-1

Chapter 12. Routing and Routing Protocols 12-1 Chapter 12 Routing and Routing Protocols 12-1 Routing in Circuit Switched Network Many connections will need paths through more than one switch Need to find a route Efficiency Resilience Public telephone

More information

An Extended Shortest Path Problem with Switch Cost Between Arcs

An Extended Shortest Path Problem with Switch Cost Between Arcs An Extended Shortest Path Problem with Switch Cost Between Arcs Xiaolong Ma, Jie Zhou Abstract Computing the shortest path in a graph is an important problem and it is very useful in various applications.

More information

Connection Scan. Julian Dibbelt, Thomas Pajor, Ben Strasser, Dorothea Wagner.

Connection Scan. Julian Dibbelt, Thomas Pajor, Ben Strasser, Dorothea Wagner. Connection Scan Julian Dibbelt, Thomas Pajor, Ben Strasser, Dorothea Wagner KIT - INSTITUTE OF THEORETICAL INFORMATICS - CHAIR PROF. DR. WAGNER Karlsruhe Hbf RB 36638 9:08 RB RE RB Bruchsal 9:19 39086

More information

Approximation Method to Route Generation in Public Transportation Network

Approximation Method to Route Generation in Public Transportation Network dr Jolanta Koszelew Katedra Informatyki Teoretycznej Wydział Informatyki Politechnika Białostocka Approximation Method to Route Generation in Public Transportation Network Abstract This paper presents

More information

Engineering Time-Expanded Graphs for Faster Timetable Information

Engineering Time-Expanded Graphs for Faster Timetable Information Engineering Time-Expanded Graphs for Faster Timetable Information Daniel Delling, Thomas Pajor, and Dorothea Wagner Department of Computer Science, University of Karlsruhe, P.O. Box 6980, 76128 Karlsruhe,

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

Combining Speed-up Techniques for Shortest-Path Computations

Combining Speed-up Techniques for Shortest-Path Computations Combining Speed-up Techniques for Shortest-Path Computations Martin Holzer, Frank Schulz, and Thomas Willhalm Universität Karlsruhe Fakultät für Informatik Postfach 6980 76128 Karlsruhe Germany {mholzer,fschulz,willhalm}@ira.uka.de

More information

A host selection model for a distributed bandwidth broker

A host selection model for a distributed bandwidth broker A host selection model for a distributed bandwidth broker Christos Bouras Dimitris Primpas Research Academic Computer Technology Institute, Ν.Κazantzaki Str., Patras University 26500 Rion, Patras, Greece

More information

William Stallings Data and Computer Communications. Chapter 10 Packet Switching

William Stallings Data and Computer Communications. Chapter 10 Packet Switching William Stallings Data and Computer Communications Chapter 10 Packet Switching Principles Circuit switching designed for voice Resources dedicated to a particular call Much of the time a data connection

More information

Algorithms Dr. Haim Levkowitz

Algorithms Dr. Haim Levkowitz 91.503 Algorithms Dr. Haim Levkowitz Fall 2007 Lecture 4 Tuesday, 25 Sep 2007 Design Patterns for Optimization Problems Greedy Algorithms 1 Greedy Algorithms 2 What is Greedy Algorithm? Similar to dynamic

More information

arxiv: v1 [cs.ds] 5 Oct 2010

arxiv: v1 [cs.ds] 5 Oct 2010 Engineering Time-dependent One-To-All Computation arxiv:1010.0809v1 [cs.ds] 5 Oct 2010 Robert Geisberger Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany geisberger@kit.edu October 6, 2010 Abstract

More information

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen University of Copenhagen Outline Motivation and Background Minimum-Weight Spanner Problem Greedy Spanner Algorithm Exact Algorithm:

More information

CS200: Graphs. Rosen Ch , 9.6, Walls and Mirrors Ch. 14

CS200: Graphs. Rosen Ch , 9.6, Walls and Mirrors Ch. 14 CS200: Graphs Rosen Ch. 9.1-9.4, 9.6, 10.4-10.5 Walls and Mirrors Ch. 14 Trees as Graphs Tree: an undirected connected graph that has no cycles. A B C D E F G H I J K L M N O P Rooted Trees A rooted tree

More information

Topology. Youki Kadobayashi NAIST. Outline. Routing system: its function. Gateway Model Revisited. Routing system: its structure

Topology. Youki Kadobayashi NAIST. Outline. Routing system: its function. Gateway Model Revisited. Routing system: its structure Information Network 1 Routing (1) Topology Topology 1: 2a (1): a branch of mathematics concerned with those properties of geometric configurations (as point sets) which are unaltered by elastic deformations

More information

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I MCA 312: Design and Analysis of Algorithms [Part I : Medium Answer Type Questions] UNIT I 1) What is an Algorithm? What is the need to study Algorithms? 2) Define: a) Time Efficiency b) Space Efficiency

More information

1. Let n and m be positive integers with n m. a. Write the inclusion/exclusion formula for the number S(n, m) of surjections from {1, 2,...

1. Let n and m be positive integers with n m. a. Write the inclusion/exclusion formula for the number S(n, m) of surjections from {1, 2,... MATH 3012, Quiz 3, November 24, 2015, WTT Student Name and ID Number 1. Let n and m be positive integers with n m. a. Write the inclusion/exclusion formula for the number S(n, m) of surjections from {1,

More information

Engineering Planar Separator Algorithms

Engineering Planar Separator Algorithms ngineering Planar Separator Algorithms Martin Holzer Grigorios Prasinos Frank Schulz Dorothea Wagner Christos Zaroliagis July 12, 2005 Abstract We consider classical linear-time planar separator algorithms,

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

Accurate High-Performance Route Planning

Accurate High-Performance Route Planning Sanders/Schultes: Route Planning 1 Accurate High-Performance Route Planning Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe (TH) http://algo2.iti.uka.de/schultes/hwy/

More information

Computing Many-to-Many Shortest Paths Using Highway Hierarchies

Computing Many-to-Many Shortest Paths Using Highway Hierarchies Computing Many-to-Many Shortest Paths Using Highway Hierarchies Abstract Sebastian Knopp Peter Sanders Dominik Schultes Frank Schulz We present a fast algorithm for computing all shortest paths between

More information

Large Scale Graph Algorithms

Large Scale Graph Algorithms Large Scale Graph Algorithms A Guide to Web Research: Lecture 2 Yury Lifshits Steklov Institute of Mathematics at St.Petersburg Stuttgart, Spring 2007 1 / 34 Talk Objective To pose an abstract computational

More information

Spanning Trees. Lecture 20 CS2110 Spring 2015

Spanning Trees. Lecture 20 CS2110 Spring 2015 1 Spanning Trees Lecture 0 CS110 Spring 01 1 Undirected trees An undirected graph is a tree if there is exactly one simple path between any pair of vertices Root of tree? It doesn t matter choose any vertex

More information

Low-Stretch Spanning Tree on Benchmark Circuits

Low-Stretch Spanning Tree on Benchmark Circuits Low-Stretch Spanning Tree on Benchmark Circuits Yujie An and Igor Markov Department of Electrical Engineering and Computer Science University of Michigan July 8, 2013 Abstract We show the testing results

More information

CONSTRUCTION AND EVALUATION OF MESHES BASED ON SHORTEST PATH TREE VS. STEINER TREE FOR MULTICAST ROUTING IN MOBILE AD HOC NETWORKS

CONSTRUCTION AND EVALUATION OF MESHES BASED ON SHORTEST PATH TREE VS. STEINER TREE FOR MULTICAST ROUTING IN MOBILE AD HOC NETWORKS CONSTRUCTION AND EVALUATION OF MESHES BASED ON SHORTEST PATH TREE VS. STEINER TREE FOR MULTICAST ROUTING IN MOBILE AD HOC NETWORKS 1 JAMES SIMS, 2 NATARAJAN MEGHANATHAN 1 Undergrad Student, Department

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Dynamic Shortest Paths Containers

Dynamic Shortest Paths Containers Electronic Notes in Theoretical Computer Science 92 No. 1 (2003) URL: http://www.elsevier.nl/locate/entcs/volume92.html 19 pages Dynamic Shortest Paths Containers Dorothea Wagner a,1, Thomas Willhalm a,1,

More information

Faster Multiobjective Heuristic Search in Road Maps * Georgia Mali 1,2, Panagiotis Michail 1,2 and Christos Zaroliagis 1,2 1

Faster Multiobjective Heuristic Search in Road Maps * Georgia Mali 1,2, Panagiotis Michail 1,2 and Christos Zaroliagis 1,2 1 Faster Multiobjective Heuristic Search in Road Maps * Georgia Mali,, Panagiotis Michail, and Christos Zaroliagis, Computer Technology Institute & Press Diophantus, N. Kazantzaki Str., Patras University

More information

Highway Hierarchies Star

Highway Hierarchies Star Delling/Sanders/Schultes/Wagner: Highway Hierarchies Star 1 Highway Hierarchies Star Daniel Delling Dominik Schultes Peter Sanders Dorothea Wagner Institut für Theoretische Informatik Algorithmik I/II

More information

CSE 431/531: Analysis of Algorithms. Greedy Algorithms. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo

CSE 431/531: Analysis of Algorithms. Greedy Algorithms. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo CSE 431/531: Analysis of Algorithms Greedy Algorithms Lecturer: Shi Li Department of Computer Science and Engineering University at Buffalo Main Goal of Algorithm Design Design fast algorithms to solve

More information

Efficient algorithms for the 2-Way Multi Modal Shortest Path Problem

Efficient algorithms for the 2-Way Multi Modal Shortest Path Problem Efficient algorithms for the 2-Way Multi Modal Shortest Path Problem Marie-José Huguet, Dominik Kirchler, Pierre Parent, Roberto Wolfler Calvo To cite this version: Marie-José Huguet, Dominik Kirchler,

More information

Multi-criteria Shortest Paths in Time-Dependent Train Networks

Multi-criteria Shortest Paths in Time-Dependent Train Networks Multi-criteria Shortest Paths in Time-Dependent Train Networks Yann Disser 1,MatthiasMüller Hannemann 2,andMathiasSchnee 1 1 Technische Universität Darmstadt, Department of Computer Science, Hochschulstraße

More information

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel.

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel. CS261, Winter 2017. Instructor: Ashish Goel. Problem set 2 Electronic submission to Gradescope due 11:59pm Thursday 2/16. Form a group of 2-3 students that is, submit one homework with all of your names.

More information

LECTURE 26 PRIM S ALGORITHM

LECTURE 26 PRIM S ALGORITHM DATA STRUCTURES AND ALGORITHMS LECTURE 26 IMRAN IHSAN ASSISTANT PROFESSOR AIR UNIVERSITY, ISLAMABAD STRATEGY Suppose we take a vertex Given a single vertex v 1, it forms a minimum spanning tree on one

More information

Experimental Study on Speed-Up Techniques for Timetable Information Systems

Experimental Study on Speed-Up Techniques for Timetable Information Systems Experimental Study on Speed-Up Techniques for Timetable Information Systems Reinhard Bauer, Daniel Delling, and Dorothea Wagner Universität Karlsruhe (TH), 76128 Karlsruhe, Germany, {rbauer,delling,wagner}@ira.uka.de

More information

CIS 121 Data Structures and Algorithms Minimum Spanning Trees

CIS 121 Data Structures and Algorithms Minimum Spanning Trees CIS 121 Data Structures and Algorithms Minimum Spanning Trees March 19, 2019 Introduction and Background Consider a very natural problem: we are given a set of locations V = {v 1, v 2,..., v n }. We want

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 350 - Algorithms and Complexity Graph Theory, Midterm Review Sean Anderson 2/6/18 Portland State University Table of contents 1. Graph Theory 2. Graph Problems 3. Uninformed Exhaustive Search 4. Informed

More information

CS 270 Algorithms. Oliver Kullmann. Analysing BFS. Depth-first search. Analysing DFS. Dags and topological sorting.

CS 270 Algorithms. Oliver Kullmann. Analysing BFS. Depth-first search. Analysing DFS. Dags and topological sorting. General remarks Week 5 2 We finish, by analysing it. Then we consider the second main graph- algorithm, depth-first (). And we consider one application of, of graphs. Reading from CLRS for week 5 Chapter

More information

Seminar on Algorithms and Data Structures: Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees [1]

Seminar on Algorithms and Data Structures: Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees [1] Seminar on Algorithms and Data Structures: Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees [1] Philipp Rimle April 14, 2018 1 Introduction Given a graph with positively real-weighted undirected

More information

Accurate High-Performance Route Planning

Accurate High-Performance Route Planning Sanders/Schultes: Route Planning 1 Accurate High-Performance Route Planning Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe (TH) Eindhoven, March

More information

Location-Based Services & Route Planning

Location-Based Services & Route Planning Praktikum Mobile und Verteilte Systeme Location-Based Services & Route Planning Prof. Dr. Claudia Linnhoff-Popien André Ebert, Sebastian Feld http://www.mobile.ifi.lmu.de WS 2017/18 Praktikum Mobile und

More information

Single Source Shortest Path

Single Source Shortest Path Single Source Shortest Path A directed graph G = (V, E) and a pair of nodes s, d is given. The edges have a real-valued weight W i. This time we are looking for the weight and the shortest path from s

More information

arxiv: v1 [cs.ds] 17 Mar 2017

arxiv: v1 [cs.ds] 17 Mar 2017 Connection Scan Algorithm Julian Dibbelt, Thomas Pajor, Ben Strasser, Dorothea Wagner Karlsruhe Institute of Technology (KIT), Germany work done while at KIT algo@dibbelt.de thomas@tpajor.com strasser@kit.edu

More information

High-Level Synthesis

High-Level Synthesis High-Level Synthesis 1 High-Level Synthesis 1. Basic definition 2. A typical HLS process 3. Scheduling techniques 4. Allocation and binding techniques 5. Advanced issues High-Level Synthesis 2 Introduction

More information

i,4,2 i,4,1 i,3,2 i,2,2 i,3,1 i direct connection; weight = 0 connection with a change; weight =

i,4,2 i,4,1 i,3,2 i,2,2 i,3,1 i direct connection; weight = 0 connection with a change; weight = Electronic Notes in Theoretical Computer Science 50 No. 1 (2001) Proc. ATMOS 2001 URL: http://www.elsevier.nl/locate/entcs/volume50.html 11 pages Web-Based Integrated Timetable Information System for Railways

More information

Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU

Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU Lifan Xu Wei Wang Marco A. Alvarez John Cavazos Dongping Zhang Department of Computer and Information Science University of Delaware

More information

Minimum spanning trees

Minimum spanning trees Carlos Moreno cmoreno @ uwaterloo.ca EI-3 https://ece.uwaterloo.ca/~cmoreno/ece5 Standard reminder to set phones to silent/vibrate mode, please! During today's lesson: Introduce the notion of spanning

More information

Testing the Cluster Structure of Graphs Christian Sohler

Testing the Cluster Structure of Graphs Christian Sohler Testing the Cluster Structure of Graphs Christian Sohler Very Large Networks Examples Social networks The World Wide Web Cocitation graphs Coauthorship graphs Data size GigaByte upto TeraByte (only the

More information

A Parallel Algorithm for the Single-Source Shortest Path Problem

A Parallel Algorithm for the Single-Source Shortest Path Problem A Parallel Algorithm for the Single-Source Shortest Path Problem Kevin Kelley, Tao Schardl May 12, 2010 Outline The Problem Dijkstra s Algorithm Gabow s Scaling Algorithm Optimizing Gabow Parallelizing

More information

Machine Learning based Compilation

Machine Learning based Compilation Machine Learning based Compilation Michael O Boyle March, 2014 1 Overview Machine learning - what is it and why is it useful? Predictive modelling OSE Scheduling and low level optimisation Loop unrolling

More information

Practical Session No. 12 Graphs, BFS, DFS, Topological sort

Practical Session No. 12 Graphs, BFS, DFS, Topological sort Practical Session No. 12 Graphs, BFS, DFS, Topological sort Graphs and BFS Graph G = (V, E) Graph Representations (V G ) v1 v n V(G) = V - Set of all vertices in G E(G) = E - Set of all edges (u,v) in

More information

Week 5. 1 Analysing BFS. 2 Depth-first search. 3 Analysing DFS. 4 Dags and topological sorting. 5 Detecting cycles. CS 270 Algorithms.

Week 5. 1 Analysing BFS. 2 Depth-first search. 3 Analysing DFS. 4 Dags and topological sorting. 5 Detecting cycles. CS 270 Algorithms. 1 2 Week 5 3 4 5 General remarks We finish, by analysing it. Then we consider the second main graph- algorithm, depth-first (). And we consider one application of, of graphs. Reading from CLRS for week

More information

CS161 - Minimum Spanning Trees and Single Source Shortest Paths

CS161 - Minimum Spanning Trees and Single Source Shortest Paths CS161 - Minimum Spanning Trees and Single Source Shortest Paths David Kauchak Single Source Shortest Paths Given a graph G and two vertices s, t what is the shortest path from s to t? For an unweighted

More information

Connecting LANs. Required reading: Forouzan 17.1 to 17.1 Garcia 6.11 (intro ) CSE 3213, Fall Instructor: N. Vlajic

Connecting LANs. Required reading: Forouzan 17.1 to 17.1 Garcia 6.11 (intro ) CSE 3213, Fall Instructor: N. Vlajic 1 Connecting LANs Required reading: Forouzan 17.1 to 17.1 Garcia 6.11 (intro + 6.11.1) CSE 3213, Fall 20105 Instructor: N. Vlajic Connecting Devices 2 Why Connecting Devices in LANs? (1) LANs do not normally

More information

CS 270 Algorithms. Oliver Kullmann. Breadth-first search. Analysing BFS. Depth-first. search. Analysing DFS. Dags and topological sorting.

CS 270 Algorithms. Oliver Kullmann. Breadth-first search. Analysing BFS. Depth-first. search. Analysing DFS. Dags and topological sorting. Week 5 General remarks and 2 We consider the simplest graph- algorithm, breadth-first (). We apply to compute shortest paths. Then we consider the second main graph- algorithm, depth-first (). And we consider

More information

Highway Dimension and Provably Efficient Shortest Paths Algorithms

Highway Dimension and Provably Efficient Shortest Paths Algorithms Highway Dimension and Provably Efficient Shortest Paths Algorithms Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Joint with Ittai Abraham, Amos Fiat, and Renato

More information

About the Author. Dependency Chart. Chapter 1: Logic and Sets 1. Chapter 2: Relations and Functions, Boolean Algebra, and Circuit Design

About the Author. Dependency Chart. Chapter 1: Logic and Sets 1. Chapter 2: Relations and Functions, Boolean Algebra, and Circuit Design Preface About the Author Dependency Chart xiii xix xxi Chapter 1: Logic and Sets 1 1.1: Logical Operators: Statements and Truth Values, Negations, Conjunctions, and Disjunctions, Truth Tables, Conditional

More information

Point Cloud Collision Detection

Point Cloud Collision Detection Point Cloud Collision Detection Modern acquisition methods lead to modern object representations. Efficient rendering (splatting & ray-tracing). Only little work on interaction. Goals Fast collision detection

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

Elementary Graph Algorithms: Summary. Algorithms. CmSc250 Intro to Algorithms

Elementary Graph Algorithms: Summary. Algorithms. CmSc250 Intro to Algorithms Elementary Graph Algorithms: Summary CmSc250 Intro to Algorithms Definition: A graph is a collection (nonempty set) of vertices and edges A path from vertex x to vertex y : a list of vertices in which

More information

Turbo-Charging Lemmas on Demand with Don t Care Reasoning

Turbo-Charging Lemmas on Demand with Don t Care Reasoning Turbo-Charging Lemmas on Demand with Don t Care Reasoning Aina Niemetz, Mathias Preiner and Armin Biere Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at/

More information

ICS RESEARCH TECHNICAL TALK DRAKE TETREAULT, ICS H197 FALL 2013

ICS RESEARCH TECHNICAL TALK DRAKE TETREAULT, ICS H197 FALL 2013 ICS RESEARCH TECHNICAL TALK DRAKE TETREAULT, ICS H197 FALL 2013 TOPIC: RESEARCH PAPER Title: Data Management for SSDs for Large-Scale Interactive Graphics Applications Authors: M. Gopi, Behzad Sajadi,

More information

Exact Algorithms for NP-hard problems

Exact Algorithms for NP-hard problems 24 mai 2012 1 Why do we need exponential algorithms? 2 3 Why the P-border? 1 Practical reasons (Jack Edmonds, 1965) For practical purposes the difference between algebraic and exponential order is more

More information

Analysis of Algorithms Prof. Karen Daniels

Analysis of Algorithms Prof. Karen Daniels UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Spring, 2010 Lecture 2 Tuesday, 2/2/10 Design Patterns for Optimization Problems Greedy Algorithms Algorithmic Paradigm Context

More information

DESIGN AND ANALYSIS OF ALGORITHMS GREEDY METHOD

DESIGN AND ANALYSIS OF ALGORITHMS GREEDY METHOD 1 DESIGN AND ANALYSIS OF ALGORITHMS UNIT II Objectives GREEDY METHOD Explain and detail about greedy method Explain the concept of knapsack problem and solve the problems in knapsack Discuss the applications

More information

SOLVING PROBLEMS Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.

SOLVING PROBLEMS Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs. INTERPRETING, CONSTRUCTING AND PRESENTING DATA Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Interpret and construct Interpret and present data Complete, read and simple pictograms, tally using bar charts,

More information

Lecture 4: Walks, Trails, Paths and Connectivity

Lecture 4: Walks, Trails, Paths and Connectivity Lecture 4: Walks, Trails, Paths and Connectivity Rosa Orellana Math 38 April 6, 2015 Graph Decompositions Def: A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one

More information

Temporally Adaptive A* Algorithm on Time Dependent Transportation Network

Temporally Adaptive A* Algorithm on Time Dependent Transportation Network Temporally Adaptive A* Algorithm on Time Dependent Transportation Network Nianbo Zheng, Feng Lu Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing, 100101,

More information

Announcements Problem Set 5 is out (today)!

Announcements Problem Set 5 is out (today)! CSC263 Week 10 Announcements Problem Set is out (today)! Due Tuesday (Dec 1) Minimum Spanning Trees The Graph of interest today A connected undirected weighted graph G = (V, E) with weights w(e) for each

More information

Engineering Multilevel Graph Partitioning Algorithms

Engineering Multilevel Graph Partitioning Algorithms Engineering Multilevel Graph Partitioning Algorithms Manuel Holtgrewe, Vitaly Osipov, Peter Sanders, Christian Schulz Institute for Theoretical Computer Science, Algorithmics II 1 Mar. 3, 2011 Manuel Holtgrewe,

More information

CSE 100 Minimum Spanning Trees Prim s and Kruskal

CSE 100 Minimum Spanning Trees Prim s and Kruskal CSE 100 Minimum Spanning Trees Prim s and Kruskal Your Turn The array of vertices, which include dist, prev, and done fields (initialize dist to INFINITY and done to false ): V0: dist= prev= done= adj:

More information

A CSP Search Algorithm with Reduced Branching Factor

A CSP Search Algorithm with Reduced Branching Factor A CSP Search Algorithm with Reduced Branching Factor Igor Razgon and Amnon Meisels Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84-105, Israel {irazgon,am}@cs.bgu.ac.il

More information

Outline for Today. Euler Tour Trees Revisited. The Key Idea. Dynamic Graphs. Implementation Details. Dynamic connectivity in forests.

Outline for Today. Euler Tour Trees Revisited. The Key Idea. Dynamic Graphs. Implementation Details. Dynamic connectivity in forests. Dynamic Graphs Outline for Today Euler Tour Trees Revisited Dynamic connectivity in forests. The Key Idea Maintaining dynamic connectivity in general graphs Dynamic Graphs A data structure for dynamic

More information

Combinational Equivalence Checking Using Incremental SAT Solving, Output Ordering, and Resets

Combinational Equivalence Checking Using Incremental SAT Solving, Output Ordering, and Resets ASP-DAC 2007 Yokohama Combinational Equivalence Checking Using Incremental SAT Solving, Output ing, and Resets Stefan Disch Christoph Scholl Outline Motivation Preliminaries Our Approach Output ing Heuristics

More information

Graph Contraction. Graph Contraction CSE341T/CSE549T 10/20/2014. Lecture 14

Graph Contraction. Graph Contraction CSE341T/CSE549T 10/20/2014. Lecture 14 CSE341T/CSE549T 10/20/2014 Lecture 14 Graph Contraction Graph Contraction So far we have mostly talking about standard techniques for solving problems on graphs that were developed in the context of sequential

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

CLASS-ROOM NOTES: OPTIMIZATION PROBLEM SOLVING - I

CLASS-ROOM NOTES: OPTIMIZATION PROBLEM SOLVING - I Sutra: International Journal of Mathematical Science Education, Technomathematics Research Foundation Vol. 1, No. 1, 30-35, 2008 CLASS-ROOM NOTES: OPTIMIZATION PROBLEM SOLVING - I R. Akerkar Technomathematics

More information