Chapter 6. Queries and Interfaces

Size: px
Start display at page:

Download "Chapter 6. Queries and Interfaces"

Transcription

1 Chapter 6 Queries and Interfaces

2 Keyword Queries Simple, natural language queries were designed to enable everyone to search Current search engines do not perform well (in general) with natural language queries People trained (in effect) to use keywords Compare average of about 2.3 words/web query to average of 30 words/community-based Question Answering (CQA) query Keyword selection is not always easy Query refinement techniques can help 2

3 Query-Based Stemming Make decision about stemming at query time rather than during indexing Improved flexibility and effectiveness Query is expanded using word variants Documents are not stemmed e.g., rock climbing expanded with climb, not stemmed to climb 3

4 Stem Classes Stemming generates stem classes A stem class is the group of words that will be transformed into the same stem by the stemming algorithm Generated by running stemmer on large corpus e.g., Porter stemmer on TREC News on 3 stem classes with the first entry being the stem 4

5 Stem Classes Stem classes are often too big and inaccurate Modify using analysis of word co-occurrence Assumption: Word variants that could substitute for each other should co-occur often in documents 5

6 Modifying Stem Classes For all pairs of words in the stem classes, count how often they co-occuroccur in text windows of W words, where W is in the range Compute a co-occurrence or association metric for each pair, which measures the degree of association between the words. Construct a graph where the vertices represent words and the edges are between words whose co-occurrence metric is above a threshold value, which h is set empirically. i Find the connected components of the graph. These are the new stem classes. 6

7 Modifying Stem Classes Dices Coefficient is an example of a term association measure, where n x is the number of windows (documents) containing x a measure of the proportion of term co-occurrence Two vertices are in the same connected component of a graph if there is a path between them Forms word clusters Sample output tof modification 7

8 Context Sensitive Stemming According to [Peng 07]: Although stemming increases recall, when considering Web searches, stemming lowers precision and requires significant additional computation. Traditional stemming transforms all query terms, i.e., it always performs the same transformation for the same query word, regardless of the context in which the words appears. Stemming by query expansion, on the other hand, handles each query differently, i.e., considers the context of each word in a query, which is more effective. The Porter Stemmer algorithm does not considers the semantic meaning of words and thus can make mistakes when converting a word to its base form, e.g., news to new. [Peng 07] F. Peng, et al. Context Sensitive Stemming for Web Search. In Proc. of Conf. on Research and Development in Information Retrieval

9 Spell Checking Important part of query processing 10-15% of all Web queries have spelling errors Errors include typical word processing errors but also many other types, (e.g., errors extracted from query logs) 9

10 Spell Checking Basic approach: suggest corrections for words not found in spelling dictionary Many spelling errors are related to websites, products, companies, people, etc. that are unlikely to be found Suggestions found by comparing word to words in dictionary using similarity measure Most common similarity measure is edit distance Number of operations required to transform one word into the other 10

11 Edit Distance Damerau-Levenshtein Distance Counts the minimum number of insertions, deletions, substitutions, or transpositions of single characters required e.g., Damerau-Levenshtein distance 1 (single-character errors) Distance 2 11

12 Edit Distance Different techniques used to speed up calculation of edit distances -- restrict to words that start with same character (spelling errors rarely occur in the first letter) come with similar length (spelling errors rarely occur on words with the same length) sound the same (homophone, rules map words to codes) Last option uses a (same) phonetic code to group words e.g., Soundex 12

13 Soundex Code (correct word may not always have the same Soundex code) 13

14 Spelling Correction Issues Ranking corrections (> 1 possible corrections for an error) Did you mean... feature requires accurate ranking of possible corrections (more likely: the best suggestion) Context t Choosing right suggestion depends on context (other words) e.g., lawers lowers, lawyers, layers, lasers, lagers but trial lawers trial lawyers Run-on errors (word boundaries are skipped/mistyped) eg e.g., mainscourcebank Missing spaces can be considered another single character error in right framework 14

15 Noisy Channel Model Address the issues of ranking, context, and run-on errors User chooses word w based on probability distribution P(w) Called the language g model Can capture context information about the frequency of occurrence of a word in text, e.g., P(w( 1 w 2 2) ) The probability of observing a word, given that another one has just been observed User writes word w, but noisy channel causes word e to be written instead with probability P(e w) Called error model Represents information about the frequency of spelling errors 15

16 Noisy Channel Model Need to estimate probability of correction to represent info. about the frequency of different types of errors Error Model P(w e) =P(e w)p(w), i.e., the probability that given a written word e,, the correct word is w Estimate language model using context P(w) = λp(w) +(1 λ)p(w wp) Probability of Word Occurrence Probability of Word Co-occurrence where wp is a previous word of w, and λ is a parameter which specifies the relative importance of P(w) & P(w wp) Examples. fish tink : tank and think both likely corrections, but P(tank fish) > P(think fish) 16

17 Noisy Channel Model Language model probabilities estimated using corpus and query log Both simple and complex methods have been used for estimating error model Simple approach: assume that all words with same edit distance have same probability, only edit distance 1 and 2 considered More complex approach: incorporate estimates based on common typing errors Estimates are derived from large collections of text by finding many pairs of (in)correctly spelled words 17

18 Cucerzan and Brill (2004) s Spell Checker using (i) query log (QL) and (ii) dictionary (D) 1. Tokenize the query. 2. For each token, a set of alternative words and pairs of words is found using an edit distance modified by weighting g certain types of errors. The data structure that is searched for the alternatives contains words and pairs from QL and D. 3. The noisy channel model is used to select the best correction. 4. The process of looking for alternatives and finding the best correction is repeated until no better correction is found. 18

19 Query Expansion A variety of (semi)-automatic query expansion techniques have been developed Goal: improve effectiveness by matching related terms Semi-automatic techniques require user interaction to select best expansion terms Query suggestion is a related technique Alternative queries, not necessarily more terms 19

20 Query Expansion Approaches usually based on an analysis of term co- occurrence either in (i) the entire document collection, (ii) a large collection of queries, or (iii) the top-ranked documents in a result list Query-based stemming also an expansion technique Automatic expansion based on general thesaurus, but not effective Does not take context into account 20

21 Term Association Measures Key to effective expansion: choose appropriate words for the context of the query e.g., aquarium for tank in tropical fish tanks, but not for armor for tanks Dice s Coefficient: computing the term-occurrence Mutual Information: measure co-occurrence words log P(a, b) rank P(a)P(b) n ab n a. n b 21

22 Term Association Measures Mutual Information measure favors low frequency terms Expected Mutual Information Measure (EMIM) corrects the problem of MIM by weighting g MIM values using P(a, b) where N is the number of documents in a collection favoring high-frequency terms, which can be a problem 22

23 Term Association Measures Pearson s Chi-squared (χ 2 ) measure Compares the number of co-occurrences of two words with the expected number of co-occurrences if the two words were independent independent co-occurrences Normalizes this comparison by the expected number Also limited form focused on word co-occurrence 23

24 Association Measure Summary Favor lowfrequency terms Favor highfrequency terms 24

25 Association Measures Associated words are of little use for expanding the query tropical fish Expansion based on whole query takes context into account e.g., g, using Dice with term tropical fish gives the following highly associated words: goldfish, reptile, aquarium, coral, frog, exotic, stripe, regent, pet, wet Impractical for all possible queries, other approaches used to achieve e this effect 25

26 Other Approaches Pseudo-relevance feedback Expansion terms based on top retrieved documents for initial query Context vectors Represent words by the co-occurredoccurred words e.g., top 35 most strongly associated words for aquarium (using Dice s coefficient): c e Rank words for a query by ranking context t vectors 26

27 Other Approaches Query logs Best source of information about queries and related terms Short pieces of text and click data e.g., most frequent words in queries containing tropical fish from MSN log: stores, pictures, live, sale, types, clipart, blue, freshwater, aquarium, supplies Query suggestion based on finding similar queries Group based on click data 27

28 Query Expansion on Web Searches According to [Crabtree 07] automatic query expansion (on Web searches) Enhances recall but not precision: expanding queries using 20 terms improves the recall of the result set, but hurts the precision due to query drift. Helps identifying other relevant pages by identifying additional terms that occur on relevant pages Relies on both local and global document analysis (considering documents in the result set or using a thesauri/properties of the entire corpus, respectively) as sources for refinement terms [Crabtree 07] D. Crabtree et al. Exploiting Underrepresented Query Aspects for Automatic Query Expansion. In Proc. of Conf. on Knowledge Discovery and Data Mining

29 Relevance Feedback User identifies relevant (and maybe non-relevant) documents in the initial result list System modifies query using terms from those documents and re-ranks documents Example of simple ML algorithm using training data But, very little training data Pseudo-relevance feedback just assumes top-ranked documents are relevant no user input 29

30 Relevance Feedback Example Snippets Top 10 documents for tropical fish 30

31 Relevance Feedback Example If we assume top 10 are relevant, most frequent terms are (with frequency): a (926), td (535), href (495), http (357), width (345), com (343), nbsp (316), www (260), tr (239), htm (233), class (225), jpg (221) Too many stopwords and HTML expressions Use only snippets and remove stopwords tropical (26), fish (28), aquarium (8), freshwater (5), breeding (4), information (3), species (3), tank (2), Badman s (2), page (2), hobby (2), forums (2) 31

32 Relevance Feedback Both relevance and pseudo-relevance feedback are effective, but not used in many applications Pseudo-relevance feedback has reliability issues, especially with queries that don t retrieve many relevant documents Some applications use relevance feedback Filtering, more like this Query suggestion more popular May be less accurate, but can work if initial query fails 32

33 Context and Personalization If a query has the same words as another query, results will be the same regardless of Who submitted the query Why the query was submitted Where the query was submitted What other queries were submitted in the same session These other factors (the context) could have a significant impact on relevance Difficult to incorporate into ranking 33

34 User Models Generate user profiles based on documents that the person looks at Such as Web pages visited, messages, or word processing documents on the desktop Modify user s queries using words from his profile Generally not effective Imprecise profiles, information needs can change significantly 34

35 Query Logs Query logs provide important contextual information that can be used effectively Context in this case is Previous queries that are the same Previous queries that are similar Query sessions including the same query Query history for individuals could be used for caching 35

36 Location is context Local Search Local search uses geographic information to modify the ranking of search results Location derived from the query text Location of the device where the query originated Examples Underworld 3 cape cod Underworld 3 from mobile device in Hyannis 36

37 Local Search Identify the geographic region associated with Web pages Use location metadata that has been manually added to the document Or identify locations such as place names, city names, or country names in text Identify the geographic region associated with the query 10-15% of queries contain some location reference Rank Web pages using location information in addition to text and link-based features 37

38 Snippet Generation Query-dependent document summary Simple summarization approach Rank each sentence in a document using a significance factor Select the top sentences for the summary First proposed by Luhn in 50 s 38

39 Sentence Selection Significance factor for a sentence is calculated based on the occurrence of significant words If f d,w is the frequency of word w in document d, then w is a significant word if it is not a stopword, ie i.e., a high-frequency word, and where s d is the number of sentences in document d Text is bracketed by significant words (limit on number of non-significant words in bracket) 39

40 Sentence Selection Significance factor for bracketed text spans is computed by (i) dividing the square of the number of significant words in the span by (ii) the total number of words Example. The limit it set for non-significant ifi words in a bracket is 4 Significance factor = 4 2 /7 =

41 Snippet Generation Involves more features than just significance factor Example. (A sentence-based approach) on a news story 1. Whether the sentence is a heading 2. Whether it is the 1 st or 2 nd line of the document 3. The total number of query terms occurring in the sentence 4. The number of unique query terms in the sentence 5. The longest contiguous run of query words in the sentence 6. A density measure of query words (i.e., significance factor) Weighted combination of features used to rank sentences 41

42 Blog Snippets According to [Parapar 10], in performing a Blog search Considering reader s comments improves the quality of post snippets and thus enhances users access to relevant post in a result list Indexing comments, as well as the post itself, enhances the recall of a blog search, which is more important in blog than web search, since searchers are usually interested in all recent posts about a specific topic) [Parapar 10] J. Parapar et al. Blog Snippets: A Comments-Biased Approach. In Proc. of Intl. Conf. on Research and Development in Information Retrieval

43 Clustering Results Result lists often contain documents related to different aspects of the query topic Clustering is used to group related documents to simplify browsing Example clusters for query tropical fish 43

44 Result List Example Top 10 docs for tropical fish 44

45 Requirements Efficiency Clustering Results Must be specific to each query and are based on the top-ranked documents for that query Typically based on snippets Easy to understand Can be difficult to assign good labels to groups Monothetic vs. polythetic classification 45

46 Monothetic Types of Classification Every member of a class has the property that defines the class Typical assumption made by users Easy to understand Polythetic Members of classes share many properties but there is no single defining property Most clustering algorithms (e.g., K-means) produce this type of output 46

47 Classification Example D 1 = {a, b, c} D 2 = {a, d, e} D 3 = {d, e, f, g} D 4 = {f, g} Possible monothetic classification { D 1,D 2 } (labeled using a) and { D 2,D 3 } (labeled e) Possible polythetic classification { D 2,D 3,D 4 }, D 1 Labels? 47

48 Result Clusters Simple algorithm Group based on words in snippets Refinements Use phrases Use more features Whether phrases occurred in titles or snippets Length of the phrase Collection frequency of the phrase Overlap of the resulting clusters 48

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University CS6200 Information Retrieval David Smith College of Computer and Information Science Northeastern University Previously: Indexing Process Query Process Queries Queries Query Expansion Spell Checking Context

More information

Search Engines Chapter 6 Queries and Interfaces Felix Naumann

Search Engines Chapter 6 Queries and Interfaces Felix Naumann Search Engines Chapter 6 Queries and Interfaces 2.6.2009 Felix Naumann Overview 2 Information needs Query transformation & refinement Showing results Cross-language search Information Needs 3 An information

More information

Query Suggestion. A variety of automatic or semi-automatic query suggestion techniques have been developed

Query Suggestion. A variety of automatic or semi-automatic query suggestion techniques have been developed Query Suggestion Query Suggestion A variety of automatic or semi-automatic query suggestion techniques have been developed Goal is to improve effectiveness by matching related/similar terms Semi-automatic

More information

Query Refinement and Search Result Presentation

Query Refinement and Search Result Presentation Query Refinement and Search Result Presentation (Short) Queries & Information Needs A query can be a poor representation of the information need Short queries are often used in search engines due to the

More information

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University CS6200 Informa.on Retrieval David Smith College of Computer and Informa.on Science Northeastern University Previously: Indexing Process Query Process Informa.on Needs An informa(on need is the underlying

More information

Chapter 4. Processing Text

Chapter 4. Processing Text Chapter 4 Processing Text Processing Text Modifying/Converting documents to index terms Convert the many forms of words into more consistent index terms that represent the content of a document What are

More information

IN4325 Query refinement. Claudia Hauff (WIS, TU Delft)

IN4325 Query refinement. Claudia Hauff (WIS, TU Delft) IN4325 Query refinement Claudia Hauff (WIS, TU Delft) The big picture Information need Topic the user wants to know more about The essence of IR Query Translation of need into an input for the search engine

More information

Information Retrieval

Information Retrieval Multimedia Computing: Algorithms, Systems, and Applications: Information Retrieval and Search Engine By Dr. Yu Cao Department of Computer Science The University of Massachusetts Lowell Lowell, MA 01854,

More information

Search Engine Architecture II

Search Engine Architecture II Search Engine Architecture II Primary Goals of Search Engines Effectiveness (quality): to retrieve the most relevant set of documents for a query Process text and store text statistics to improve relevance

More information

Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web

Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web Thaer Samar 1, Alejandro Bellogín 2, and Arjen P. de Vries 1 1 Centrum Wiskunde & Informatica, {samar,arjen}@cwi.nl

More information

Clustering Results. Result List Example. Clustering Results. Information Retrieval

Clustering Results. Result List Example. Clustering Results. Information Retrieval Information Retrieval INFO 4300 / CS 4300! Presenting Results Clustering Clustering Results! Result lists often contain documents related to different aspects of the query topic! Clustering is used to

More information

Information Retrieval. (M&S Ch 15)

Information Retrieval. (M&S Ch 15) Information Retrieval (M&S Ch 15) 1 Retrieval Models A retrieval model specifies the details of: Document representation Query representation Retrieval function Determines a notion of relevance. Notion

More information

CS473: Course Review CS-473. Luo Si Department of Computer Science Purdue University

CS473: Course Review CS-473. Luo Si Department of Computer Science Purdue University CS473: CS-473 Course Review Luo Si Department of Computer Science Purdue University Basic Concepts of IR: Outline Basic Concepts of Information Retrieval: Task definition of Ad-hoc IR Terminologies and

More information

Improving Difficult Queries by Leveraging Clusters in Term Graph

Improving Difficult Queries by Leveraging Clusters in Term Graph Improving Difficult Queries by Leveraging Clusters in Term Graph Rajul Anand and Alexander Kotov Department of Computer Science, Wayne State University, Detroit MI 48226, USA {rajulanand,kotov}@wayne.edu

More information

James Mayfield! The Johns Hopkins University Applied Physics Laboratory The Human Language Technology Center of Excellence!

James Mayfield! The Johns Hopkins University Applied Physics Laboratory The Human Language Technology Center of Excellence! James Mayfield! The Johns Hopkins University Applied Physics Laboratory The Human Language Technology Center of Excellence! (301) 219-4649 james.mayfield@jhuapl.edu What is Information Retrieval? Evaluation

More information

Ranked Retrieval. Evaluation in IR. One option is to average the precision scores at discrete. points on the ROC curve But which points?

Ranked Retrieval. Evaluation in IR. One option is to average the precision scores at discrete. points on the ROC curve But which points? Ranked Retrieval One option is to average the precision scores at discrete Precision 100% 0% More junk 100% Everything points on the ROC curve But which points? Recall We want to evaluate the system, not

More information

Information Retrieval

Information Retrieval Introduction Information Retrieval Information retrieval is a field concerned with the structure, analysis, organization, storage, searching and retrieval of information Gerard Salton, 1968 J. Pei: Information

More information

MEASURING SEMANTIC SIMILARITY BETWEEN WORDS AND IMPROVING WORD SIMILARITY BY AUGUMENTING PMI

MEASURING SEMANTIC SIMILARITY BETWEEN WORDS AND IMPROVING WORD SIMILARITY BY AUGUMENTING PMI MEASURING SEMANTIC SIMILARITY BETWEEN WORDS AND IMPROVING WORD SIMILARITY BY AUGUMENTING PMI 1 KAMATCHI.M, 2 SUNDARAM.N 1 M.E, CSE, MahaBarathi Engineering College Chinnasalem-606201, 2 Assistant Professor,

More information

Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web

Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web Thaer Samar 1, Alejandro Bellogín 2, and Arjen P. de Vries 1 1 Centrum Wiskunde & Informatica, {samar,arjen}@cwi.nl

More information

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University CS6200 Information Retrieval David Smith College of Computer and Information Science Northeastern University Indexing Process Processing Text Converting documents to index terms Why? Matching the exact

More information

Chapter 2. Architecture of a Search Engine

Chapter 2. Architecture of a Search Engine Chapter 2 Architecture of a Search Engine Search Engine Architecture A software architecture consists of software components, the interfaces provided by those components and the relationships between them

More information

In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most

In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most common word appears 10 times then A = rn*n/n = 1*10/100

More information

Sec. 8.7 RESULTS PRESENTATION

Sec. 8.7 RESULTS PRESENTATION Sec. 8.7 RESULTS PRESENTATION 1 Sec. 8.7 Result Summaries Having ranked the documents matching a query, we wish to present a results list Most commonly, a list of the document titles plus a short summary,

More information

Chapter IR:IV. IV. Indexing. Abstract Model of Ranking Inverted Indexes Compression Auxiliary Structures Index Construction Query Processing

Chapter IR:IV. IV. Indexing. Abstract Model of Ranking Inverted Indexes Compression Auxiliary Structures Index Construction Query Processing Chapter IR:IV IV. Indexing Abstract Model of Ranking Inverted Indexes Compression Auxiliary Structures Index Construction Query Processing IR:IV-276 Indexing HAGEN/POTTHAST/STEIN 2017 Inverted Indexes

More information

CS 6320 Natural Language Processing

CS 6320 Natural Language Processing CS 6320 Natural Language Processing Information Retrieval Yang Liu Slides modified from Ray Mooney s (http://www.cs.utexas.edu/users/mooney/ir-course/slides/) 1 Introduction of IR System components, basic

More information

Search Evaluation. Tao Yang CS293S Slides partially based on text book [CMS] [MRS]

Search Evaluation. Tao Yang CS293S Slides partially based on text book [CMS] [MRS] Search Evaluation Tao Yang CS293S Slides partially based on text book [CMS] [MRS] Table of Content Search Engine Evaluation Metrics for relevancy Precision/recall F-measure MAP NDCG Difficulties in Evaluating

More information

An Information Retrieval Approach for Source Code Plagiarism Detection

An Information Retrieval Approach for Source Code Plagiarism Detection -2014: An Information Retrieval Approach for Source Code Plagiarism Detection Debasis Ganguly, Gareth J. F. Jones CNGL: Centre for Global Intelligent Content School of Computing, Dublin City University

More information

Robust Relevance-Based Language Models

Robust Relevance-Based Language Models Robust Relevance-Based Language Models Xiaoyan Li Department of Computer Science, Mount Holyoke College 50 College Street, South Hadley, MA 01075, USA Email: xli@mtholyoke.edu ABSTRACT We propose a new

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search Introduction to IR models and methods Rada Mihalcea (Some of the slides in this slide set come from IR courses taught at UT Austin and Stanford) Information Retrieval

More information

Search Engines Exercise 5: Querying. Dustin Lange & Saeedeh Momtazi 9 June 2011

Search Engines Exercise 5: Querying. Dustin Lange & Saeedeh Momtazi 9 June 2011 Search Engines Exercise 5: Querying Dustin Lange & Saeedeh Momtazi 9 June 2011 Task 1: Indexing with Lucene We want to build a small search engine for movies Index and query the titles of the 100 best

More information

Chapter 6: Information Retrieval and Web Search. An introduction

Chapter 6: Information Retrieval and Web Search. An introduction Chapter 6: Information Retrieval and Web Search An introduction Introduction n Text mining refers to data mining using text documents as data. n Most text mining tasks use Information Retrieval (IR) methods

More information

University of Virginia Department of Computer Science. CS 4501: Information Retrieval Fall 2015

University of Virginia Department of Computer Science. CS 4501: Information Retrieval Fall 2015 University of Virginia Department of Computer Science CS 4501: Information Retrieval Fall 2015 5:00pm-6:15pm, Monday, October 26th Name: ComputingID: This is a closed book and closed notes exam. No electronic

More information

Information Retrieval

Information Retrieval Information Retrieval Data Processing and Storage Ilya Markov i.markov@uva.nl University of Amsterdam Ilya Markov i.markov@uva.nl Information Retrieval 1 Course overview Offline Data Acquisition Data Processing

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval Mohsen Kamyar چهارمین کارگاه ساالنه آزمایشگاه فناوری و وب بهمن ماه 1391 Outline Outline in classic categorization Information vs. Data Retrieval IR Models Evaluation

More information

Knowledge Retrieval. Franz J. Kurfess. Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A.

Knowledge Retrieval. Franz J. Kurfess. Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A. Knowledge Retrieval Franz J. Kurfess Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A. 1 Acknowledgements This lecture series has been sponsored by the European

More information

Introduction to Information Retrieval (Manning, Raghavan, Schutze)

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 3 Dictionaries and Tolerant retrieval Chapter 4 Index construction Chapter 5 Index compression Content Dictionary data structures

More information

Chapter IR:II. II. Architecture of a Search Engine. Indexing Process Search Process

Chapter IR:II. II. Architecture of a Search Engine. Indexing Process Search Process Chapter IR:II II. Architecture of a Search Engine Indexing Process Search Process IR:II-87 Introduction HAGEN/POTTHAST/STEIN 2017 Remarks: Software architecture refers to the high level structures of a

More information

Web Search. Lecture Objectives. Text Technologies for Data Science INFR Learn about: 11/14/2017. Instructor: Walid Magdy

Web Search. Lecture Objectives. Text Technologies for Data Science INFR Learn about: 11/14/2017. Instructor: Walid Magdy Text Technologies for Data Science INFR11145 Web Search Instructor: Walid Magdy 14-Nov-2017 Lecture Objectives Learn about: Working with Massive data Link analysis (PageRank) Anchor text 2 1 The Web Document

More information

Information Retrieval. Information Retrieval and Web Search

Information Retrieval. Information Retrieval and Web Search Information Retrieval and Web Search Introduction to IR models and methods Information Retrieval The indexing and retrieval of textual documents. Searching for pages on the World Wide Web is the most recent

More information

Information Retrieval CSCI

Information Retrieval CSCI Information Retrieval CSCI 4141-6403 My name is Anwar Alhenshiri My email is: anwar@cs.dal.ca I prefer: aalhenshiri@gmail.com The course website is: http://web.cs.dal.ca/~anwar/ir/main.html 5/6/2012 1

More information

Unsupervised Keyword Extraction from Single Document. Swagata Duari Aditya Gupta Vasudha Bhatnagar

Unsupervised Keyword Extraction from Single Document. Swagata Duari Aditya Gupta Vasudha Bhatnagar Unsupervised Keyword Extraction from Single Document Swagata Duari Aditya Gupta Vasudha Bhatnagar Presentation Outline Introduction and Motivation Statistical Methods for Automatic Keyword Extraction Graph-based

More information

Tag-based Social Interest Discovery

Tag-based Social Interest Discovery Tag-based Social Interest Discovery Xin Li / Lei Guo / Yihong (Eric) Zhao Yahoo!Inc 2008 Presented by: Tuan Anh Le (aletuan@vub.ac.be) 1 Outline Introduction Data set collection & Pre-processing Architecture

More information

Information Retrieval

Information Retrieval Natural Language Processing SoSe 2014 Information Retrieval Dr. Mariana Neves June 18th, 2014 (based on the slides of Dr. Saeedeh Momtazi) Outline Introduction Indexing Block 2 Document Crawling Text Processing

More information

SYSTEMS FOR NON STRUCTURED INFORMATION MANAGEMENT

SYSTEMS FOR NON STRUCTURED INFORMATION MANAGEMENT SYSTEMS FOR NON STRUCTURED INFORMATION MANAGEMENT Prof. Dipartimento di Elettronica e Informazione Politecnico di Milano INFORMATION SEARCH AND RETRIEVAL Inf. retrieval 1 PRESENTATION SCHEMA GOALS AND

More information

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, ISSN:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, ISSN: IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 20131 Improve Search Engine Relevance with Filter session Addlin Shinney R 1, Saravana Kumar T

More information

Information Retrieval

Information Retrieval Natural Language Processing SoSe 2015 Information Retrieval Dr. Mariana Neves June 22nd, 2015 (based on the slides of Dr. Saeedeh Momtazi) Outline Introduction Indexing Block 2 Document Crawling Text Processing

More information

Comment Extraction from Blog Posts and Its Applications to Opinion Mining

Comment Extraction from Blog Posts and Its Applications to Opinion Mining Comment Extraction from Blog Posts and Its Applications to Opinion Mining Huan-An Kao, Hsin-Hsi Chen Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan

More information

A Framework for Summarization of Multi-topic Web Sites

A Framework for Summarization of Multi-topic Web Sites A Framework for Summarization of Multi-topic Web Sites Yongzheng Zhang Nur Zincir-Heywood Evangelos Milios Technical Report CS-2008-02 March 19, 2008 Faculty of Computer Science 6050 University Ave., Halifax,

More information

Microsoft PowerPoint Presentations

Microsoft PowerPoint Presentations Microsoft PowerPoint Presentations In this exercise, you will create a presentation about yourself. You will show your presentation to the class. As you type your information, think about what you will

More information

Information Retrieval Term Project : Incremental Indexing Searching Engine

Information Retrieval Term Project : Incremental Indexing Searching Engine Information Retrieval Term Project : Incremental Indexing Searching Engine Chi-yau Lin r93922129@ntu.edu.tw Department of Computer Science and Information Engineering National Taiwan University Taipei,

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Graph Data & Introduction to Information Retrieval Huan Sun, CSE@The Ohio State University 11/21/2017 Slides adapted from Prof. Srinivasan Parthasarathy @OSU 2 Chapter 4

More information

Effective Tweet Contextualization with Hashtags Performance Prediction and Multi-Document Summarization

Effective Tweet Contextualization with Hashtags Performance Prediction and Multi-Document Summarization Effective Tweet Contextualization with Hashtags Performance Prediction and Multi-Document Summarization Romain Deveaud 1 and Florian Boudin 2 1 LIA - University of Avignon romain.deveaud@univ-avignon.fr

More information

[Gidhane* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Gidhane* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AN EFFICIENT APPROACH FOR TEXT MINING USING SIDE INFORMATION Kiran V. Gaidhane*, Prof. L. H. Patil, Prof. C. U. Chouhan DOI: 10.5281/zenodo.58632

More information

Effective Structured Query Formulation for Session Search

Effective Structured Query Formulation for Session Search Effective Structured Query Formulation for Session Search Dongyi Guan Hui Yang Nazli Goharian Department of Computer Science Georgetown University 37 th and O Street, NW, Washington, DC, 20057 dg372@georgetown.edu,

More information

Web Page Similarity Searching Based on Web Content

Web Page Similarity Searching Based on Web Content Web Page Similarity Searching Based on Web Content Gregorius Satia Budhi Informatics Department Petra Chistian University Siwalankerto 121-131 Surabaya 60236, Indonesia (62-31) 2983455 greg@petra.ac.id

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Processing Text Converting documents to index terms Why? Matching the exact string of characters typed by the user is too

More information

Search Engines Information Retrieval in Practice

Search Engines Information Retrieval in Practice Search Engines Information Retrieval in Practice W. BRUCE CROFT University of Massachusetts, Amherst DONALD METZLER Yahoo! Research TREVOR STROHMAN Google Inc. ----- PEARSON Boston Columbus Indianapolis

More information

A Survey Of Different Text Mining Techniques Varsha C. Pande 1 and Dr. A.S. Khandelwal 2

A Survey Of Different Text Mining Techniques Varsha C. Pande 1 and Dr. A.S. Khandelwal 2 A Survey Of Different Text Mining Techniques Varsha C. Pande 1 and Dr. A.S. Khandelwal 2 1 Department of Electronics & Comp. Sc, RTMNU, Nagpur, India 2 Department of Computer Science, Hislop College, Nagpur,

More information

A System for Query-Specific Document Summarization

A System for Query-Specific Document Summarization A System for Query-Specific Document Summarization Ramakrishna Varadarajan, Vagelis Hristidis. FLORIDA INTERNATIONAL UNIVERSITY, School of Computing and Information Sciences, Miami. Roadmap Need for query-specific

More information

Unstructured Data. CS102 Winter 2019

Unstructured Data. CS102 Winter 2019 Winter 2019 Big Data Tools and Techniques Basic Data Manipulation and Analysis Performing well-defined computations or asking well-defined questions ( queries ) Data Mining Looking for patterns in data

More information

Reading group on Ontologies and NLP:

Reading group on Ontologies and NLP: Reading group on Ontologies and NLP: Machine Learning27th infebruary Automated 2014 1 / 25 Te Reading group on Ontologies and NLP: Machine Learning in Automated Text Categorization, by Fabrizio Sebastianini.

More information

Chapter 27 Introduction to Information Retrieval and Web Search

Chapter 27 Introduction to Information Retrieval and Web Search Chapter 27 Introduction to Information Retrieval and Web Search Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 27 Outline Information Retrieval (IR) Concepts Retrieval

More information

CADIAL Search Engine at INEX

CADIAL Search Engine at INEX CADIAL Search Engine at INEX Jure Mijić 1, Marie-Francine Moens 2, and Bojana Dalbelo Bašić 1 1 Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia {jure.mijic,bojana.dalbelo}@fer.hr

More information

TREC-10 Web Track Experiments at MSRA

TREC-10 Web Track Experiments at MSRA TREC-10 Web Track Experiments at MSRA Jianfeng Gao*, Guihong Cao #, Hongzhao He #, Min Zhang ##, Jian-Yun Nie**, Stephen Walker*, Stephen Robertson* * Microsoft Research, {jfgao,sw,ser}@microsoft.com **

More information

Classification and retrieval of biomedical literatures: SNUMedinfo at CLEF QA track BioASQ 2014

Classification and retrieval of biomedical literatures: SNUMedinfo at CLEF QA track BioASQ 2014 Classification and retrieval of biomedical literatures: SNUMedinfo at CLEF QA track BioASQ 2014 Sungbin Choi, Jinwook Choi Medical Informatics Laboratory, Seoul National University, Seoul, Republic of

More information

Retrieval and Feedback Models for Blog Distillation

Retrieval and Feedback Models for Blog Distillation Retrieval and Feedback Models for Blog Distillation Jonathan Elsas, Jaime Arguello, Jamie Callan, Jaime Carbonell Language Technologies Institute, School of Computer Science, Carnegie Mellon University

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Prof. Chris Clifton 27 August 2018 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group 1 AD-hoc IR: Basic Process Information

More information

How Does a Search Engine Work? Part 1

How Does a Search Engine Work? Part 1 How Does a Search Engine Work? Part 1 Dr. Frank McCown Intro to Web Science Harding University This work is licensed under Creative Commons Attribution-NonCommercial 3.0 What we ll examine Web crawling

More information

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p.

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. 6 What is Web Mining? p. 6 Summary of Chapters p. 8 How

More information

Bi-directional Linkability From Wikipedia to Documents and Back Again: UMass at TREC 2012 Knowledge Base Acceleration Track

Bi-directional Linkability From Wikipedia to Documents and Back Again: UMass at TREC 2012 Knowledge Base Acceleration Track Bi-directional Linkability From Wikipedia to Documents and Back Again: UMass at TREC 2012 Knowledge Base Acceleration Track Jeffrey Dalton University of Massachusetts, Amherst jdalton@cs.umass.edu Laura

More information

A Document Graph Based Query Focused Multi- Document Summarizer

A Document Graph Based Query Focused Multi- Document Summarizer A Document Graph Based Query Focused Multi- Document Summarizer By Sibabrata Paladhi and Dr. Sivaji Bandyopadhyay Department of Computer Science and Engineering Jadavpur University Jadavpur, Kolkata India

More information

Automatic Identification of User Goals in Web Search [WWW 05]

Automatic Identification of User Goals in Web Search [WWW 05] Automatic Identification of User Goals in Web Search [WWW 05] UichinLee @ UCLA ZhenyuLiu @ UCLA JunghooCho @ UCLA Presenter: Emiran Curtmola@ UC San Diego CSE 291 4/29/2008 Need to improve the quality

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 3: Dictionaries and tolerant retrieval 1 Outline Dictionaries Wildcard queries skip Edit distance skip Spelling correction skip Soundex 2 Inverted index Our

More information

Text Analytics (Text Mining)

Text Analytics (Text Mining) CSE 6242 / CX 4242 Apr 1, 2014 Text Analytics (Text Mining) Concepts and Algorithms Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer,

More information

Information Retrieval

Information Retrieval Information Retrieval CSC 375, Fall 2016 An information retrieval system will tend not to be used whenever it is more painful and troublesome for a customer to have information than for him not to have

More information

THE WEB SEARCH ENGINE

THE WEB SEARCH ENGINE International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR) Vol.1, Issue 2 Dec 2011 54-60 TJPRC Pvt. Ltd., THE WEB SEARCH ENGINE Mr.G. HANUMANTHA RAO hanu.abc@gmail.com

More information

Information Retrieval CS Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Information Retrieval CS Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science Information Retrieval CS 6900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Information Retrieval Information Retrieval (IR) is finding material of an unstructured

More information

A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2

A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2 A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2 1 Student, M.E., (Computer science and Engineering) in M.G University, India, 2 Associate Professor

More information

Programming Exercise 6: Support Vector Machines

Programming Exercise 6: Support Vector Machines Programming Exercise 6: Support Vector Machines Machine Learning May 13, 2012 Introduction In this exercise, you will be using support vector machines (SVMs) to build a spam classifier. Before starting

More information

A Short Introduction to CATMA

A Short Introduction to CATMA A Short Introduction to CATMA Outline: I. Getting Started II. Analyzing Texts - Search Queries in CATMA III. Annotating Texts (collaboratively) with CATMA IV. Further Search Queries: Analyze Your Annotations

More information

SE Workshop PLAN. What is a Search Engine? Components of a SE. Crawler-Based Search Engines. How Search Engines (SEs) Work?

SE Workshop PLAN. What is a Search Engine? Components of a SE. Crawler-Based Search Engines. How Search Engines (SEs) Work? PLAN SE Workshop Ellen Wilson Olena Zubaryeva Search Engines: How do they work? Search Engine Optimization (SEO) optimize your website How to search? Tricks Practice What is a Search Engine? A page on

More information

ImgSeek: Capturing User s Intent For Internet Image Search

ImgSeek: Capturing User s Intent For Internet Image Search ImgSeek: Capturing User s Intent For Internet Image Search Abstract - Internet image search engines (e.g. Bing Image Search) frequently lean on adjacent text features. It is difficult for them to illustrate

More information

Countering Spam Using Classification Techniques. Steve Webb Data Mining Guest Lecture February 21, 2008

Countering Spam Using Classification Techniques. Steve Webb Data Mining Guest Lecture February 21, 2008 Countering Spam Using Classification Techniques Steve Webb webb@cc.gatech.edu Data Mining Guest Lecture February 21, 2008 Overview Introduction Countering Email Spam Problem Description Classification

More information

Effect of log-based Query Term Expansion on Retrieval Effectiveness in Patent Searching

Effect of log-based Query Term Expansion on Retrieval Effectiveness in Patent Searching Effect of log-based Query Term Expansion on Retrieval Effectiveness in Patent Searching Wolfgang Tannebaum, Parvaz Madabi and Andreas Rauber Institute of Software Technology and Interactive Systems, Vienna

More information

Index Compression. David Kauchak cs160 Fall 2009 adapted from:

Index Compression. David Kauchak cs160 Fall 2009 adapted from: Index Compression David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture5-indexcompression.ppt Administrative Homework 2 Assignment 1 Assignment 2 Pair programming?

More information

Concept-Based Document Similarity Based on Suffix Tree Document

Concept-Based Document Similarity Based on Suffix Tree Document Concept-Based Document Similarity Based on Suffix Tree Document *P.Perumal Sri Ramakrishna Engineering College Associate Professor Department of CSE, Coimbatore perumalsrec@gmail.com R. Nedunchezhian Sri

More information

Information Retrieval. Techniques for Relevance Feedback

Information Retrieval. Techniques for Relevance Feedback Information Retrieval Techniques for Relevance Feedback Introduction An information need may be epressed using different keywords (synonymy) impact on recall eamples: ship vs boat, aircraft vs airplane

More information

CLEF-IP 2009: Exploring Standard IR Techniques on Patent Retrieval

CLEF-IP 2009: Exploring Standard IR Techniques on Patent Retrieval DCU @ CLEF-IP 2009: Exploring Standard IR Techniques on Patent Retrieval Walid Magdy, Johannes Leveling, Gareth J.F. Jones Centre for Next Generation Localization School of Computing Dublin City University,

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Web Crawler Finds and downloads web pages automatically provides the collection for searching Web is huge and constantly

More information

ΕΠΛ660. Ανάκτηση µε το µοντέλο διανυσµατικού χώρου

ΕΠΛ660. Ανάκτηση µε το µοντέλο διανυσµατικού χώρου Ανάκτηση µε το µοντέλο διανυσµατικού χώρου Σηµερινό ερώτηµα Typically we want to retrieve the top K docs (in the cosine ranking for the query) not totally order all docs in the corpus can we pick off docs

More information

Search Results Clustering in Polish: Evaluation of Carrot

Search Results Clustering in Polish: Evaluation of Carrot Search Results Clustering in Polish: Evaluation of Carrot DAWID WEISS JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology Introduction search engines tools of everyday use

More information

Ontology based Web Page Topic Identification

Ontology based Web Page Topic Identification Ontology based Web Page Topic Identification Abhishek Singh Rathore Department of Computer Science & Engineering Maulana Azad National Institute of Technology Bhopal, India Devshri Roy Department of Computer

More information

An Axiomatic Approach to IR UIUC TREC 2005 Robust Track Experiments

An Axiomatic Approach to IR UIUC TREC 2005 Robust Track Experiments An Axiomatic Approach to IR UIUC TREC 2005 Robust Track Experiments Hui Fang ChengXiang Zhai Department of Computer Science University of Illinois at Urbana-Champaign Abstract In this paper, we report

More information

ResPubliQA 2010

ResPubliQA 2010 SZTAKI @ ResPubliQA 2010 David Mark Nemeskey Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary (SZTAKI) Abstract. This paper summarizes the results of our first

More information

Inferring User Search for Feedback Sessions

Inferring User Search for Feedback Sessions Inferring User Search for Feedback Sessions Sharayu Kakade 1, Prof. Ranjana Barde 2 PG Student, Department of Computer Science, MIT Academy of Engineering, Pune, MH, India 1 Assistant Professor, Department

More information

CABI Training Materials. Ovid Silver Platter (SP) platform. Simple Searching of CAB Abstracts and Global Health KNOWLEDGE FOR LIFE.

CABI Training Materials. Ovid Silver Platter (SP) platform. Simple Searching of CAB Abstracts and Global Health KNOWLEDGE FOR LIFE. CABI Training Materials Ovid Silver Platter (SP) platform Simple Searching of CAB Abstracts and Global Health www.cabi.org KNOWLEDGE FOR LIFE Contents The OvidSP Database Selection Screen... 3 The Ovid

More information

KEYWORD GENERATION FOR SEARCH ENGINE ADVERTISING

KEYWORD GENERATION FOR SEARCH ENGINE ADVERTISING Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 6, June 2014, pg.367

More information

Part I: Data Mining Foundations

Part I: Data Mining Foundations Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web and the Internet 2 1.3. Web Data Mining 4 1.3.1. What is Data Mining? 6 1.3.2. What is Web Mining?

More information

Designing and Building an Automatic Information Retrieval System for Handling the Arabic Data

Designing and Building an Automatic Information Retrieval System for Handling the Arabic Data American Journal of Applied Sciences (): -, ISSN -99 Science Publications Designing and Building an Automatic Information Retrieval System for Handling the Arabic Data Ibrahiem M.M. El Emary and Ja'far

More information

Text Mining. Representation of Text Documents

Text Mining. Representation of Text Documents Data Mining is typically concerned with the detection of patterns in numeric data, but very often important (e.g., critical to business) information is stored in the form of text. Unlike numeric data,

More information