Inconsistency-tolerant logics

Size: px
Start display at page:

Download "Inconsistency-tolerant logics"

Transcription

1 Inconsistency-tolerant logics CS 157 Computational Logic Autumn 2010

2 Inconsistent logical theories T 1 = { p(a), p(a) } T 2 = { x(p(x) q(x)), p(a), q(a) } Definition: A theory T is inconsistent if T has no models (no interpretation satisfies T) 11/15/10 2

3 Causes of inconsistency Errors Contradiction within software documentation Uncertainty and approximation Delay in update Semantic disagreement Price of a PS3 in the US vs. Canada Fundamental disagreements Birth year of Julius Caesar: 200 BC vs. 202 BC Fundamental inconsistency of the world 11/15/10 3

4 Trivialization Recall: T φ if and only if every model of T is a model of φ. Upshot: if T has no models, then the condition trivially holds for any sentence φ. Classical logic does not distinguish between inconsistent theories. Exercise: prove q from the premises p, p, using the Mendelson system. 11/15/10 4

5 Problems with inconsistency Wikipedia Mike plays Jack Bauer in 24 Microsoft knowledge base Steve Balmer hates Windows Wikipedia GDP of the US is greater than GDP of Canada We would like to distinguish between different sorts of consequences 11/15/10 5

6 Inconsistency-tolerant logics How can we preserve classical logic but prevent trivialization? Change the model theory e.g. many-valued logics Change the proof theory Change the rules of inference Change what constitutes a proof e.g. require that a proof must be self consistent 11/15/10 6

7 Relational Calculus Syntax

8 Database, Queries Database instance A finite set of ground atoms e.g., D = { p(a,a), p(b,c), q(a), r(a,d) } Query A relational calculus formula e.g., Q 1 = p(a,b) e.g., Q 2 (x) = y p(x,y) e.g., Q 3 (x) = z y ( p(x,y) r(y,z))

9 Database semantics D = { p(a,a), p(b,c), q(a), q(b) } D p(a,a)? D q(c)? D x p(x,x)? yes no yes D x (q(x) p(x,x))? no D x y (q(x) p(x,y))? yes

10 Database constraints Constraint set A finite, consistent set of relational calculus sentences e.g., C = { x ( p(x,x) q(x)), x q(x) }

11 Trivialization D = { p(a), p(b) } Constraints: { p(a) p(b) } If D C has no models, then D C φ for any φ But there is a very natural model to use: D D p(a) D p(c) Some absurd conclusions remain D p(a) p(b) Julius Caesar was born in 200 BC and in 202 BC

12 Min-change Repairs Given: D : database e.g.,{ p(a), p(b) } Ω : set of constraints e.g.,{ p(a) p(b) } A repair is a database D* that is consistent with Ω. e.g., { p(a) }, { p(b) }, { }, { p(a), p(c) },... A minimal change repair is a repair that is minimally different from D. minimal according to the relationship A \leq B if and only if (A D) (D A) \subseteq (B D) (D B)

13 Exercise Given: D : database e.g.,{ p(a), p(b) } Ω : set of constraints e.g.,{ p(a) p(b) } Which are the minimal change repairs? { p(a), p(b) } { p(a) } { p(b) } { } { p(a), p(c) }

14 Consistent query answers CQA: answers that arise no matter how the conflicts are resolved (in a minimal-change fashion) [ABC] D CQA Q(t) iff Ω for all minimal-change repairs D* of D w.r.t. to Ω, D* Q(t)

15 CQA Conflict p(a) p(b) Constraint: p(a) p(b) p(a)? NO {p(b)} p(b)? NO {p(a)} p(a) p(b)? NO {p(b)} p(a) p(b)? YES {p(a)}, {p(b)}

16 More lenient semantics In some situations, we would like to see plausible though non-guaranteed answers e.g., a student checking out whom his office mates might be Possible answers from repairs: answers that arise from some minimal-change repair

17 Possible answers Constraint: every person must be assigned a desk Data: Charlie is missing a desk assignment Minimal-change repairs: {desk(charles,desk1)}, {desk(charles,desk2)}, {desk(charles,desk3)}, Possible answers: desk1, desk2, desk3,

18 Relax not repair Instead of repairing a database to be consistent with constraints, we can relax a database to be consistent with constraints.

19 Incomplete Database An incomplete database is a theory K K consists of ground literals Pos(K) Neg(K) = {} e.g., K = { p(a), q(a), p(c), q(b) } Intuitively, Pos(K) gives the known true atoms Neg(K) gives the known false atoms The rest are unknown K d Q iff D d Q for all D Instances (K) d

20 Relaxations of a database A relaxation of D w.r.t. Ω is an incomplete database K, where Pos(K) D Neg(K) D = K d Ω Let the set of relaxations of D w.r.t. to Ω be denoted Re d (D,Ω)

21 Example D = {p(a),p(b)} Ω = { p(a) p(b)} d = {a,b,c} Re d (D,Ω) = { { p(a), p(c)}, {p(b), p(c)}, { p(a) }, {p(b)}, { p(c) }, { } }

22 Answers with Consistent Support ACS: answers that are supported by a consistent relaxation of the database. [KG] D CS Ω Q(t) iff there exists K Re d (D,Ω) st K d Q(t) Where d = adom(d,q)

23 ACS Conflict p(a) p(b) Constraint: p(a) p(b) p(a)? YES <{p(a)},{}> p(b)? YES <{p(b)},{}> p(a) p(b)? NO p(a) p(b)? YES <{p(a)},{}>

24 More complex queries p a 1 b 1 c 2 d 3 q a b r c d Constraint: xyz ( p(x,z) p(y,z) x=y) x [q(x) p(x,1)]? ACS: NO

25 Data Complexity Both ACS and CQA are NP-Hard problems [KG] [CM] Reduction from monotone 3-SAT ACS is tractable for * * queries. [KG] CQA is tractable for * queries [KG] Some subclasses of * queries [ABC, CM, FM] with suitable restrictions on the class of constraints

26 Query rewriting How can we use existing database infrastructure to support these query semantics? Solution: Query rewriting Algorithm ACS-Rewrite[Q,Ω] Rewrite Q ( * *) into Q' so that evaluating Q' on a standard DBMS gives ACS answers to Q. [KG] Similar rewriting algorithms have been devised for CQA [ABC, CM, FM, KG]

27 ACS: Ground conjunctive queries Q = p(a,1) p(b,1) C = { x1 x2 y ( p(x1,y) p(x2,y) x1=x2) } Q contradicts C. Answer: NO Rewrite: Q' = False

28 ACS: qf conjunctive queries Q(x1,y1,x2,y2) = p(x1,y1) p(x2,y2) C = { x1 x2 y ( p(x1,y) p(x2,y) x1=x2) } Q(x1,y1,x2,y2) is consistent w.r.t. C if and only if (x1=x2 y1 y2) Rewrite: Q' = Q(x1,x2,y1,y2) (x1=x2 y1 y2)

29 ACS: * queries Q = x,y ( q(x,y) r(x,y)) C ={ x q(x,x) } q(x,y) r(x,y) q(x,x) r(x,x) Rewrite: Q' = Q x r(x,x)

30 Ongoing work Identify other tractable classes Recursive queries and aggregates Other answer semantics preferentially-defeasible data? coarser granularity? Semantics that consider history?

31 References [ABC] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases. Symposium on principles of database systems, Pages 68 79, [CM] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using tuple deletions. Inf. Comput.,197(1-2):90 121, [FM] A. Fuxman and R. J. Miller. First-order query rewriting for inconsistent databases. J. Comput. Syst. Sci., 73(4): , [KG] E. Kao and M. Genesereth. Answers with consistent support complexity and rewriting. Working paper, 2010.

32 Issues Constraint Language Expressiveness (Skolems, aggregates) Evaluation and Rewriting Techniques Managing Inconsistency Inconsistencies and interdependencies Automatic update in the presence of inconsistencies Queries in the presence of inconsistencies Dynamic Constraints Update Preferences Workflow Analysis, Use, Design Privacy and Security Promoting Convergence 11/15/10 32

33 Embrace cqa Technical def of semantics Issue, solution. NP hard. Symbols and font fix for formula. Distinguish formulae.

34 CQA Conflict person.desk(alice,desk1) person.desk(bob,desk1) Who is assigned to Desk1? person.desk(alice, Desk1)? NO person.desk(bob, Desk1)? NO person.desk(alice, Desk1) person.desk(bob, Desk1)? NO person.desk(alice, Desk1) person.desk(bob, Desk1)? YES

35 More complex queries Select an area on a map and ask: which workgroups have all their members assigned to a desk in the selected area?

36 More complex queries P [p.group(p,groupa) p.desk(p,desk1)]? ACS: NO P [p.group(p,groupb) (p.desk(p,desk2) p.desk(p,desk3))]? ACS: YES

37 Issues and responses Both ACS and CQA are NP-Hard problems [KG] Response: Identify tractable subclasses of queries ACS: * * [KG] CQA: * [KG] a subset of * [ABC, CM, FM] Neither is supported by a standard DBMS. Solution: Query rewriting Rewrite Q into Q', then evaluate Q' on a standard DBMS to obtain ACS/CQA answers to Q

38 Relational Calculus Semantics

39 Semantics for Incomplete Database Formally, the semantics of an incomplete database <P,N> is given by its set of possible instances. Relative to domain d, Instances d (<P,N>) = {D base(d) P D and D N= } <P,N> d Q iff D d Q for all D Instances (<P,N>). d

40 Decentralized Office assignment A building is divided into spaces. Each space as a space czar who is tasked with assigning people to offices within that space. The building manager, department manager, and department chair also exercise authority over the assignment of offices. Individual professors request specific assignments for his or her affiliates. 11/15/10 40

41 Desk Assignment Example Alice Desk1 desk(alice,desk1) Bob Desk1 desk(bob,desk1)

42 Desk Assignment Example Conflict: Data is inconsistent with the following constraint desk(alice,desk1) desk(bob,desk1) x1, x2, y (person.desk(x1,y) x1 = x2) Alice \neq Bob person.desk(x2,y)

43 Alert the users to the conflict The users can work to resolve the conflict Current snapshot...

44 Queries Users would like to query the eventual, consistent data But all we have is the current, inconsistent, snapshot. Current snapshot...

Managing Inconsistencies in Collaborative Data Management

Managing Inconsistencies in Collaborative Data Management Managing Inconsistencies in Collaborative Data Management Eric Kao Logic Group Computer Science Department Stanford University Talk given at HP Labs on November 9, 2010 Structured Data Public Sources Company

More information

Computing Query Answers with Consistent Support

Computing Query Answers with Consistent Support Computing Query Answers with Consistent Support Jui-Yi Kao Advised by: Stanford University Michael Genesereth Inconsistency in Databases If the data in a database violates the applicable ICs, we say the

More information

INCONSISTENT DATABASES

INCONSISTENT DATABASES INCONSISTENT DATABASES Leopoldo Bertossi Carleton University, http://www.scs.carleton.ca/ bertossi SYNONYMS None DEFINITION An inconsistent database is a database instance that does not satisfy those integrity

More information

Integrity Constraints (Chapter 7.3) Overview. Bottom-Up. Top-Down. Integrity Constraint. Disjunctive & Negative Knowledge. Proof by Refutation

Integrity Constraints (Chapter 7.3) Overview. Bottom-Up. Top-Down. Integrity Constraint. Disjunctive & Negative Knowledge. Proof by Refutation CSE560 Class 10: 1 c P. Heeman, 2010 Integrity Constraints Overview Disjunctive & Negative Knowledge Resolution Rule Bottom-Up Proof by Refutation Top-Down CSE560 Class 10: 2 c P. Heeman, 2010 Integrity

More information

arxiv:cs/ v1 [cs.db] 5 Apr 2002

arxiv:cs/ v1 [cs.db] 5 Apr 2002 On the Computational Complexity of Consistent Query Answers arxiv:cs/0204010v1 [cs.db] 5 Apr 2002 1 Introduction Jan Chomicki Jerzy Marcinkowski Dept. CSE Instytut Informatyki University at Buffalo Wroclaw

More information

Overview. CS389L: Automated Logical Reasoning. Lecture 6: First Order Logic Syntax and Semantics. Constants in First-Order Logic.

Overview. CS389L: Automated Logical Reasoning. Lecture 6: First Order Logic Syntax and Semantics. Constants in First-Order Logic. Overview CS389L: Automated Logical Reasoning Lecture 6: First Order Logic Syntax and Semantics Işıl Dillig So far: Automated reasoning in propositional logic. Propositional logic is simple and easy to

More information

Towards a Logical Reconstruction of Relational Database Theory

Towards a Logical Reconstruction of Relational Database Theory Towards a Logical Reconstruction of Relational Database Theory On Conceptual Modelling, Lecture Notes in Computer Science. 1984 Raymond Reiter Summary by C. Rey November 27, 2008-1 / 63 Foreword DB: 2

More information

Static, Incremental and Parameterized Complexity of Consistent Query Answering in Databases Under Cardinality-Based Semantics

Static, Incremental and Parameterized Complexity of Consistent Query Answering in Databases Under Cardinality-Based Semantics Static, Incremental and Parameterized Complexity of Consistent Query Answering in Databases Under Cardinality-Based Semantics Leopoldo Bertossi Carleton University Ottawa, Canada Based in part on join

More information

Data integration lecture 3

Data integration lecture 3 PhD course on View-based query processing Data integration lecture 3 Riccardo Rosati Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza {rosati}@dis.uniroma1.it Corso di Dottorato

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi is another way of showing that an argument is correct. Definitions: Literal: A variable or a negation of a variable is called a literal. Sum and Product: A disjunction of literals is called a sum and a

More information

Propositional Logic. Part I

Propositional Logic. Part I Part I Propositional Logic 1 Classical Logic and the Material Conditional 1.1 Introduction 1.1.1 The first purpose of this chapter is to review classical propositional logic, including semantic tableaux.

More information

Consistent Query Answering

Consistent Query Answering Consistent Query Answering Opportunities and Limitations Jan Chomicki Dept. CSE University at Buffalo State University of New York http://www.cse.buffalo.edu/ chomicki 1 Integrity constraints Integrity

More information

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic 3.4 Deduction and Evaluation: Tools 3.4.1 Conditional-Equational Logic The general definition of a formal specification from above was based on the existence of a precisely defined semantics for the syntax

More information

CSC 501 Semantics of Programming Languages

CSC 501 Semantics of Programming Languages CSC 501 Semantics of Programming Languages Subtitle: An Introduction to Formal Methods. Instructor: Dr. Lutz Hamel Email: hamel@cs.uri.edu Office: Tyler, Rm 251 Books There are no required books in this

More information

Computing Query Answers with Consistent Support

Computing Query Answers with Consistent Support Computing Query Answers with Consistent Support A Ph.D. project proposal Jui-Yi Kao Stanford University 353 Serra Mall Stanford, California, United States of America eric.k@cs.stanford.edu ABSTRACT This

More information

Chapter 2 & 3: Representations & Reasoning Systems (2.2)

Chapter 2 & 3: Representations & Reasoning Systems (2.2) Chapter 2 & 3: A Representation & Reasoning System & Using Definite Knowledge Representations & Reasoning Systems (RRS) (2.2) Simplifying Assumptions of the Initial RRS (2.3) Datalog (2.4) Semantics (2.5)

More information

arxiv: v1 [cs.db] 23 May 2016

arxiv: v1 [cs.db] 23 May 2016 Complexity of Consistent Query Answering in Databases under Cardinality-Based and Incremental Repair Semantics (extended version) arxiv:1605.07159v1 [cs.db] 23 May 2016 Andrei Lopatenko Free University

More information

Part I Logic programming paradigm

Part I Logic programming paradigm Part I Logic programming paradigm 1 Logic programming and pure Prolog 1.1 Introduction 3 1.2 Syntax 4 1.3 The meaning of a program 7 1.4 Computing with equations 9 1.5 Prolog: the first steps 15 1.6 Two

More information

Scalar Aggregation in Inconsistent Databases

Scalar Aggregation in Inconsistent Databases Scalar Aggregation in Inconsistent Databases Marcelo Arenas Dept. of Computer Science University of Toronto marenas@cs.toronto.edu Jan Chomicki Dept. CSE University at Buffalo chomicki@cse.buffalo.edu

More information

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Foundations of AI 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 09/1 Contents Motivation

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Data integration lecture 2

Data integration lecture 2 PhD course on View-based query processing Data integration lecture 2 Riccardo Rosati Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza {rosati}@dis.uniroma1.it Corso di Dottorato

More information

On the Computational Complexity of Minimal-Change Integrity Maintenance in Relational Databases

On the Computational Complexity of Minimal-Change Integrity Maintenance in Relational Databases On the Computational Complexity of Minimal-Change Integrity Maintenance in Relational Databases Jan Chomicki 1 and Jerzy Marcinkowski 2 1 Dept. of Computer Science and Engineering University at Buffalo

More information

Diagnosis through constrain propagation and dependency recording. 2 ATMS for dependency recording

Diagnosis through constrain propagation and dependency recording. 2 ATMS for dependency recording Diagnosis through constrain propagation and dependency recording 2 ATMS for dependency recording Fundamentals of Truth Maintenance Systems, TMS Motivation (de Kleer): for most search tasks, there is a

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) 6.1 Instructional Objective Students should understand the advantages of first order logic as a knowledge representation language Students

More information

Lecture 4: January 12, 2015

Lecture 4: January 12, 2015 32002: AI (First Order Predicate Logic, Interpretation and Inferences) Spring 2015 Lecturer: K.R. Chowdhary Lecture 4: January 12, 2015 : Professor of CS (VF) Disclaimer: These notes have not been subjected

More information

Database Theory VU , SS Introduction to Datalog. Reinhard Pichler. Institute of Logic and Computation DBAI Group TU Wien

Database Theory VU , SS Introduction to Datalog. Reinhard Pichler. Institute of Logic and Computation DBAI Group TU Wien Database Theory Database Theory VU 181.140, SS 2018 2. Introduction to Datalog Reinhard Pichler Institute of Logic and Computation DBAI Group TU Wien 13 March, 2018 Pichler 13 March, 2018 Page 1 Database

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Preference-Driven Querying of Inconsistent Relational Databases

Preference-Driven Querying of Inconsistent Relational Databases Preference-Driven Querying of Inconsistent Relational Databases Slawomir Staworko 1, Jan Chomicki 1, and Jerzy Marcinkowski 2 1 University at Buffalo, {staworko,chomicki}@cse.buffalo.edu 2 Wroclaw University

More information

Answer Sets and the Language of Answer Set Programming. Vladimir Lifschitz

Answer Sets and the Language of Answer Set Programming. Vladimir Lifschitz Answer Sets and the Language of Answer Set Programming Vladimir Lifschitz Answer set programming is a declarative programming paradigm based on the answer set semantics of logic programs. This introductory

More information

Logic and Databases. Phokion G. Kolaitis. UC Santa Cruz & IBM Research - Almaden

Logic and Databases. Phokion G. Kolaitis. UC Santa Cruz & IBM Research - Almaden Logic and Databases Phokion G. Kolaitis UC Santa Cruz & IBM Research - Almaden 1 Logic and Databases are inextricably intertwined. C.J. Date -- 2007 2 Logic and Databases Extensive interaction between

More information

Chapter 1.3 Quantifiers, Predicates, and Validity. Reading: 1.3 Next Class: 1.4. Motivation

Chapter 1.3 Quantifiers, Predicates, and Validity. Reading: 1.3 Next Class: 1.4. Motivation Chapter 1.3 Quantifiers, Predicates, and Validity Reading: 1.3 Next Class: 1.4 1 Motivation Propositional logic allows to translate and prove certain arguments from natural language If John s wallet was

More information

Automatic Reasoning (Section 8.3)

Automatic Reasoning (Section 8.3) Automatic Reasoning (Section 8.3) Automatic Reasoning Can reasoning be automated? Yes, for some logics, including first-order logic. We could try to automate natural deduction, but there are many proof

More information

CS590U Access Control: Theory and Practice. Lecture 18 (March 10) SDSI Semantics & The RT Family of Role-based Trust-management Languages

CS590U Access Control: Theory and Practice. Lecture 18 (March 10) SDSI Semantics & The RT Family of Role-based Trust-management Languages CS590U Access Control: Theory and Practice Lecture 18 (March 10) SDSI Semantics & The RT Family of Role-based Trust-management Languages Understanding SPKI/SDSI Using First-Order Logic Ninghui Li and John

More information

8. Negation 8-1. Deductive Databases and Logic Programming. (Sommer 2017) Chapter 8: Negation

8. Negation 8-1. Deductive Databases and Logic Programming. (Sommer 2017) Chapter 8: Negation 8. Negation 8-1 Deductive Databases and Logic Programming (Sommer 2017) Chapter 8: Negation Motivation, Differences to Logical Negation Syntax, Supported Models, Clark s Completion Stratification, Perfect

More information

Introduction to Parameterized Complexity

Introduction to Parameterized Complexity Introduction to Parameterized Complexity M. Pouly Department of Informatics University of Fribourg, Switzerland Internal Seminar June 2006 Outline Introduction & Motivation The Misery of Dr. O The Perspective

More information

A Retrospective on Datalog 1.0

A Retrospective on Datalog 1.0 A Retrospective on Datalog 1.0 Phokion G. Kolaitis UC Santa Cruz and IBM Research - Almaden Datalog 2.0 Vienna, September 2012 2 / 79 A Brief History of Datalog In the beginning of time, there was E.F.

More information

Consistent Query Answering: Opportunities and Limitations

Consistent Query Answering: Opportunities and Limitations Consistent Query Answering: Opportunities and Limitations Jan Chomicki Dept. Computer Science and Engineering University at Buffalo, SUNY Buffalo, NY 14260-2000, USA chomicki@buffalo.edu Abstract This

More information

Relational Databases

Relational Databases Relational Databases Jan Chomicki University at Buffalo Jan Chomicki () Relational databases 1 / 49 Plan of the course 1 Relational databases 2 Relational database design 3 Conceptual database design 4

More information

The semantics of a programming language is concerned with the meaning of programs, that is, how programs behave when executed on computers.

The semantics of a programming language is concerned with the meaning of programs, that is, how programs behave when executed on computers. Semantics The semantics of a programming language is concerned with the meaning of programs, that is, how programs behave when executed on computers. The semantics of a programming language assigns a precise

More information

Consistent Query Answering

Consistent Query Answering Consistent Query Answering Sławek Staworko 1 University of Lille INRIA Mostrare Project DEIS 2010 November 9, 2010 1 Some slides are due to [Cho07] Sławek Staworko (Mostrare) CQA DEIS 2010 1 / 33 Overview

More information

The Relational Model

The Relational Model The Relational Model David Toman School of Computer Science University of Waterloo Introduction to Databases CS348 David Toman (University of Waterloo) The Relational Model 1 / 28 The Relational Model

More information

CMPS 277 Principles of Database Systems. Lecture #4

CMPS 277 Principles of Database Systems.  Lecture #4 CMPS 277 Principles of Database Systems http://www.soe.classes.edu/cmps277/winter10 Lecture #4 1 First-Order Logic Question: What is First-Order Logic? Answer: Informally, First-Order Logic = Propositional

More information

Schema Mappings and Data Exchange

Schema Mappings and Data Exchange Schema Mappings and Data Exchange Lecture #2 EASSLC 2012 Southwest University August 2012 1 The Relational Data Model (E.F. Codd 1970) The Relational Data Model uses the mathematical concept of a relation

More information

This is already grossly inconvenient in present formalisms. Why do we want to make this convenient? GENERAL GOALS

This is already grossly inconvenient in present formalisms. Why do we want to make this convenient? GENERAL GOALS 1 THE FORMALIZATION OF MATHEMATICS by Harvey M. Friedman Ohio State University Department of Mathematics friedman@math.ohio-state.edu www.math.ohio-state.edu/~friedman/ May 21, 1997 Can mathematics be

More information

Semantic Optimization of Preference Queries

Semantic Optimization of Preference Queries Semantic Optimization of Preference Queries Jan Chomicki University at Buffalo http://www.cse.buffalo.edu/ chomicki 1 Querying with Preferences Find the best answers to a query, instead of all the answers.

More information

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 28 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1993 ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING

More information

CS40-S13: Functional Completeness

CS40-S13: Functional Completeness CS40-S13: Functional Completeness Victor Amelkin victor@cs.ucsb.edu April 12, 2013 In class, we have briefly discussed what functional completeness means and how to prove that a certain system (a set)

More information

Chapter 9: Constraint Logic Programming

Chapter 9: Constraint Logic Programming 9. Constraint Logic Programming 9-1 Deductive Databases and Logic Programming (Winter 2007/2008) Chapter 9: Constraint Logic Programming Introduction, Examples Basic Query Evaluation Finite Domain Constraint

More information

Computational Logic Lecture 11. Resolution Tricks. Michael Genesereth Autumn Plan

Computational Logic Lecture 11. Resolution Tricks. Michael Genesereth Autumn Plan Computational Logic Lecture 11 Resolution Tricks Michael Genesereth Autumn 2011 Plan First Lecture - Resolution Preliminaries Unification Relational Clausal Form Second Lecture - Resolution Principle Resolution

More information

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning Principles of Knowledge Representation and Reasoning Nonmonotonic Reasoning Bernhard Nebel, Stefan Wölfl, and Felix Lindner December 14 & 16, 2015 1 Motivation Different forms of reasoning Different formalizations

More information

Lee Pike. June 3, 2005

Lee Pike. June 3, 2005 Proof NASA Langley Formal Methods Group lee.s.pike@nasa.gov June 3, 2005 Proof Proof Quantification Quantified formulas are declared by quantifying free variables in the formula. For example, lem1: LEMMA

More information

Plan of the lecture. G53RDB: Theory of Relational Databases Lecture 14. Example. Datalog syntax: rules. Datalog query. Meaning of Datalog rules

Plan of the lecture. G53RDB: Theory of Relational Databases Lecture 14. Example. Datalog syntax: rules. Datalog query. Meaning of Datalog rules Plan of the lecture G53RDB: Theory of Relational Databases Lecture 14 Natasha Alechina School of Computer Science & IT nza@cs.nott.ac.uk More Datalog: Safe queries Datalog and relational algebra Recursive

More information

Constraint Solving. Systems and Internet Infrastructure Security

Constraint Solving. Systems and Internet Infrastructure Security Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Constraint Solving Systems

More information

Semantic data integration in P2P systems

Semantic data integration in P2P systems Semantic data integration in P2P systems D. Calvanese, E. Damaggio, G. De Giacomo, M. Lenzerini, R. Rosati Dipartimento di Informatica e Sistemistica Antonio Ruberti Università di Roma La Sapienza International

More information

On the Hardness of Counting the Solutions of SPARQL Queries

On the Hardness of Counting the Solutions of SPARQL Queries On the Hardness of Counting the Solutions of SPARQL Queries Reinhard Pichler and Sebastian Skritek Vienna University of Technology, Faculty of Informatics {pichler,skritek}@dbai.tuwien.ac.at 1 Introduction

More information

Constraint Propagation for Efficient Inference in Markov Logic

Constraint Propagation for Efficient Inference in Markov Logic Constraint Propagation for Efficient Inference in Tivadar Papai 1 Parag Singla 2 Henry Kautz 1 1 University of Rochester, Rochester NY 14627, USA 2 University of Texas, Austin TX 78701, USA September 13,

More information

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example Lecture 2: Combinatorial search and optimisation problems Different types of computational problems Examples of computational problems Relationships between problems Computational properties of different

More information

Applications of Annotated Predicate Calculus to Querying Inconsistent Databases

Applications of Annotated Predicate Calculus to Querying Inconsistent Databases Applications of Annotated Predicate Calculus to Querying Inconsistent Databases Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer 1 P. Universidad Catolica de Chile, Depto. Ciencia de Computacion Casilla

More information

Handout 9: Imperative Programs and State

Handout 9: Imperative Programs and State 06-02552 Princ. of Progr. Languages (and Extended ) The University of Birmingham Spring Semester 2016-17 School of Computer Science c Uday Reddy2016-17 Handout 9: Imperative Programs and State Imperative

More information

DATABASE THEORY. Lecture 11: Introduction to Datalog. TU Dresden, 12th June Markus Krötzsch Knowledge-Based Systems

DATABASE THEORY. Lecture 11: Introduction to Datalog. TU Dresden, 12th June Markus Krötzsch Knowledge-Based Systems DATABASE THEORY Lecture 11: Introduction to Datalog Markus Krötzsch Knowledge-Based Systems TU Dresden, 12th June 2018 Announcement All lectures and the exercise on 19 June 2018 will be in room APB 1004

More information

Databases -Normalization I. (GF Royle, N Spadaccini ) Databases - Normalization I 1 / 24

Databases -Normalization I. (GF Royle, N Spadaccini ) Databases - Normalization I 1 / 24 Databases -Normalization I (GF Royle, N Spadaccini 2006-2010) Databases - Normalization I 1 / 24 This lecture This lecture introduces normal forms, decomposition and normalization. We will explore problems

More information

Lecture 17 of 41. Clausal (Conjunctive Normal) Form and Resolution Techniques

Lecture 17 of 41. Clausal (Conjunctive Normal) Form and Resolution Techniques Lecture 17 of 41 Clausal (Conjunctive Normal) Form and Resolution Techniques Wednesday, 29 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Chapter 9,

More information

Composing Schema Mapping

Composing Schema Mapping Composing Schema Mapping An Overview Phokion G. Kolaitis UC Santa Cruz & IBM Research Almaden Joint work with R. Fagin, L. Popa, and W.C. Tan 1 Data Interoperability Data may reside at several different

More information

Semantic Errors in Database Queries

Semantic Errors in Database Queries Semantic Errors in Database Queries 1 Semantic Errors in Database Queries Stefan Brass TU Clausthal, Germany From April: University of Halle, Germany Semantic Errors in Database Queries 2 Classification

More information

On the implementation of a multiple output algorithm for defeasible argumentation

On the implementation of a multiple output algorithm for defeasible argumentation On the implementation of a multiple output algorithm for defeasible argumentation Teresa Alsinet 1, Ramón Béjar 1, Lluis Godo 2, and Francesc Guitart 1 1 Department of Computer Science University of Lleida

More information

Lecture 1: Conjunctive Queries

Lecture 1: Conjunctive Queries CS 784: Foundations of Data Management Spring 2017 Instructor: Paris Koutris Lecture 1: Conjunctive Queries A database schema R is a set of relations: we will typically use the symbols R, S, T,... to denote

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

This lecture. Databases -Normalization I. Repeating Data. Redundancy. This lecture introduces normal forms, decomposition and normalization.

This lecture. Databases -Normalization I. Repeating Data. Redundancy. This lecture introduces normal forms, decomposition and normalization. This lecture Databases -Normalization I This lecture introduces normal forms, decomposition and normalization (GF Royle 2006-8, N Spadaccini 2008) Databases - Normalization I 1 / 23 (GF Royle 2006-8, N

More information

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence Knowledge Representation CS 486/686: Introduction to Artificial Intelligence 1 Outline Knowledge-based agents Logics in general Propositional Logic& Reasoning First Order Logic 2 Introduction So far we

More information

Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions

Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions Abhishek Sinha Laboratory for Information and Decision Systems MIT MobiHoc, 2017 April 18, 2017 1 / 63 Introduction

More information

Lecture 9: Datalog with Negation

Lecture 9: Datalog with Negation CS 784: Foundations of Data Management Spring 2017 Instructor: Paris Koutris Lecture 9: Datalog with Negation In this lecture we will study the addition of negation to Datalog. We start with an example.

More information

Operational Semantics 1 / 13

Operational Semantics 1 / 13 Operational Semantics 1 / 13 Outline What is semantics? Operational Semantics What is semantics? 2 / 13 What is the meaning of a program? Recall: aspects of a language syntax: the structure of its programs

More information

Solving Natural Language Math Problems

Solving Natural Language Math Problems Solving Natural Language Math Problems Takuya Matsuzaki (Nagoya University) Noriko H. Arai (National Institute of Informatics) Solving NL Math why? It is the first and the last goal of symbolic approach

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) Lesson 15 Inference in FOL - I 6.2.8 Resolution We have introduced the inference rule Modus Ponens. Now we introduce another inference rule

More information

Minimal-Change Integrity Maintenance Using Tuple Deletions

Minimal-Change Integrity Maintenance Using Tuple Deletions Minimal-Change Integrity Maintenance Using Tuple Deletions Jan Chomicki University at Buffalo Dept. CSE chomicki@cse.buffalo.edu Jerzy Marcinkowski Wroclaw University Instytut Informatyki jma@ii.uni.wroc.pl

More information

Hoare Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré

Hoare Logic. COMP2600 Formal Methods for Software Engineering. Rajeev Goré Hoare Logic COMP2600 Formal Methods for Software Engineering Rajeev Goré Australian National University Semester 2, 2016 (Slides courtesy of Ranald Clouston) COMP 2600 Hoare Logic 1 Australian Capital

More information

arxiv:cs/ v1 [cs.db] 29 Nov 2002

arxiv:cs/ v1 [cs.db] 29 Nov 2002 Database Repairs and Analytic Tableaux Leopoldo Bertossi 1 and Camilla Schwind 2 arxiv:cs/0211042v1 [cs.db] 29 Nov 2002 1 Carleton University School of Computer Science Ottawa, Canada K1S 5B6 bertossi@scs.carleton.ca

More information

Database Theory VU , SS Codd s Theorem. Reinhard Pichler

Database Theory VU , SS Codd s Theorem. Reinhard Pichler Database Theory Database Theory VU 181.140, SS 2011 3. Codd s Theorem Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 29 March, 2011 Pichler 29 March,

More information

Choice Logic Programs and Nash Equilibria in Strategic Games

Choice Logic Programs and Nash Equilibria in Strategic Games Choice Logic Programs and Nash Equilibria in Strategic Games Marina De Vos and Dirk Vermeir Dept. of Computer Science Free University of Brussels, VUB Pleinlaan 2, Brussels 1050, Belgium Tel: +32 2 6293308

More information

CS 512, Spring 2017: Take-Home End-of-Term Examination

CS 512, Spring 2017: Take-Home End-of-Term Examination CS 512, Spring 2017: Take-Home End-of-Term Examination Out: Tuesday, 9 May 2017, 12:00 noon Due: Wednesday, 10 May 2017, by 11:59 am Turn in your solutions electronically, as a single PDF file, by placing

More information

Bliksem 1.10 User Manual

Bliksem 1.10 User Manual Bliksem 1.10 User Manual H. de Nivelle January 2, 2003 Abstract Bliksem is a theorem prover that uses resolution with paramodulation. It is written in portable C. The purpose of Bliksem was to develope

More information

Schema Design for Uncertain Databases

Schema Design for Uncertain Databases Schema Design for Uncertain Databases Anish Das Sarma, Jeffrey Ullman, Jennifer Widom {anish,ullman,widom}@cs.stanford.edu Stanford University Abstract. We address schema design in uncertain databases.

More information

The Resolution Principle

The Resolution Principle Summary Introduction [Chang-Lee Ch. 5.1] for Propositional Logic [Chang-Lee Ch. 5.2] Herbrand's orem and refutation procedures Satisability procedures We can build refutation procedures building on Herbrand's

More information

Project-Join-Repair: An Approach to Consistent Query Answering Under Functional Dependencies

Project-Join-Repair: An Approach to Consistent Query Answering Under Functional Dependencies Project-Join-Repair: An Approach to Consistent Query Answering Under Functional Dependencies Jef Wijsen Université de Mons-Hainaut, Mons, Belgium, jef.wijsen@umh.ac.be, WWW home page: http://staff.umh.ac.be/wijsen.jef/

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 7 This lecture returns to the topic of propositional logic. Whereas in Lecture 1 we studied this topic as a way of understanding proper reasoning

More information

Coherent Integration of Databases by Abductive Logic Programming

Coherent Integration of Databases by Abductive Logic Programming Journal of Artificial Intelligence Research 21 (2004) 245 286 Submitted 07/2003; published 03/2004 Coherent Integration of Databases by Abductive Logic Programming Ofer Arieli Department of Computer Science,

More information

Essential Gringo (Draft)

Essential Gringo (Draft) Essential Gringo (Draft) Vladimir Lifschitz, University of Texas 1 Introduction The designers of the Abstract Gringo language AG [Gebser et al., 2015a] aimed at creating a relatively simple mathematical

More information

Note that in this definition, n + m denotes the syntactic expression with three symbols n, +, and m, not to the number that is the sum of n and m.

Note that in this definition, n + m denotes the syntactic expression with three symbols n, +, and m, not to the number that is the sum of n and m. CS 6110 S18 Lecture 8 Structural Operational Semantics and IMP Today we introduce a very simple imperative language, IMP, along with two systems of rules for evaluation called small-step and big-step semantics.

More information

Computer Science Technical Report

Computer Science Technical Report Computer Science Technical Report Feasibility of Stepwise Addition of Multitolerance to High Atomicity Programs Ali Ebnenasir and Sandeep S. Kulkarni Michigan Technological University Computer Science

More information

Logical reasoning systems

Logical reasoning systems Logical reasoning systems Theorem provers and logic programming languages Production systems Frame systems and semantic networks Description logic systems CS 561, Session 19 1 Logical reasoning systems

More information

Lecture 2: NP-Completeness

Lecture 2: NP-Completeness NP and Latin Squares Instructor: Padraic Bartlett Lecture 2: NP-Completeness Week 4 Mathcamp 2014 In our last class, we introduced the complexity classes P and NP. To motivate why we grouped all of NP

More information

Logic Programming and Resolution Lecture notes for INF3170/4171

Logic Programming and Resolution Lecture notes for INF3170/4171 Logic Programming and Resolution Lecture notes for INF3170/4171 Leif Harald Karlsen Autumn 2015 1 Introduction This note will explain the connection between logic and computer programming using Horn Clauses

More information

Database Theory VU , SS Introduction: Relational Query Languages. Reinhard Pichler

Database Theory VU , SS Introduction: Relational Query Languages. Reinhard Pichler Database Theory Database Theory VU 181.140, SS 2018 1. Introduction: Relational Query Languages Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 6 March,

More information

9.1 Cook-Levin Theorem

9.1 Cook-Levin Theorem CS787: Advanced Algorithms Scribe: Shijin Kong and David Malec Lecturer: Shuchi Chawla Topic: NP-Completeness, Approximation Algorithms Date: 10/1/2007 As we ve already seen in the preceding lecture, two

More information

Automated Reasoning. Natural Deduction in First-Order Logic

Automated Reasoning. Natural Deduction in First-Order Logic Automated Reasoning Natural Deduction in First-Order Logic Jacques Fleuriot Automated Reasoning Lecture 4, page 1 Problem Consider the following problem: Every person has a heart. George Bush is a person.

More information

Query Minimization. CSE 544: Lecture 11 Theory. Query Minimization In Practice. Query Minimization. Query Minimization for Views

Query Minimization. CSE 544: Lecture 11 Theory. Query Minimization In Practice. Query Minimization. Query Minimization for Views Query Minimization CSE 544: Lecture 11 Theory Monday, May 3, 2004 Definition A conjunctive query q is minimal if for every other conjunctive query q s.t. q q, q has at least as many predicates ( subgoals

More information

Artificial Intelligence. Chapters Reviews. Readings: Chapters 3-8 of Russell & Norvig.

Artificial Intelligence. Chapters Reviews. Readings: Chapters 3-8 of Russell & Norvig. Artificial Intelligence Chapters Reviews Readings: Chapters 3-8 of Russell & Norvig. Topics covered in the midterm Solving problems by searching (Chap. 3) How to formulate a search problem? How to measure

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

More information