Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012

Size: px
Start display at page:

Download "Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012"

Transcription

1 Supervised Hashing with Kernels Wei Liu (Columbia Columbia), Jun Wang (IBM IBM), Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), and Shih Fu Chang (Columbia Columbia) June, 2012

2 Outline Motivations Problem Our Approach Experiments Conclusions CVPR

3 Fast Nearest Neighbor Search Exhaustive search ( time) is inefficient. CVPR

4 Tree Based Indexing O(log n) search time. Impractical for high dimensionality. tree KD tree CVPR

5 Locality Sensitive Hashing [Gionis, Indyk, and Motwani 1999] [Datar et al. 2004] Sublinear search time for approximate NN. Long hash bits (>=1k) and multiple hash tables Query 1 Feature Vector hash function random CVPR

6 Hashing with Compact Codes O(1) search timewithshort bits (<=50) and a single table. Both time and storage efficient. n hash table hash bucket address xi CVPR 2012 q

7 Related Works Three maincategories Unsupervised Hashing LSH, PCAH, ITQ, KLSH, SH, AGH Our Approach Semi Supervised Hashing Supervised Hashing SSH, WeaklySH RBM, BRE, MLH, LDAH CVPR

8 Supervision Semantic Supervision Metric Supervision similar dissimilar dissimilar dissimilar similar CVPR

9 Principle: Preserve Supervised Information The hashing quality could be boosted by leveraging supervised information: similar and dissimilar pairs. dissimilar similar il 0 1 desirable hash hfunction CVPR

10 Outline Motivations Problem Our Approach Experiments Conclusions CVPR

11 Encode Supervised Information Encode as a pairwise label matrix similar pairs dissimilar pairs uncertain The labeled data of samples. Objective: learn r hash functions for r hash bits given and S. CVPR

12 Previous Formulations Goal SSH/OKH [Wang, Kumar, He, Liu, Chang 2010] BRE [Kulis&Darrell 2009] Hamming distance between H(xi) and H(xj) MLH [Norouzi&Fleet 2011] hinge loss CVPR

13 Outline Motivations Problem Our Approach Experiments Conclusions CVPR

14 Proposed Idea: Code Inner Products Optimizing i i Hamming distances can yield ildcompact yet discriminative hash codes, but is hard to implement. We propose to optimize code inner products. code inner product Hamming distance CVPR

15 Hamming Distances The labeled data x1 similar x3 x2 supervised hashinghi Optimization on Hamming distances hash code of x 1 hash code of x distance max distance hash code of x CVPR

16 Code Inner Products The labeled data Optimization i on code inner products x1 similar x2 x 1 code matrix code matrix supervised hashing x Х x 3 fitting x 1 x 2 x 3 r x3 x 1 x 2 pairwise label matrix x x 1 x 2 x 3 S CVPR

17 Code Learning Lead to a clean matrix formed code learning framework ( ): reduce the gap bet. code similarity and semantic similarity sample single hash bit Easy to be extended to a kernelized formulation. CVPR

18 Kernel Based Hash Functions FollowingKLSH KLSH, construct a hash function using a kernel function and m anchor samples: zero mean normalization applied to k(x) kernel matrix =sgn g l samples model parameter m anchors CVPR

19 Sequential Optimization Rewrite the object function as matrix: r bits cumulative vector: kthh bit residue A sequential idea: at a time, only optimize one vector ak provided with the previously optimized one hash bit one time k 1 vectors. CVPR

20 Deal with sgn() We propose two methods to handle sgn(). Spectral Relaxation Generalized SVD Sigmoid Smoothing where is a smooth approximation to sgn(x) ( x >6). Gradient Descent CVPR

21 Outline Motivations Problem Our Approach Experiments Conclusions CVPR

22 CIFAR 10 60K object images from 10 classes, 1K query images. Hamming radius 2 precision in terms of semantic labels. 1K labeled examples are used for (semi )supervised hashing. KSH 0 Spec Relax, KSH Sig Smooth. CVPR

23 Method CIFAR 10 Train Time Test Time 48 bits 48 bits SSH LDAH BRE MLH KSH CVPR 2012 Significant speedup KSH

24 Tiny 1M 1M tiny images from the MIT 80M set, 2K query images. Pseudo labels: top 5% L2 NNs as groundtruths. Hamming radius 2 precision in terms of L2 neighbors. 5K pseudo labeled examples are used for (semi) supervised hashing. CVPR

25 Tiny 1M: Hamming Ranking # returned neighbors # returned neighbors KSH achieves the highest precision and recall. CVPR

26 Tiny 1M: Visual Search Results most visually relevant CVPR

27 Outline Motivations Problem Our Approach Experiments Conclusions CVPR

28 Conclusions A novel inner products based formulation to preserve supervised information into hashing. A sequential code learning procedure: one bit one time. A new smoothing method for binary code optimization. Significant performance gains over state of the arts. Release code soon. S CVPR

29 Thanks! Questions? CVPR

Hashing with Graphs. Sanjiv Kumar (Google), and Shih Fu Chang (Columbia) June, 2011

Hashing with Graphs. Sanjiv Kumar (Google), and Shih Fu Chang (Columbia) June, 2011 Hashing with Graphs Wei Liu (Columbia Columbia), Jun Wang (IBM IBM), Sanjiv Kumar (Google), and Shih Fu Chang (Columbia) June, 2011 Overview Graph Hashing Outline Anchor Graph Hashing Experiments Conclusions

More information

Adaptive Binary Quantization for Fast Nearest Neighbor Search

Adaptive Binary Quantization for Fast Nearest Neighbor Search IBM Research Adaptive Binary Quantization for Fast Nearest Neighbor Search Zhujin Li 1, Xianglong Liu 1*, Junjie Wu 1, and Hao Su 2 1 Beihang University, Beijing, China 2 Stanford University, Stanford,

More information

Large Scale Mobile Visual Search

Large Scale Mobile Visual Search Large Scale Mobile Visual Search Ricoh, HotPaper (by Mac Funamizu) Shih-Fu Chang June 2012 The Explosive Growth of Visual Data broadcast Social portals video blogs 70,000 TB/year, 100 million hours 60

More information

Supervised Hashing for Image Retrieval via Image Representation Learning

Supervised Hashing for Image Retrieval via Image Representation Learning Supervised Hashing for Image Retrieval via Image Representation Learning Rongkai Xia, Yan Pan, Cong Liu (Sun Yat-Sen University) Hanjiang Lai, Shuicheng Yan (National University of Singapore) Finding Similar

More information

learning stage (Stage 1), CNNH learns approximate hash codes for training images by optimizing the following loss function:

learning stage (Stage 1), CNNH learns approximate hash codes for training images by optimizing the following loss function: 1 Query-adaptive Image Retrieval by Deep Weighted Hashing Jian Zhang and Yuxin Peng arxiv:1612.2541v2 [cs.cv] 9 May 217 Abstract Hashing methods have attracted much attention for large scale image retrieval.

More information

over Multi Label Images

over Multi Label Images IBM Research Compact Hashing for Mixed Image Keyword Query over Multi Label Images Xianglong Liu 1, Yadong Mu 2, Bo Lang 1 and Shih Fu Chang 2 1 Beihang University, Beijing, China 2 Columbia University,

More information

Supervised Hashing with Kernels

Supervised Hashing with Kernels Supervised Hashing with Kernels Wei Liu Jun Wang Rongrong Ji Yu-Gang Jiang Shih-Fu Chang Electrical Engineering Department, Columbia University, New York, NY, USA IBM T. J. Watson Research Center, Yorktown

More information

RECENT years have witnessed the rapid growth of image. SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval

RECENT years have witnessed the rapid growth of image. SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval Jian Zhang, Yuxin Peng, and Junchao Zhang arxiv:607.08477v [cs.cv] 28 Jul 206 Abstract The hashing methods have been widely used for efficient

More information

CLSH: Cluster-based Locality-Sensitive Hashing

CLSH: Cluster-based Locality-Sensitive Hashing CLSH: Cluster-based Locality-Sensitive Hashing Xiangyang Xu Tongwei Ren Gangshan Wu Multimedia Computing Group, State Key Laboratory for Novel Software Technology, Nanjing University xiangyang.xu@smail.nju.edu.cn

More information

Supervised Hashing for Image Retrieval via Image Representation Learning

Supervised Hashing for Image Retrieval via Image Representation Learning Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Supervised Hashing for Image Retrieval via Image Representation Learning Rongkai Xia 1, Yan Pan 1, Hanjiang Lai 1,2, Cong Liu

More information

arxiv: v2 [cs.cv] 27 Nov 2017

arxiv: v2 [cs.cv] 27 Nov 2017 Deep Supervised Discrete Hashing arxiv:1705.10999v2 [cs.cv] 27 Nov 2017 Qi Li Zhenan Sun Ran He Tieniu Tan Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition

More information

Approximate Nearest Neighbor Search. Deng Cai Zhejiang University

Approximate Nearest Neighbor Search. Deng Cai Zhejiang University Approximate Nearest Neighbor Search Deng Cai Zhejiang University The Era of Big Data How to Find Things Quickly? Web 1.0 Text Search Sparse feature Inverted Index How to Find Things Quickly? Web 2.0, 3.0

More information

Scalable Graph Hashing with Feature Transformation

Scalable Graph Hashing with Feature Transformation Proceedings of the Twenty-ourth International Joint Conference on Artificial Intelligence (IJCAI 2015) Scalable Graph Hashing with eature Transformation Qing-Yuan Jiang and Wu-Jun Li National Key Laboratory

More information

Rank Preserving Hashing for Rapid Image Search

Rank Preserving Hashing for Rapid Image Search 205 Data Compression Conference Rank Preserving Hashing for Rapid Image Search Dongjin Song Wei Liu David A. Meyer Dacheng Tao Rongrong Ji Department of ECE, UC San Diego, La Jolla, CA, USA dosong@ucsd.edu

More information

Supervised Hashing with Latent Factor Models

Supervised Hashing with Latent Factor Models Supervised Hashing with Latent Factor Models Peichao Zhang Shanghai Key Laboratory of Scalable Computing and Systems Department of Computer Science and Engineering Shanghai Jiao Tong University, China

More information

Hashing with Binary Autoencoders

Hashing with Binary Autoencoders Hashing with Binary Autoencoders Ramin Raziperchikolaei Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu Joint work with Miguel Á. Carreira-Perpiñán

More information

Smart Hashing Update for Fast Response

Smart Hashing Update for Fast Response Smart Hashing Update for Fast Response Qiang Yang, Longkai Huang, Wei-Shi Zheng*, and Yingbiao Ling School of Information Science and Technology, Sun Yat-sen University, China Guangdong Province Key Laboratory

More information

Isometric Mapping Hashing

Isometric Mapping Hashing Isometric Mapping Hashing Yanzhen Liu, Xiao Bai, Haichuan Yang, Zhou Jun, and Zhihong Zhang Springer-Verlag, Computer Science Editorial, Tiergartenstr. 7, 692 Heidelberg, Germany {alfred.hofmann,ursula.barth,ingrid.haas,frank.holzwarth,

More information

arxiv: v1 [cs.cv] 19 Oct 2017 Abstract

arxiv: v1 [cs.cv] 19 Oct 2017 Abstract Improved Search in Hamming Space using Deep Multi-Index Hashing Hanjiang Lai and Yan Pan School of Data and Computer Science, Sun Yan-Sen University, China arxiv:70.06993v [cs.cv] 9 Oct 207 Abstract Similarity-preserving

More information

Graph-based Techniques for Searching Large-Scale Noisy Multimedia Data

Graph-based Techniques for Searching Large-Scale Noisy Multimedia Data Graph-based Techniques for Searching Large-Scale Noisy Multimedia Data Shih-Fu Chang Department of Electrical Engineering Department of Computer Science Columbia University Joint work with Jun Wang (IBM),

More information

Learning Hash Codes with Listwise Supervision

Learning Hash Codes with Listwise Supervision 2013 IEEE International Conference on Computer Vision Learning Hash Codes with Listwise Supervision Jun Wang Business Analytics and Mathematical Sciences IBM T. J. Watson Research Center wangjun@us.ibm.com

More information

Adaptive Hash Retrieval with Kernel Based Similarity

Adaptive Hash Retrieval with Kernel Based Similarity Adaptive Hash Retrieval with Kernel Based Similarity Xiao Bai a, Cheng Yan a, Haichuan Yang a, Lu Bai b, Jun Zhou c, Edwin Robert Hancock d a School of Computer Science and Engineering, Beihang University,

More information

Large-scale visual recognition Efficient matching

Large-scale visual recognition Efficient matching Large-scale visual recognition Efficient matching Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline!! Preliminary!! Locality Sensitive Hashing: the two modes!! Hashing!! Embedding!!

More information

Compact Hash Code Learning with Binary Deep Neural Network

Compact Hash Code Learning with Binary Deep Neural Network Compact Hash Code Learning with Binary Deep Neural Network Thanh-Toan Do, Dang-Khoa Le Tan, Tuan Hoang, Ngai-Man Cheung arxiv:7.0956v [cs.cv] 6 Feb 08 Abstract In this work, we firstly propose deep network

More information

Learning independent, diverse binary hash functions: pruning and locality

Learning independent, diverse binary hash functions: pruning and locality Learning independent, diverse binary hash functions: pruning and locality Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced

More information

Deep Supervised Hashing with Triplet Labels

Deep Supervised Hashing with Triplet Labels Deep Supervised Hashing with Triplet Labels Xiaofang Wang, Yi Shi, Kris M. Kitani Carnegie Mellon University, Pittsburgh, PA 15213 USA Abstract. Hashing is one of the most popular and powerful approximate

More information

Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval

Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval Ting Yao, Fuchen Long, Tao Mei,

More information

Progressive Generative Hashing for Image Retrieval

Progressive Generative Hashing for Image Retrieval Progressive Generative Hashing for Image Retrieval Yuqing Ma, Yue He, Fan Ding, Sheng Hu, Jun Li, Xianglong Liu 2018.7.16 01 BACKGROUND the NNS problem in big data 02 RELATED WORK Generative adversarial

More information

Learning to Hash on Structured Data

Learning to Hash on Structured Data Learning to Hash on Structured Data Qifan Wang, Luo Si and Bin Shen Computer Science Department, Purdue University West Lafayette, IN 47907, US wang868@purdue.edu, lsi@purdue.edu, bshen@purdue.edu Abstract

More information

Supervised Hashing for Multi-labeled Data with Order-Preserving Feature

Supervised Hashing for Multi-labeled Data with Order-Preserving Feature Supervised Hashing for Multi-labeled Data with Order-Preserving Feature Dan Wang, Heyan Huang (B), Hua-Kang Lin, and Xian-Ling Mao Beijing Institute of Technology, Beijing, China {wangdan12856,hhy63,1120141916,maoxl}@bit.edu.cn

More information

arxiv: v1 [cs.lg] 22 Feb 2016

arxiv: v1 [cs.lg] 22 Feb 2016 Noname manuscript No. (will be inserted by the editor) Structured Learning of Binary Codes with Column Generation Guosheng Lin Fayao Liu Chunhua Shen Jianxin Wu Heng Tao Shen arxiv:1602.06654v1 [cs.lg]

More information

Similarity-Preserving Binary Hashing for Image Retrieval in large databases

Similarity-Preserving Binary Hashing for Image Retrieval in large databases Universidad Politécnica de Valencia Master s Final Project Similarity-Preserving Binary Hashing for Image Retrieval in large databases Author: Guillermo García Franco Supervisor: Dr. Roberto Paredes Palacios

More information

Evaluation of Hashing Methods Performance on Binary Feature Descriptors

Evaluation of Hashing Methods Performance on Binary Feature Descriptors Evaluation of Hashing Methods Performance on Binary Feature Descriptors Jacek Komorowski and Tomasz Trzcinski 2 Warsaw University of Technology, Warsaw, Poland jacek.komorowski@gmail.com 2 Warsaw University

More information

Local Feature Binary Coding for Approximate Nearest Neighbor Search

Local Feature Binary Coding for Approximate Nearest Neighbor Search LIU et al.: LOCAL FEATURE BINARY CODING 1 Local Feature Binary Coding for Approximate Nearest Neighbor Search Li Liu li2.liu@northumbria.ac.uk Mengyang Yu m.y.yu@ieee.org Ling Shao ling.shao@ieee.org Computer

More information

Instances on a Budget

Instances on a Budget Retrieving Similar or Informative Instances on a Budget Kristen Grauman Dept. of Computer Science University of Texas at Austin Work with Sudheendra Vijayanarasimham Work with Sudheendra Vijayanarasimham,

More information

Bit-Scalable Deep Hashing with Regularized Similarity Learning for Image Retrieval and Person Re-identification

Bit-Scalable Deep Hashing with Regularized Similarity Learning for Image Retrieval and Person Re-identification IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Bit-Scalable Deep Hashing with Regularized Similarity Learning for Image Retrieval and Person Re-identification Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo,

More information

Asymmetric Discrete Graph Hashing

Asymmetric Discrete Graph Hashing Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Asymmetric Discrete Graph Hashing Xiaoshuang Shi, Fuyong Xing, Kaidi Xu, Manish Sapkota, Lin Yang University of Florida,

More information

Chapter 7. Learning Hypersurfaces and Quantisation Thresholds

Chapter 7. Learning Hypersurfaces and Quantisation Thresholds Chapter 7 Learning Hypersurfaces and Quantisation Thresholds The research presented in this Chapter has been previously published in Moran (2016). 7.1 Introduction In Chapter 1 I motivated this thesis

More information

Column Sampling based Discrete Supervised Hashing

Column Sampling based Discrete Supervised Hashing Column Sampling based Discrete Supervised Hashing Wang-Cheng Kang, Wu-Jun Li and Zhi-Hua Zhou National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology

More information

Iterative Quantization: A Procrustean Approach to Learning Binary Codes

Iterative Quantization: A Procrustean Approach to Learning Binary Codes Iterative Quantization: A Procrustean Approach to Learning Binary Codes Yunchao Gong and Svetlana Lazebnik Department of Computer Science, UNC Chapel Hill, NC, 27599. {yunchao,lazebnik}@cs.unc.edu Abstract

More information

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 Vector visual representation Fixed-size image representation High-dim (100 100,000) Generic, unsupervised: BoW,

More information

This version was downloaded from Northumbria Research Link:

This version was downloaded from Northumbria Research Link: Citation: Liu, Li, Yu, Mengyang and Shao, Ling 06) Unsupervised Local Feature Hashing for Image Similarity Search. IEEE Transactions on Cybernetics, 46 ). pp. 548-558. ISSN 68-67 Published by: IEEE URL:

More information

Reciprocal Hash Tables for Nearest Neighbor Search

Reciprocal Hash Tables for Nearest Neighbor Search Reciprocal Hash Tables for Nearest Neighbor Search Xianglong Liu and Junfeng He and Bo Lang State Key Lab of Software Development Environment, Beihang University, Beijing, China Department of Electrical

More information

Sequential Projection Learning for Hashing with Compact Codes

Sequential Projection Learning for Hashing with Compact Codes Jun Wang jwang@ee.columbia.edu Department of Electrical Engineering, Columbia University, New Yor, NY 27, USA Sanjiv Kumar Google Research, New Yor, NY, USA sanjiv@google.com Shih-Fu Chang sfchang@ee.columbia.com

More information

Asymmetric Deep Supervised Hashing

Asymmetric Deep Supervised Hashing Asymmetric Deep Supervised Hashing Qing-Yuan Jiang and Wu-Jun Li National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology and Industrialization

More information

The Normalized Distance Preserving Binary Codes and Distance Table *

The Normalized Distance Preserving Binary Codes and Distance Table * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 32, XXXX-XXXX (2016) The Normalized Distance Preserving Binary Codes and Distance Table * HONGWEI ZHAO 1,2, ZHEN WANG 1, PINGPING LIU 1,2 AND BIN WU 1 1.

More information

arxiv: v3 [cs.cv] 10 Aug 2017

arxiv: v3 [cs.cv] 10 Aug 2017 HOW SHOULD WE EVALUATE SUPERVISED HASHING? Alexandre Sablayrolles Matthijs Douze Nicolas Usunier Hervé Jégou Facebook AI Research arxiv:1609.06753v3 [cs.cv] 10 Aug 2017 ABSTRACT Hashing produces compact

More information

Binary Embedding with Additive Homogeneous Kernels

Binary Embedding with Additive Homogeneous Kernels Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-7) Binary Embedding with Additive Homogeneous Kernels Saehoon Kim, Seungjin Choi Department of Computer Science and Engineering

More information

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017 5367 Hash Bit Selection for Nearest Neighbor Search Xianglong Liu, Member, IEEE, Junfeng He, Member, IEEE, and Shih-Fu Chang, Fellow,

More information

Ranking Preserving Hashing for Fast Similarity Search

Ranking Preserving Hashing for Fast Similarity Search Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 205) Ranking Preserving Hashing for Fast Similarity Search Qifan Wang, Zhiwei Zhang and Luo Si Computer

More information

This version was downloaded from Northumbria Research Link:

This version was downloaded from Northumbria Research Link: Citation: Liu, Li, Lin, Zijia, Shao, Ling, Shen, Fumin, Ding, Guiguang and Han, Jungong (207) Sequential Discrete Hashing for Scalable Cross-modality Similarity Retrieval. IEEE Transactions on Image Processing,

More information

Active Hashing with Joint Data Example and Tag Selection

Active Hashing with Joint Data Example and Tag Selection Purdue University Purdue e-pubs Cyber Center Publications Cyber Center 7-3-2014 Active Hashing with Joint Data Example and Tag Selection Qifan Wang Purdue University, qifan@purdue.edu Luo Si Purdue University,

More information

Non-transitive Hashing with Latent Similarity Components

Non-transitive Hashing with Latent Similarity Components Non-transitive Hashing with Latent Similarity Components Mingdong Ou 1, Peng Cui 1, Fei Wang 2, Jun Wang 3, Wenwu Zhu 1 1 Tsinghua National Laboratory for Information Science and Technology Department

More information

Learning Affine Robust Binary Codes Based on Locality Preserving Hash

Learning Affine Robust Binary Codes Based on Locality Preserving Hash Learning Affine Robust Binary Codes Based on Locality Preserving Hash Wei Zhang 1,2, Ke Gao 1, Dongming Zhang 1, and Jintao Li 1 1 Advanced Computing Research Laboratory, Beijing Key Laboratory of Mobile

More information

Deep Supervised Hashing for Fast Image Retrieval

Deep Supervised Hashing for Fast Image Retrieval Deep Supervised Hashing for Fast Image Retrieval Haomiao Liu 1,, Ruiping Wang 1, Shiguang Shan 1, Xilin Chen 1 1 Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS),

More information

Boosting Complementary Hash Tables for Fast Nearest Neighbor Search

Boosting Complementary Hash Tables for Fast Nearest Neighbor Search Boosting Complementary Hash Tables for Fast Nearest Neighbor Search Xianglong Liu Cheng Deng Yadong Mu Zhujin Li State Key Lab of Software Development Environment, Beihang University, Being 1191, China

More information

Scalable Similarity Search with Optimized Kernel Hashing

Scalable Similarity Search with Optimized Kernel Hashing Scalable Similarity Search with Optimized Kernel Hashing Junfeng He Columbia University New York, NY, 7 jh7@columbia.edu Wei Liu Columbia University New York, NY, 7 wliu@ee.columbia.edu Shih-Fu Chang Columbia

More information

DUe to the explosive increasing of data in real applications, Deep Discrete Supervised Hashing. arxiv: v1 [cs.

DUe to the explosive increasing of data in real applications, Deep Discrete Supervised Hashing. arxiv: v1 [cs. Deep Discrete Supervised Hashing Qing-Yuan Jiang, Xue Cui and Wu-Jun Li, Member, IEEE arxiv:707.09905v [cs.ir] 3 Jul 207 Abstract Hashing has been widely used for large-scale search due to its low storage

More information

Variable Bit Quantisation for LSH

Variable Bit Quantisation for LSH Sean Moran School of Informatics The University of Edinburgh EH8 9AB, Edinburgh, UK sean.moran@ed.ac.uk Variable Bit Quantisation for LSH Victor Lavrenko School of Informatics The University of Edinburgh

More information

Learning to Hash with Binary Reconstructive Embeddings

Learning to Hash with Binary Reconstructive Embeddings Learning to Hash with Binary Reconstructive Embeddings Brian Kulis Trevor Darrell Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-0

More information

Metric Learning Applied for Automatic Large Image Classification

Metric Learning Applied for Automatic Large Image Classification September, 2014 UPC Metric Learning Applied for Automatic Large Image Classification Supervisors SAHILU WENDESON / IT4BI TOON CALDERS (PhD)/ULB SALIM JOUILI (PhD)/EuraNova Image Database Classification

More information

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Fast Indexing and Search Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Motivation Object categorization? http://www.cs.utexas.edu/~grauman/slides/jain_et_al_cvpr2008.ppt Motivation

More information

Learning to Hash with Binary Reconstructive Embeddings

Learning to Hash with Binary Reconstructive Embeddings Learning to Hash with Binary Reconstructive Embeddings Brian Kulis and Trevor Darrell UC Berkeley EECS and ICSI Berkeley, CA {kulis,trevor}@eecs.berkeley.edu Abstract Fast retrieval methods are increasingly

More information

Discrete Image Hashing Using Large Weakly Annotated Photo Collections

Discrete Image Hashing Using Large Weakly Annotated Photo Collections Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Discrete Image Hashing Using Large Weakly Annotated Photo Collections Hanwang Zhang, Na Zhao, Xindi Shang, Huanbo Luan,

More information

IN computer vision and many other application areas, there

IN computer vision and many other application areas, there IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Hashing with Mutual Information Fatih Cakir*, Member, IEEE, Kun He*, Student Member, IEEE, Sarah Adel Bargal, Student Member, IEEE and Stan

More information

Locality- Sensitive Hashing Random Projections for NN Search

Locality- Sensitive Hashing Random Projections for NN Search Case Study 2: Document Retrieval Locality- Sensitive Hashing Random Projections for NN Search Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 18, 2017 Sham Kakade

More information

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 18.

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 18. Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 18 Image Hashing Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph:

More information

Deep Hashing: A Joint Approach for Image Signature Learning

Deep Hashing: A Joint Approach for Image Signature Learning Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Deep Hashing: A Joint Approach for Image Signature Learning Yadong Mu, 1 Zhu Liu 2 1 Institute of Computer Science and

More information

The Boundary Graph Supervised Learning Algorithm for Regression and Classification

The Boundary Graph Supervised Learning Algorithm for Regression and Classification The Boundary Graph Supervised Learning Algorithm for Regression and Classification! Jonathan Yedidia! Disney Research!! Outline Motivation Illustration using a toy classification problem Some simple refinements

More information

HASHING has been recognized as an effective technique

HASHING has been recognized as an effective technique IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Unsupervised Deep Hashing with Similarity-Adaptive and Discrete Optimization Fumin Shen, Yan Xu, Li Liu, Yang Yang, Zi Huang, Heng Tao Shen

More information

Complementary Projection Hashing

Complementary Projection Hashing 23 IEEE International Conference on Computer Vision Complementary Projection Hashing Zhongg Jin, Yao Hu, Yue Lin, Debing Zhang, Shiding Lin 2, Deng Cai, Xuelong Li 3 State Key Lab of CAD&CG, College of

More information

arxiv: v1 [cs.cv] 12 Aug 2016 Abstract

arxiv: v1 [cs.cv] 12 Aug 2016 Abstract Deep Hashing: A Joint Approach for Image Signature Learning Yadong Mu Institute of Computer Science and Technology Peking University, China myd@pkueducn Zhu Liu Multimedia Department AT&T Labs, USA zliu@researhattcom

More information

IEEE TRANSACTIONS ON IMAGE PROCESSING 1. Instance-Aware Hashing for Multi-Label Image Retrieval

IEEE TRANSACTIONS ON IMAGE PROCESSING 1. Instance-Aware Hashing for Multi-Label Image Retrieval IEEE TRANSACTIONS ON IMAGE PROCESSING Instance-Aware Hashing for Multi-Label Image Retrieval Hanjiang Lai, Pan Yan, Xiangbo Shu,Yunchao Wei, Shuicheng Yan, Senior Member, IEEE arxiv:63.3234v [cs.cv] Mar

More information

Learning to Search Efficiently in High Dimensions

Learning to Search Efficiently in High Dimensions Learning to Search Efficiently in High Dimensions Zhen Li UIUC zhenli3@uiuc.edu Huazhong Ning Google Inc. huazhong@gooogle.com Liangliang Cao IBM T.J. Watson Research Center liangliang.cao@us.ibm.com Tong

More information

Semi-Supervised Hashing for Scalable Image Retrieval

Semi-Supervised Hashing for Scalable Image Retrieval Semi-Supervised Hashing for Scalable Image Retrieval Jun Wang Columbia University New Yor, NY, 10027 jwang@ee.columbia.edu Sanjiv Kumar Google Research New Yor, NY, 10011 sanjiv@google.com Shih-Fu Chang

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

Learning Label Preserving Binary Codes for Multimedia Retrieval: A General Approach

Learning Label Preserving Binary Codes for Multimedia Retrieval: A General Approach 1 Learning Label Preserving Binary Codes for Multimedia Retrieval: A General Approach KAI LI, GUO-JUN QI, and KIEN A. HUA, University of Central Florida Learning-based hashing has received a great deal

More information

Learning to Hash for Indexing Big DataVA Survey

Learning to Hash for Indexing Big DataVA Survey INVITED PAPER Learning to Hash for Indexing Big DataVA Survey This paper provides readers with a systematic understanding of insights, pros, and cons of the emerging indexing and search methods for Big

More information

Inductive Hashing on Manifolds

Inductive Hashing on Manifolds Inductive Hashing on Manifolds Fumin Shen, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, Zhenmin Tang The University of Adelaide, Australia Nanjing University of Science and Technology, China Abstract

More information

Hamming Distance Metric Learning

Hamming Distance Metric Learning Hamming Distance Metric Learning Mohammad Norouzi David J. Fleet Ruslan Salakhutdinov, Departments of Computer Science and Statistics University of Toronto [norouzi,fleet,rsalakhu]@cs.toronto.edu Abstract

More information

Progressive Generative Hashing for Image Retrieval

Progressive Generative Hashing for Image Retrieval Progressive Generative Hashing for Image Retrieval Yuqing Ma, Yue He, Fan Ding, Sheng Hu, Jun Li, Xianglong Liu State Key Lab of Software Development Environment, Beihang University, China mayuqing@nlsde.buaa.edu.cn,

More information

NEarest neighbor search plays an important role in

NEarest neighbor search plays an important role in 1 EFANNA : An Extremely Fast Approximate Nearest Neighbor Search Algorithm Based on knn Graph Cong Fu, Deng Cai arxiv:1609.07228v3 [cs.cv] 3 Dec 2016 Abstract Approximate nearest neighbor (ANN) search

More information

NEarest neighbor search plays an important role in

NEarest neighbor search plays an important role in 1 EFANNA : An Extremely Fast Approximate Nearest Neighbor Search Algorithm Based on knn Graph Cong Fu, Deng Cai arxiv:1609.07228v2 [cs.cv] 18 Nov 2016 Abstract Approximate nearest neighbor (ANN) search

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

442 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013

442 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013 442 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013 Query-Adaptive Image Search With Hash Codes Yu-Gang Jiang, Jun Wang, Member, IEEE, Xiangyang Xue, Member, IEEE, and Shih-Fu Chang, Fellow,

More information

Complementary Hashing for Approximate Nearest Neighbor Search

Complementary Hashing for Approximate Nearest Neighbor Search Complementary Hashing for Approximate Nearest Neighbor Search Hao Xu Jingdong Wang Zhu Li Gang Zeng Shipeng Li Nenghai Yu MOE-MS KeyLab of MCC, University of Science and Technology of China, P. R. China

More information

Deep Multi-Label Hashing for Large-Scale Visual Search Based on Semantic Graph

Deep Multi-Label Hashing for Large-Scale Visual Search Based on Semantic Graph Deep Multi-Label Hashing for Large-Scale Visual Search Based on Semantic Graph Chunlin Zhong 1, Yi Yu 2, Suhua Tang 3, Shin ichi Satoh 4, and Kai Xing 5 University of Science and Technology of China 1,5,

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

Deep Cauchy Hashing for Hamming Space Retrieval

Deep Cauchy Hashing for Hamming Space Retrieval Deep Cauchy ashing for amming Space Retrieval Yue Cao, Mingsheng Long, Bin Liu, Jianmin Wang KLiss, MOE; School of Software, Tsinghua University, China National Engineering Laboratory for Big Data Software

More information

Scalable Mobile Video Retrieval with Sparse Projection Learning and Pseudo Label Mining

Scalable Mobile Video Retrieval with Sparse Projection Learning and Pseudo Label Mining Scalable Mobile Video Retrieval with Sparse Projection Learning and Pseudo Label Mining Guan-Long Wu, Yin-Hsi Kuo, Tzu-Hsuan Chiu, Winston H. Hsu, and Lexing Xie 1 Abstract Retrieving relevant videos from

More information

Nonparametric Clustering of High Dimensional Data

Nonparametric Clustering of High Dimensional Data Nonparametric Clustering of High Dimensional Data Peter Meer Electrical and Computer Engineering Department Rutgers University Joint work with Bogdan Georgescu and Ilan Shimshoni Robust Parameter Estimation:

More information

Fast, Accurate Detection of 100,000 Object Classes on a Single Machine

Fast, Accurate Detection of 100,000 Object Classes on a Single Machine Fast, Accurate Detection of 100,000 Object Classes on a Single Machine Thomas Dean etal. Google, Mountain View, CA CVPR 2013 best paper award Presented by: Zhenhua Wang 2013.12.10 Outline Background This

More information

Large Scale Nearest Neighbor Search Theories, Algorithms, and Applications. Junfeng He

Large Scale Nearest Neighbor Search Theories, Algorithms, and Applications. Junfeng He Large Scale Nearest Neighbor Search Theories, Algorithms, and Applications Junfeng He Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School

More information

Sequential Compact Code Learning for Unsupervised Image Hashing

Sequential Compact Code Learning for Unsupervised Image Hashing Sequential Compact Code Learning for Unsupervised Image Hashing Li Liu and Ling Shao, Senior Member, IEEE Abstract Effective hashing for large-scale image databases is a popular research area, attracting

More information

Learning Binary Codes and Binary Weights for Efficient Classification

Learning Binary Codes and Binary Weights for Efficient Classification Learning Binary Codes and Binary Weights for Efficient Classification Fu Shen, Yadong Mu, Wei Liu, Yang Yang, Heng Tao Shen University of Electronic Science and Technology of China AT&T Labs Research Didi

More information

Clustering will not be satisfactory if:

Clustering will not be satisfactory if: Clustering will not be satisfactory if: -- in the input space the clusters are not linearly separable; -- the distance measure is not adequate; -- the assumptions limit the shape or the number of the clusters.

More information

Latent Structure Preserving Hashing

Latent Structure Preserving Hashing DOI 10.1007/s11263-016-0931-4 Latent Structure Preserving Hashing Li Liu 1 Mengyang Yu 1 Ling Shao 1 Received: 14 December 2015 / Accepted: 6 July 2016 The Authors 2016. This article is published with

More information

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li Learning to Match Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li 1. Introduction The main tasks in many applications can be formalized as matching between heterogeneous objects, including search, recommendation,

More information

Locality-Sensitive Codes from Shift-Invariant Kernels Maxim Raginsky (Duke) and Svetlana Lazebnik (UNC)

Locality-Sensitive Codes from Shift-Invariant Kernels Maxim Raginsky (Duke) and Svetlana Lazebnik (UNC) Locality-Sensitive Codes from Shift-Invariant Kernels Maxim Raginsky (Duke) and Svetlana Lazebnik (UNC) Goal We want to design a binary encoding of data such that similar data points (similarity measures

More information

Angular Quantization-based Binary Codes for Fast Similarity Search

Angular Quantization-based Binary Codes for Fast Similarity Search Angular Quantization-based Binary Codes for Fast Similarity Search Yunchao Gong, Sanjiv Kumar, Vishal Verma, Svetlana Lazebnik Google Research, New York, NY, USA Computer Science Department, University

More information