Lemma 1 Let the components of, Suppose. Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). (b)

Size: px
Start display at page:

Download "Lemma 1 Let the components of, Suppose. Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). (b)"

Transcription

1 Trees Lemma Let the components of ppose "! be (a) $&%('*)+ - )+ / A tree is a graph which is (b) 0 %(')+ - 3)+ / 6 (a) (a) Connected and (b) has no cycles (acyclic) (b) roof Eery path 8 in which is not in mst contain Also )+ - )+ /: ppose ;<=?> is a path in G and F "!?@A3?@CB D Ë =F that ses Then clearly ; H (a) follows as now no new relations ;JI6F are added (b) Only possible new relations ;KI&F are for ; and F "! L in "M "! and so Bt LI becomes (only) new component Lemma Q O R <RT UV "! (a) $&%(' - contains a cycle is acyclic and has one less com- edges (b) X0 =%' ponent (c) has Y [Z is acyclic (forest) with (tree) W 3

2 Z (a) in implies there exists a path = > o Y contains the cycle > E > EH ppose contains the cycle a cycle of =?> Ë D?> Bt then contains the path > E to contradiction l- else is from The drop in the nmber of components follows from Lemma The rest follows from 6 (c) ppose for and Claim: has components Indction on $ : > has no edges : is acyclic and so is It follows from part (a) that joins ertices in distinct components of It follows from (b) that has one less component than End of proof of claim Ths 3 [Z (we assmed had Z components) Corollary If a tree has ertices then (a) It has 6 edges (b) It has at least ertices of degree ( ) roof (a) is part (c) of preios lemma since is connnected (b) Let be the nmber of ertices of degree in There are no ertices of degree 0 these wold form separate components Ths < o 8

3 ' ' ' Theorem ppose R JR 3 and R R = following three statements become eqialent (a) is connected (b) is acyclic (c) is a tree Let and for 6 The : > has components and has component Addition of each edge mst redce the nmber of components by Lemma (b) Ths acyclic implies is acyclic (b) follows as > is acyclic ince : We need to show that is connected is acyclic )+ )+ ( for : each Lemma (b) Ths )+ : triial 0 Ct edges Corollary If is a ertex of degree in a tree then is also a tree ct edge is a ct edge of Theorem cycle of if )+ 6 )+ is a ct edge iff is not on any roof ppose has ertices and edges Then has ertices and acyclic and so mst be a tree edges It roof ) increases iff there exist ;I F sch that all walks from ; to F se ppose there is a cycle D if O ; D F is a walk from ; to F sing ; F is a walk from ; to F that doesn t se Ths is not a ct edge containing Then

4 0 x Corollary Eery finite connected graph contains a spanning tree roof Consider the following process: starting with If there are no cycles stop If < is not a ct edge then contains a path from to ( I in and relations are maintained after deletion of ) o D is a cycle containing Corollary 3 A connected graph is a tree iff eery edge is a ct edge If there is a cycle delete an edge of a cycle Obsere that (i) the graph remains connected we delete edges of cycles (ii) the process mst terminate as the nmber of edges is assmed finite On termination there are no cycles and so we hae a connected acyclic spanning sbgraph ie we hae a spanning tree 3 Theorem 3 Let be a spanning tree of R <R 3 ppose (a) (b) Q contains a niqe cycle Q implies that tree of f is a spanning roof (a) Lemma (a) implies that has a cycle ppose that contains another cycle Let edge is connected has edges Bt contains a cycle contradictng Lemma (b) (b) is connected and has Therefore it is a tree edges 6

5 B Z Q For spanning tree Maximm weight trees is a connected graph is the weight of edge roblem: find a spanning tree of maximm weight ort edges so that Greedy Algorithm for $ if then Otpt do where does not contain a cycle Greedy always adds the maximm weight edge which does not make a cycle with preiosly chosen edges 8 Theorem The tree constrcted by GREEDY has maximm weight roof Let the edges of the greedy tree be in order of choice ote that Q Q since neither makes a cycle with Let where be the edges of any other tree Z ppose () is false There exists sch 6Z makes a cycle Each of Otherwise one of them wold hae been chosen in preference Let the components of the Q Each 3Z has both of its points in the same component We show that 6 () C I f J 0

6 B!! Z Let be the nmber of which hae both points in and let be the nmber of ertices of B (3) It follows from () and (3) that there exists sch B Z 6 D Bt () implies that the edges contain a cycle () ZA! sch that n= n= n=6 How many trees? Cayley s Formla rüfer s Correspondence There is a - correspondence between spanning trees of (the complete graph with ertex set ) and seqences Ths for = Cayley s Formla Assme some arbitrary ordering : for to do neighbor of least leaf of

7 0 Lemma 3 in roof Assme R : Assme : T appears indction appears indction appears exactly = empty string s :+G/ & where times R By indction on :G X8 l times times Constrction of Indctiely assme that for all R R there is an inerse fnction (Tre for ) ow define by pls edge where and Then C Ths has an inerse and the correspondence is established 6 mber of trees with a gien degree seqence A Corollary If then the nmber of spanning trees of qence with degree se- is "!!! roof From rüfer s correspondence and Lemma 3 this is the nmber of seqences of length in K K which appears times appears times and so on

On Plane Constrained Bounded-Degree Spanners

On Plane Constrained Bounded-Degree Spanners Algorithmica manscript No. (ill be inserted by the editor) 1 On Plane Constrained Bonded-Degree Spanners 2 3 Prosenjit Bose Rolf Fagerberg André an Renssen Sander Verdonschot 4 5 Receied: date / Accepted:

More information

On Plane Constrained Bounded-Degree Spanners

On Plane Constrained Bounded-Degree Spanners On Plane Constrained Bonded-Degree Spanners Prosenjit Bose 1, Rolf Fagerberg 2, André an Renssen 1, Sander Verdonschot 1 1 School of Compter Science, Carleton Uniersity, Ottaa, Canada. Email: jit@scs.carleton.ca,

More information

Minimum Spanning Trees Outline: MST

Minimum Spanning Trees Outline: MST Minimm Spanning Trees Otline: MST Minimm Spanning Tree Generic MST Algorithm Krskal s Algorithm (Edge Based) Prim s Algorithm (Vertex Based) Spanning Tree A spanning tree of G is a sbgraph which is tree

More information

Week 9-10: Connectivity

Week 9-10: Connectivity Week 9-0: Connectiity October 3, 206 Vertex Connectiity Let G = (V, E) be a graph. Gien two ertices x, y V. Two (x, y)-path are said to be internally disjoint if they hae no internal ertices in common.

More information

COMPOSITION OF STABLE SET POLYHEDRA

COMPOSITION OF STABLE SET POLYHEDRA COMPOSITION OF STABLE SET POLYHEDRA Benjamin McClosky and Illya V. Hicks Department of Comptational and Applied Mathematics Rice University November 30, 2007 Abstract Barahona and Mahjob fond a defining

More information

Chapter 7 TOPOLOGY CONTROL

Chapter 7 TOPOLOGY CONTROL Chapter TOPOLOGY CONTROL Oeriew Topology Control Gabriel Graph et al. XTC Interference SINR & Schedling Complexity Distribted Compting Grop Mobile Compting Winter 00 / 00 Distribted Compting Grop MOBILE

More information

On Bichromatic Triangle Game

On Bichromatic Triangle Game On Bichromatic Triangle Game Gordana Manić Daniel M. Martin Miloš Stojakoić Agst 16, 2012 Abstract We stdy a combinatorial game called Bichromatic Triangle Game, defined as follows. Two players R and B

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Graph Theory 2016 EPFL Frank de Zeeuw & Claudiu Valculescu 1. Prove that the following statements about a graph G are equivalent. - G is a tree; - G is minimally connected (it is

More information

Notes for Recitation 8

Notes for Recitation 8 6.04/8.06J Mathematics for Computer Science October 5, 00 Tom Leighton and Marten van Dijk Notes for Recitation 8 Build-up error Recall a graph is connected iff there is a path between every pair of its

More information

On shortest-path all-optical networks without wavelength conversion requirements

On shortest-path all-optical networks without wavelength conversion requirements Research Collection Working Paper On shortest-path all-optical networks withot waelength conersion reqirements Athor(s): Erlebach, Thomas; Stefanakos, Stamatis Pblication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004446054

More information

UPWARD PLANAR DRAWING OF SINGLE SOURCE ACYCLIC DIGRAPHS. MICHAEL D. HUTTON y AND ANNA LUBIW z

UPWARD PLANAR DRAWING OF SINGLE SOURCE ACYCLIC DIGRAPHS. MICHAEL D. HUTTON y AND ANNA LUBIW z UPWARD PLANAR DRAWING OF SINGLE SOURCE ACYCLIC DIGRAPHS MICHAEL D. HUTTON y AND ANNA LUBIW z Abstract. An pward plane drawing of a directed acyclic graph is a plane drawing of the digraph in which each

More information

Pushing squares around

Pushing squares around Pshing sqares arond Adrian Dmitresc János Pach Ý Abstract We stdy dynamic self-reconfigration of modlar metamorphic systems. We garantee the feasibility of motion planning in a rectanglar model consisting

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

11.9 Connectivity Connected Components. mcs 2015/5/18 1:43 page 419 #427

11.9 Connectivity Connected Components. mcs 2015/5/18 1:43 page 419 #427 mcs 2015/5/18 1:43 page 419 #427 11.9 Connectivity Definition 11.9.1. Two vertices are connected in a graph when there is a path that begins at one and ends at the other. By convention, every vertex is

More information

Rectangle-of-influence triangulations

Rectangle-of-influence triangulations CCCG 2016, Vancoer, British Colmbia, Ag 3 5, 2016 Rectangle-of-inflence trianglations Therese Biedl Anna Lbi Saeed Mehrabi Sander Verdonschot 1 Backgrond The concept of rectangle-of-inflence (RI) draings

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Multiple Source Shortest Paths in a Genus g Graph

Multiple Source Shortest Paths in a Genus g Graph Mltiple Sorce Shortest Paths in a Gens g Graph Sergio Cabello Erin W. Chambers Abstract We gie an O(g n log n) algorithm to represent the shortest path tree from all the ertices on a single specified face

More information

C Puzzles The course that gives CMU its Zip! Integer Arithmetic Operations Jan. 25, Unsigned Addition. Visualizing Integer Addition

C Puzzles The course that gives CMU its Zip! Integer Arithmetic Operations Jan. 25, Unsigned Addition. Visualizing Integer Addition 1513 The corse that gies CMU its Zip! Integer Arithmetic Operations Jan. 5, 1 Topics Basic operations Addition, negation, mltiplication Programming Implications Conseqences of oerflow Using shifts to perform

More information

Chapter 5. Plane Graphs and the DCEL

Chapter 5. Plane Graphs and the DCEL Chapter 5 Plane Graphs and the DCEL So far we hae been talking abot geometric strctres sch as trianglations of polygons and arrangements of line segments withot paying mch attention to how to represent

More information

C Puzzles! Taken from old exams. Integers Sep 3, Encoding Integers Unsigned. Encoding Example (Cont.) The course that gives CMU its Zip!

C Puzzles! Taken from old exams. Integers Sep 3, Encoding Integers Unsigned. Encoding Example (Cont.) The course that gives CMU its Zip! 15-13 The corse that gies CMU its Zip! Topics class3.ppt Integers Sep 3,! Nmeric Encodings " Unsigned & Two s complement! Programming Implications " C promotion rles! Basic operations " Addition, negation,

More information

Non-convex Representations of Graphs

Non-convex Representations of Graphs Non-conex Representations of Graphs Giseppe Di Battista, Fabrizio Frati, and Marizio Patrignani Dip. di Informatica e Atomazione Roma Tre Uniersity Abstract. We sho that eery plane graph admits a planar

More information

Fixed-Parameter Algorithms for Cluster Vertex Deletion

Fixed-Parameter Algorithms for Cluster Vertex Deletion Fixed-Parameter Algorithms for Clster Vertex Deletion Falk Hüffner Christian Komsieicz Hannes Moser Rolf Niedermeier Institt für Informatik, Friedrich-Schiller-Uniersität Jena, Ernst-Abbe-Platz 2, D-07743

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

CS 557 Lecture IX. Drexel University Dept. of Computer Science

CS 557 Lecture IX. Drexel University Dept. of Computer Science CS 7 Lectre IX Dreel Uniersity Dept. of Compter Science Fall 00 Shortest Paths Finding the Shortest Paths in a graph arises in many different application: Transportation Problems: Finding the cheapest

More information

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees. Tree 1. Trees and their Properties. Spanning trees 3. Minimum Spanning Trees 4. Applications of Minimum Spanning Trees 5. Minimum Spanning Tree Algorithms 1.1 Properties of Trees: Definition: A graph G

More information

MTL 776: Graph Algorithms. B S Panda MZ 194

MTL 776: Graph Algorithms. B S Panda MZ 194 MTL 776: Graph Algorithms B S Panda MZ 194 bspanda@maths.iitd.ac.in bspanda1@gmail.com Lectre-1: Plan Definitions Types Terminology Sb-graphs Special types of Graphs Representations Graph Isomorphism Definitions

More information

Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks

Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks 1 Localized Delanay Trianglation with Application in Ad Hoc Wireless Networks Xiang-Yang Li Gria Călinesc Peng-Jn Wan Y Wang Department of Compter Science, Illinois Institte of Technology, Chicago, IL

More information

arxiv: v1 [cs.cg] 12 Dec 2013

arxiv: v1 [cs.cg] 12 Dec 2013 Smooth Orthogonal Drawings of Planar Graphs Md. Jawaherl Alam, Michael A. Bekos, Michael Kafmann, Philipp Kindermann, Stephen G. Koboro, and Alexander Wolff arxi:.58 [cs.cg] Dec 0 Department of Compter

More information

Reconstructing Generalized Staircase Polygons with Uniform Step Length

Reconstructing Generalized Staircase Polygons with Uniform Step Length Jornal of Graph Algorithms and Applications http://jgaa.info/ ol. 22, no. 3, pp. 431 459 (2018) DOI: 10.7155/jgaa.00466 Reconstrcting Generalized Staircase Polygons with Uniform Step Length Nodari Sitchinaa

More information

Friend of My Friend: Network Formation with Two-Hop Benefit

Friend of My Friend: Network Formation with Two-Hop Benefit Friend of My Friend: Network Formation with Two-Hop Benefit Elliot Ansheleich, Onkar Bhardwaj, and Michael Usher Rensselaer Polytechnic Institte, Troy NY, USA Abstract. How and why people form ties is

More information

Multi-Way Search Tree

Multi-Way Search Tree Presentation for se with the textbook Data Strctres and Algorithms in Jaa, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 204 (2,4) Trees 9 2 5 7 0 4 204 Goodrich, Tamassia,

More information

Multi-Way Search Tree ( ) (2,4) Trees. Multi-Way Inorder Traversal. Multi-Way Search Tree ( ) Multi-Way Searching. Multi-Way Searching

Multi-Way Search Tree ( ) (2,4) Trees. Multi-Way Inorder Traversal. Multi-Way Search Tree ( ) Multi-Way Searching. Multi-Way Searching Mlti-Way Search Tree ( 0..) (,) Trees 9 5 7 0 (,) Trees (,) Trees Mlti-Way Search Tree ( 0..) A mlti-ay search tree is an ordered tree sch that Each internal node has at least to children and stores d

More information

Henneberg Steps for Triangle Representations

Henneberg Steps for Triangle Representations Henneberg Steps or Triangle Representations Nieke Aerts and Stean Felsner {aerts,elsner}@math.t-berlin.de Technische Uniersität Berlin Institt ür Mathematik Strasse des 17. Jni 136 10623 Berlin, Germany

More information

Assignment # 4 Selected Solutions

Assignment # 4 Selected Solutions Assignment # 4 Selected Solutions Problem 2.3.3 Let G be a connected graph which is not a tree (did you notice this is redundant?) and let C be a cycle in G. Prove that the complement of any spanning tree

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

Triangle-Free Planar Graphs as Segments Intersection Graphs

Triangle-Free Planar Graphs as Segments Intersection Graphs Triangle-ree Planar Graphs as Segments Intersection Graphs N. de Castro 1,.J.Cobos 1, J.C. Dana 1,A.Márqez 1, and M. Noy 2 1 Departamento de Matemática Aplicada I Universidad de Sevilla, Spain {natalia,cobos,dana,almar}@cica.es

More information

Chapter 5 Network Layer

Chapter 5 Network Layer Chapter Network Layer Network layer Physical layer: moe bit seqence between two adjacent nodes Data link: reliable transmission between two adjacent nodes Network: gides packets from the sorce to destination,

More information

Kruskal s MST Algorithm

Kruskal s MST Algorithm Kruskal s MST Algorithm CLRS Chapter 23, DPV Chapter 5 Version of November 5, 2014 Main Topics of This Lecture Kruskal s algorithm Another, but different, greedy MST algorithm Introduction to UNION-FIND

More information

Introduction to Algorithms. Minimum Spanning Tree. Chapter 23: Minimum Spanning Trees

Introduction to Algorithms. Minimum Spanning Tree. Chapter 23: Minimum Spanning Trees Introdction to lgorithms oncrete example Imagine: Yo wish to connect all the compters in an office bilding sing the least amont of cable - ach vertex in a graph G represents a compter - ach edge represents

More information

v e v 1 C 2 b) Completely assigned T v a) Partially assigned Tv e T v 2 p k

v e v 1 C 2 b) Completely assigned T v a) Partially assigned Tv e T v 2 p k Approximation Algorithms for a Capacitated Network Design Problem R. Hassin 1? and R. Rai 2?? and F. S. Salman 3??? 1 Department of Statistics and Operations Research, Tel-Ai Uniersity, Tel Ai 69978, Israel.

More information

Tutte Embeddings of Planar Graphs

Tutte Embeddings of Planar Graphs Spectral Graph Theory and its Applications Lectre 21 Ttte Embeddings o Planar Graphs Lectrer: Daniel A. Spielman November 30, 2004 21.1 Ttte s Theorem We sally think o graphs as being speciied by vertices

More information

Planarity-Preserving Clustering and Embedding for Large Planar Graphs

Planarity-Preserving Clustering and Embedding for Large Planar Graphs Planarity-Presering Clstering and Embedding for Large Planar Graphs Christian A. Dncan, Michael T. Goodrich, and Stephen G. Koboro Center for Geometric Compting The Johns Hopkins Uniersity Baltimore, MD

More information

Combinatorial and Geometric Properties of Planar Laman Graphs

Combinatorial and Geometric Properties of Planar Laman Graphs Combinatorial and Geometric Properties of Planar Laman Graphs Stephen Koboro 1, Torsten Ueckerdt 2, and Kein Verbeek 3 1 Department of Compter Science, Uniersity of Arizona 2 Department of Applied Mathematics,

More information

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function.

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function. Graph Definitions Definition 1. (V,E) where An undirected graph G is a pair V is the set of vertices, E V 2 is the set of edges (unordered pairs) E = {(u, v) u, v V }. In a directed graph the edges have

More information

Nonempty Intersection of Longest Paths in Series-Parallel Graphs

Nonempty Intersection of Longest Paths in Series-Parallel Graphs Nonempty Intersection of Longest aths in Series-arallel Graphs Jlia Ehrenmüller 1,, Cristina G. Fernandes 2,, and Carl Georg Heise 1,, 1 Institt für Mathematik, Technische Uniersität Hambrg-Harbrg, Germany,

More information

Maximal Cliques in Unit Disk Graphs: Polynomial Approximation

Maximal Cliques in Unit Disk Graphs: Polynomial Approximation Maximal Cliqes in Unit Disk Graphs: Polynomial Approximation Rajarshi Gpta, Jean Walrand, Oliier Goldschmidt 2 Department of Electrical Engineering and Compter Science Uniersity of California, Berkeley,

More information

ECE250: Algorithms and Data Structures Single Source Shortest Paths Dijkstra s Algorithm

ECE250: Algorithms and Data Structures Single Source Shortest Paths Dijkstra s Algorithm ECE0: Algorithms and Data Strctres Single Sorce Shortest Paths Dijkstra s Algorithm Ladan Tahildari, PEng, SMIEEE Associate Professor Software Technologies Applied Research (STAR) Grop Dept. of Elect.

More information

[1] Hopcroft, J., D. Joseph and S. Whitesides, Movement problems for twodimensional

[1] Hopcroft, J., D. Joseph and S. Whitesides, Movement problems for twodimensional Acknoledgement. The athors thank Bill Lenhart for interesting discssions on the recongration of rlers. References [1] Hopcroft, J., D. Joseph and S. Whitesides, Moement problems for todimensional linkages,

More information

Professor: Padraic Bartlett. Lecture 9: Trees and Art Galleries. Week 10 UCSB 2015

Professor: Padraic Bartlett. Lecture 9: Trees and Art Galleries. Week 10 UCSB 2015 Math 7H Professor: Padraic Bartlett Lecture 9: Trees and Art Galleries Week 10 UCSB 2015 1 Prelude: Graph Theory This talk uses the mathematical concepts of graphs from our previous class. In particular,

More information

Assigning AS Relationships to Satisfy the Gao-Rexford Conditions

Assigning AS Relationships to Satisfy the Gao-Rexford Conditions Assigning AS Relationships to Satisfy the Gao-Rexford Conditions Lca Cittadini, Giseppe Di Battista, Thomas Erlebach, Marizio Patrignani, and Massimo Rimondini Dept. of Compter Science and Atomation, Roma

More information

GRAPH THEORY LECTURE 3 STRUCTURE AND REPRESENTATION PART B

GRAPH THEORY LECTURE 3 STRUCTURE AND REPRESENTATION PART B GRAPH THEORY LECTURE 3 STRUCTURE AND REPRESENTATION PART B Abstract. We continue 2.3 on subgraphs. 2.4 introduces some basic graph operations. 2.5 describes some tests for graph isomorphism. Outline 2.3

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected graph G with at least 2 vertices contains at least 2

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Triangle Contact Representations

Triangle Contact Representations Triangle Contact Representations Stean Felsner elsner@math.t-berlin.de Technische Uniersität Berlin, Institt ür Mathematik Strasse des 7. Jni 36, 0623 Berlin, Germany Abstract. It is conjectred that eery

More information

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests 4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

More information

CS 6783 (Applied Algorithms) Lecture 5

CS 6783 (Applied Algorithms) Lecture 5 CS 6783 (Applied Algorithms) Lecture 5 Antonina Kolokolova January 19, 2012 1 Minimum Spanning Trees An undirected graph G is a pair (V, E); V is a set (of vertices or nodes); E is a set of (undirected)

More information

Revisiting Connected Dominating Sets: An Optimal Local Algorithm?

Revisiting Connected Dominating Sets: An Optimal Local Algorithm? Reisiting Connected Dominating Sets: An Otimal Local Algorithm? Samir Khller Deartment of Comter Science Uniersity of Maryland College Park, MD 0740, USA Email: samir@md.ed Sheng Yang Deartment of Comter

More information

Point Location. The Slab Method. Optimal Schemes. The Slab Method. Preprocess a planar, polygonal subdivision for point location queries.

Point Location. The Slab Method. Optimal Schemes. The Slab Method. Preprocess a planar, polygonal subdivision for point location queries. Point Location The Slab Method Prerocess a lanar, olygonal sbdiision for oint location qeries. = (18, 11) raw a ertical line throgh each ertex. This decomoses the lane into slabs. In each slab, the ertical

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 9 Minimum Spanning Trees Thanks to the text authors who contributed to these slides Why Minimum Spanning Trees (MST)? Example 1 A

More information

Motivation: Art gallery problem. Polygon decomposition. Art gallery problem: upper bound. Art gallery problem: lower bound

Motivation: Art gallery problem. Polygon decomposition. Art gallery problem: upper bound. Art gallery problem: lower bound CG Lecture 3 Polygon decomposition 1. Polygon triangulation Triangulation theory Monotone polygon triangulation 2. Polygon decomposition into monotone pieces 3. Trapezoidal decomposition 4. Conex decomposition

More information

USING MAPLE FOR VISUALIZATION OF TOPOLOGICAL SUBGROUPOIDS OF X Z X

USING MAPLE FOR VISUALIZATION OF TOPOLOGICAL SUBGROUPOIDS OF X Z X USING MAPLE FOR VISUALIZATION OF TOPOLOGICAL SUBGROUPOIDS OF X Z X Mădălina Roxana BUNECI, Uniersity Constantin Brâncşi of Târg-Ji Abstract. The prpose of this paper is to present arios ways to isalize

More information

arxiv: v1 [cs.cg] 31 Aug 2017

arxiv: v1 [cs.cg] 31 Aug 2017 Lombardi Drawings of Knots and Links Philipp Kindermann 1, Stephen Koboro 2, Maarten Löffler 3, Martin Nöllenbrg 4, André Schlz 1, and Birgit Vogtenhber 5 arxi:1708.098191 [cs.cg] 31 Ag 2017 1 FernUniersität

More information

Ma Lesson 18 Section 1.7

Ma Lesson 18 Section 1.7 Ma 15200 Lesson 18 Section 1.7 I Representing an Ineqality There are 3 ways to represent an ineqality. (1) Using the ineqality symbol (sometime within set-bilder notation), (2) sing interval notation,

More information

Lecture 4: Trees and Art Galleries

Lecture 4: Trees and Art Galleries Math 7H: Honors Seminar Professor: Padraic Bartlett Lecture 4: Trees and Art Galleries Week 2 UCSB 2014 1 Prelude: Graph Theory In this talk, we re going to refer frequently to things called graphs and

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

The minimum spanning tree problem

The minimum spanning tree problem The minimum spanning tree problem MST is a minimum cost connection problem on graphs The graph can model the connection in a (hydraulic, electric, telecommunication) network: the nodes are the points that

More information

ABSOLUTE DEFORMATION PROFILE MEASUREMENT IN TUNNELS USING RELATIVE CONVERGENCE MEASUREMENTS

ABSOLUTE DEFORMATION PROFILE MEASUREMENT IN TUNNELS USING RELATIVE CONVERGENCE MEASUREMENTS Proceedings th FIG Symposim on Deformation Measrements Santorini Greece 00. ABSOUTE DEFORMATION PROFIE MEASUREMENT IN TUNNES USING REATIVE CONVERGENCE MEASUREMENTS Mahdi Moosai and Saeid Khazaei Mining

More information

Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs

Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs Tri-Edge-Connectivity Agmentation for Planar Straight Line Graphs Marwan Al-Jbeh 1, Mashhood Ishaqe 1, Kristóf Rédei 1, Diane L. Sovaine 1, and Csaba D. Tóth 1,2 1 Department of Compter Science, Tfts University,

More information

The Domination and Competition Graphs of a Tournament. University of Colorado at Denver, Denver, CO K. Brooks Reid 3

The Domination and Competition Graphs of a Tournament. University of Colorado at Denver, Denver, CO K. Brooks Reid 3 The omination and Competition Graphs of a Tornament avid C. Fisher, J. Richard Lndgren 1, Sarah K. Merz University of Colorado at enver, enver, CO 817 K. rooks Reid California State University, San Marcos,

More information

Alliances and Bisection Width for Planar Graphs

Alliances and Bisection Width for Planar Graphs Alliances and Bisection Width for Planar Graphs Martin Olsen 1 and Morten Revsbæk 1 AU Herning Aarhs University, Denmark. martino@hih.a.dk MADAGO, Department of Compter Science Aarhs University, Denmark.

More information

Regions and Other Concepts

Regions and Other Concepts Regions and Other Concepts Definition 11. Let G=(N,A,s) be a flow graph, let N 1 N, let A 1 A, and let h be in N 1. R=(N 1,A 1,h) is called a region of G with header h iff in every path (x 1,..., x k ),

More information

Digital Image Processing Chapter 5: Image Restoration

Digital Image Processing Chapter 5: Image Restoration Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration Image restoration is to restore a degraded image back to the original image while image enhancement is to maniplate the

More information

Mathematical model for storing and effective processing of directed graphs in semistructured data management systems

Mathematical model for storing and effective processing of directed graphs in semistructured data management systems Mathematical model for storing and effectie processing of directed graphs in semistrctred data management MALIKOV A, GULEVSKIY Y, PARKHOMENKO D Information Systems and Technologies Department North Cacass

More information

A Distributed Algorithm for Deadlock Detection and Resolution

A Distributed Algorithm for Deadlock Detection and Resolution A Distribted Algorithm for Deadlock Detection and Resoltion Don P. Mitchell Michael J. Merritt AT&T Bell Laboratories ABSTRACT This aer resents two distribted algorithms for detecting and resoling deadlocks.

More information

Chapter 23. Minimum Spanning Trees

Chapter 23. Minimum Spanning Trees Chapter 23. Minimum Spanning Trees We are given a connected, weighted, undirected graph G = (V,E;w), where each edge (u,v) E has a non-negative weight (often called length) w(u,v). The Minimum Spanning

More information

CS525 Winter 2012 \ Class Assignment #2 Preparation

CS525 Winter 2012 \ Class Assignment #2 Preparation 1 CS525 Winter 2012 \ Class Assignment #2 Preparation Ariel Stolerman 2.26) Let be a CFG in Chomsky Normal Form. Following is a proof that for any ( ) of length exactly steps are required for any derivation

More information

Characterizations of Trees

Characterizations of Trees Characterizations of Trees Lemma Every tree with at least two vertices has at least two leaves. Proof. 1. A connected graph with at least two vertices has an edge. 2. In an acyclic graph, an end point

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

Advanced algorithms. topological ordering, minimum spanning tree, Union-Find problem. Jiří Vyskočil, Radek Mařík 2012

Advanced algorithms. topological ordering, minimum spanning tree, Union-Find problem. Jiří Vyskočil, Radek Mařík 2012 topological ordering, minimum spanning tree, Union-Find problem Jiří Vyskočil, Radek Mařík 2012 Subgraph subgraph A graph H is a subgraph of a graph G, if the following two inclusions are satisfied: 2

More information

EFFICIENT SOLUTION OF SYSTEMS OF ORIENTATION CONSTRAINTS

EFFICIENT SOLUTION OF SYSTEMS OF ORIENTATION CONSTRAINTS EFFICIENT SOLUTION OF SSTEMS OF OIENTATION CONSTAINTS Joseh L. Ganley Cadence Design Systems, Inc. ganley@cadence.com ABSTACT One sbtask in constraint-drien lacement is enforcing a set of orientation constraints

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

CSE331 Introduction to Algorithms Lecture 15 Minimum Spanning Trees

CSE331 Introduction to Algorithms Lecture 15 Minimum Spanning Trees CSE1 Introduction to Algorithms Lecture 1 Minimum Spanning Trees Antoine Vigneron antoine@unist.ac.kr Ulsan National Institute of Science and Technology July 11, 201 Antoine Vigneron (UNIST) CSE1 Lecture

More information

Week 11: Minimum Spanning trees

Week 11: Minimum Spanning trees Week 11: Minimum Spanning trees Agenda: Minimum Spanning Trees Prim s Algorithm Reading: Textbook : 61-7 1 Week 11: Minimum Spanning trees Minimum spanning tree (MST) problem: Input: edge-weighted (simple,

More information

Notes 4 : Approximating Maximum Parsimony

Notes 4 : Approximating Maximum Parsimony Notes 4 : Approximating Maximum Parsimony MATH 833 - Fall 2012 Lecturer: Sebastien Roch References: [SS03, Chapters 2, 5], [DPV06, Chapters 5, 9] 1 Coping with NP-completeness Local search heuristics.

More information

Minimum spanning trees

Minimum spanning trees Minimum spanning trees [We re following the book very closely.] One of the most famous greedy algorithms (actually rather family of greedy algorithms). Given undirected graph G = (V, E), connected Weight

More information

(2, 4) Tree Example (2, 4) Tree: Insertion

(2, 4) Tree Example (2, 4) Tree: Insertion Presentation for se with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 B-Trees and External Memory (2, 4) Trees Each internal node has 2 to 4 children:

More information

Trees and Tree Encodings

Trees and Tree Encodings Trees and Tree Encodings January, 08 Introduction: Today, we are going to be looking at a special class of graph theory called trees. These structures are an important discipline in mathematics and have

More information

Authors. Tamilnadu, India 2.

Authors.   Tamilnadu, India 2. International Jornal of Emerging Trends in Science and Technology Impact Factor: 2.838 DOI: http://dx.doi.org/10.18535/ijetst/3i03.04 Irredndant Complete Domination Nmber of Graphs Athors A.Nellai Mrgan

More information

Non-context-Free Languages. CS215, Lecture 5 c

Non-context-Free Languages. CS215, Lecture 5 c Non-context-Free Languages CS215 Lecture 5 c 2007 1 The Pumping Lemma Theorem (Pumping Lemma) Let be context-free There exists a positive integer divided into five pieces Proof for for each and Let and

More information

Image Restoration Image Degradation and Restoration

Image Restoration Image Degradation and Restoration Image Degradation and Restoration hxy Image Degradation Model: Spatial domain representation can be modeled by: g x y h x y f x y x y Freqency domain representation can be modeled by: G F N Prepared By:

More information

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, )

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, ) Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 1. if >. 2. error new key is greater than current key 3.. 4.. 5. if NIL and.

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

Shannon Switching Game

Shannon Switching Game EECS 495: Combinatorial Optimization Lecture 1 Shannon s Switching Game Shannon Switching Game In the Shannon switching game, two players, Join and Cut, alternate choosing edges on a graph G. Join s objective

More information

Faster Random Walks By Rewiring Online Social Networks On-The-Fly

Faster Random Walks By Rewiring Online Social Networks On-The-Fly 1 Faster Random Walks By Rewiring Online ocial Networks On-The-Fly Zhojie Zho 1, Nan Zhang 2, Zhigo Gong 3, Gatam Das 4 1,2 Compter cience Department, George Washington Uniersity 1 rexzho@gw.ed 2 nzhang10@gw.ed

More information

Improving Network Connectivity Using Trusted Nodes and Edges

Improving Network Connectivity Using Trusted Nodes and Edges Improing Network Connectiity Using Trsted Nodes and Edges Waseem Abbas, Aron Laszka, Yegeniy Vorobeychik, and Xenofon Kotsokos Abstract Network connectiity is a primary attribte and a characteristic phenomenon

More information

Today. B-splines. B-splines. B-splines. Computergrafik. Curves NURBS Surfaces. Bilinear patch Bicubic Bézier patch Advanced surface modeling

Today. B-splines. B-splines. B-splines. Computergrafik. Curves NURBS Surfaces. Bilinear patch Bicubic Bézier patch Advanced surface modeling Comptergrafik Matthias Zwicker Uniersität Bern Herbst 29 Cres Srfaces Parametric srfaces Bicbic Bézier patch Adanced srface modeling Piecewise Bézier cres Each segment spans for control points Each segment

More information

Betweenness and the Crossbar Theorem. Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C.

Betweenness and the Crossbar Theorem. Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C. Betweenness and the Crossbar Theorem Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C. Suppose that both A*B*C and A*C*B. Thus AB+BC =AC, and AC +CB = AB. From this we

More information

Greedy Algorithms Part Three

Greedy Algorithms Part Three Greedy Algorithms Part Three Announcements Problem Set Four due right now. Due on Wednesday with a late day. Problem Set Five out, due Monday, August 5. Explore greedy algorithms, exchange arguments, greedy

More information