Architectural Design

Size: px
Start display at page:

Download "Architectural Design"

Transcription

1 Architectural Design

2 Topics i. Architectural design decisions ii. Architectural views iii. Architectural patterns iv. Application architectures

3 PART 1 ARCHITECTURAL DESIGN DECISIONS

4 Recap on SDLC Phases & Artefacts Domain Business Process Domain (Class Diagram) Requirement 1) Functional & Non-Functional requirement 2) Use Case diagram SRS Analysis 1) System Sequence Diagram 2) Activity Diagram Design 1) Class Diagram (refined) 2) Detail Sequence Diagram 3) State Diagram Implementation 1) Application Source Code 2) User Manual Documentation Testing & Deployment 1) Test Cases 2) Prototype Maintenance & Evolution 1) Change Request Form

5 Recap on SDLC Phases & Artefacts Domain Business Process Domain (Class Diagram) Requirement 1) Functional & Non-Functional requirement 2) Use Case diagram SRS Analysis 1) System Sequence Diagram 2) Activity Diagram Design 1) Class Diagram (refined) 2) Detail Sequence Diagram 3) State Diagram Implementation 1) Application Source Code 2) User Manual Documentation Testing & Deployment 1) Test Cases 2) Prototype Maintenance & Evolution 1) Change Request Form

6 Recap on Design process (Ch.2)

7 Recap on Design process (Ch.2)

8 Definitions Architectural design : The design process for identifying the sub-systems making up a system and the framework for sub-system control and communication. The output of this design process is a description of the software architecture.

9 Architecture Analogy for Software vs. House?

10 Rationale on Architectural design decisions Architectural design is a creative process so the process differs depending on the type of system being developed. Due to the creative process, the activities within the process depend on the type of the system being developed, background and experience of system architect, specific requirements of the system During architectural design process, system architects have to make a number of structural decisions that profoundly affect the system and its development process 9 DESIGN DECISION QUESTIONS

11 Architectural design decisions (NINE QUESTIONS) 1. What approach will be used to structure the system? 2. What architectural styles are appropriate? 3. What control strategy should be used? 4. How will the structural components be decomposed into subcomponents? 5. Is there a generic application architecture that can be used? 6. What architectural organization is best for delivering the non functional requirements? 7. How will the system be distributed? 8. How will the architectural design be evaluated? 9. How should the architecture be documented?

12 PART 2 ARCHITECTURAL VIEWS

13 Architectural design decisions (NINE QUESTIONS) 1. What approach will be used to structure the system?

14 Analogy of House Architectural View Interior elevations showing details of fireplaces, cabinets, built-in units, and other special interior features. Schematic electrical layouts Exterior elevations of the front, rear, and sides of the house Different views of a house Detailed floor plans Roof plans showing details of the layout.

15

16 Architectural views What views or perspectives are useful when designing and documenting a system s architecture? What notations should be used for describing architectural models? Each architectural model only shows one view or perspective of the system. It might show how a system is decomposed into modules, how the run-time processes interact or the different ways in which system components are distributed across a network. For both design and documentation, you usually need to present multiple views of the software architecture.

17 4+1 view architecture

18 4 + 1 view model of software architecture 1. A design/logical view: shows the key abstractions in the system as objects or object classes. 2. A process view : shows how, at run-time, the system is composed of interacting processes. 3. A implementation view: shows how the software is decomposed for development. 4. A deployment/physical view: shows the system hardware and how software components are distributed across the processors in the system. Related using use cases or scenarios (+1)

19 PART 3 ARCHITECTURAL PATTERNS

20 Architectural design decisions (NINE QUESTIONS) 2. What architectural styles are appropriate? 3. What control strategy should be used? 4. How will the structural components be decomposed into subcomponents?

21 Architectural design decisions (NINE QUESTIONS) 2. What architectural styles are appropriate? 3. What control strategy should be used? 4. How will the structural components be decomposed into subcomponents?

22 Architectural Design Classification Architectural Design Architectural Style Control Strategy Modular Decomposition Pipe line Repository View Controller Client Server Layered Centralized Control Object Oriented Event-Driven Control Function Oriented Call-Return Manager Broadcast Interrupt- Driven

23 Architectural patterns styles Patterns are a means of representing, sharing and reusing knowledge. An architectural pattern is a stylized description of good design practice, which has been tried and tested in different environments. Patterns should include information about when they are and when the are not useful. Patterns may be represented using tabular and graphical descriptions.

24 Architectural Design Classification Architectural Design Architectural Style Control Strategy Modular Decomposition Pipe line Repository Client Server Layered Object Oriented Function Oriented Centralized Control Event-Driven Control Call-Return Manager Broadcast Interrupt- Driven 33

25 1. Repository architecture Sub-systems must exchange data. This may be done in two ways: 1. Shared data is held in a central database or repository and may be accessed by all sub-systems; 2. Each sub-system maintains its own database and passes data explicitly to other sub-systems. When to use: 1. large amounts of data are to be shared and stored for a long time. 2. In data-driven systems where the inclusion of data in the repository triggers an action or tool

26 The Repository architecture Advantages Components can be independent Changes made by one component can be propagated to all components. All data can be managed consistently (e.g., backups done at the same time) Disadvantages Problems in the repository affect the whole system. Inefficiencies in organizing all communication through the repository. Difficulties in distributing the repository across several computers

27 A repository architecture for an IDE

28 2. Client-server architecture Distributed system model which shows how data and processing is distributed across a range of components. Can be implemented on a single computer. Set of stand-alone servers which provide specific services such as printing, data management, etc. Set of clients which call on these services. Network which allows clients to access servers. Used when data in a shared database has to be accessed from a range of locations.

29 The Client server pattern Advantages Servers can be distributed across a network. General functionality (e.g., a printing service) can be available to all clients and does not need to be implemented by all services. Disadvantages Each service is a single point of failure so susceptible to denial of service attacks or server failure. Performance may be unpredictable because it depends on the network as well as the system.

30 A client server architecture for a film library

31 3.The Layered Organize a system into layers Each layer provides services to the one outside it and acts as a client to the layer inside The design includes protocols that explain how each pair of layers will interact Each layer can be thought of as an abstract machine Also called an abstract machine model Incremental development of sub-systems in different layers When a layer interface changes, only the adjacent layer is affected.

32 3.The Layered Used when building new facilities on top of existing systems the development is spread across several teams with each team responsibility for a layer of functionality there is a requirement for multi-level security security is a critical requirement. Example: layered security architecture - a system to provide file security

33 3.The Layered Advantages : Each layer can be considered to be an increasing level of abstraction Designers can use the layers to decompose a problem into a sequence of more abstract steps It s easy to add or modify a layer as the need arises Disadvantages : Not easy to structure a system in layers The multiple layers of abstraction are not always evident when examine a set of requirements System performance may suffer from the extra coordination among the layers

34 Example: Version Management System

35 Example: LIBSYS system

36 45 Example: ATM system

37 4. Pipe and filter architecture The processing of the data in a system is organized so that each processing component (filter) is discrete and carries out one type of data transformation. The data flows (as in a pipe) from one component to another for processing. May be referred to as a pipe and filter model (as in UNIX shell). Commonly used in data processing applications (both batch- and transaction-based) where inputs are processed in separate stages to generate related outputs. Not really suitable for interactive systems.

38 4. Pipe and filter architecture Advantages Easy to understand and supports transformation reuse. Workflow style matches the structure of many business processes. Evolution by adding transformations is straightforward. Can be implemented as either a sequential or concurrent system. Disadvantages The format for data transfer has to be agreed upon between communicating transformations. Each transformation must parse its input and unparse its output to the agreed form. this increases system overhead

39 An example of the pipe and filter architecture

40 Architectural Design Classification Architectural Design Architectural Style Control Strategy Modular Decomposition Pipe line Repository View Controller Client Server Layered Centralized Control Object Oriented Event-Driven Control Function Oriented Call-Return Manager Broadcast Interrupt- Driven

41 Architectural design decisions (NINE QUESTIONS) 2. What architectural styles are appropriate? 3. What control strategy should be used? 4. How will the structural components be decomposed into subcomponents?

42 Architectural Design Classification Architectural Design Architectural Style Control Strategy Modular Decomposition Pipe line Repository View Controller Client Server Layered Centralized Control Object Oriented Event-Driven Control Function Oriented Call-Return Manager Broadcast Interrupt- Driven

43 Control Styles Are concerned with the control flow between sub-systems Sub-systems must be controlled Two generic control styles 1. Centralized control One sub-system has overall responsibility for control and starts and stops other subsystems. 2. Event-based control Each sub-system can respond to externally generated events from other sub-systems or the system s environment.

44 1. Centralized Control A control sub-system takes responsibility for managing the execution of other sub-systems. 1. Call-return model Top-down subroutine model where control starts at the top of a subroutine hierarchy and moves downwards. Applicable to sequential systems. 2. Manager model Applicable to concurrent systems. One system component controls the stopping, starting and coordination of other system processes. Can be implemented in sequential systems as a case statement.

45 1.1. The Call-Return

46 1.2. The Manager

47 Architectural Design Classification Architectural Design Architectural Style Control Strategy Modular Decomposition Pipe line Repository View Controller Client Server Layered Centralized Control Object Oriented Event-Driven Control Function Oriented Call-Return Manager Broadcast Interrupt- Driven

48 2. Event-Driven System An event vs. an input Driven by externally generated events where the timing of the event is outwith the control of the sub-systems which process the event. Two principal event-driven models 1. Broadcast models. An event is broadcast to all sub-systems. Any subsystem which can handle the event may do so different computers on a network; 1. Interrupt-driven models. Used in real-time systems where interrupts are detected by an interrupt handler and passed to some other component for processing real-time systems.

49 2.1. Broadcast Effective in integrating sub-systems on different computers in a network. Sub-systems register an interest in specific events. When these occur, control is transferred to the subsystem which can handle the event. Control policy is not embedded in the event and message handler. Sub-systems decide on events of interest to them. However, sub-systems don t know if or when an event will be handled.

50 A Broadcast

51 2.2. Interrupt-driven control Used in real-time systems where fast response to an event is essential. There are known interrupt types with a handler defined for each type. Each type is associated with a memory location and a hardware switch causes transfer to its handler. Allows fast response but complex to program and difficult to validate.

52 An Interrupt-Driven

53 Architectural Design Classification Architectural Design Architectural Style Control Strategy Modular Decomposition Pipe line Repository View Controller Client Server Layered Centralized Control Object Oriented Event-Driven Control Function Oriented Call-Return Manager Broadcast Interrupt- Driven

54 Architectural design decisions (NINE QUESTIONS) 2. What architectural styles are appropriate? 3. What control strategy should be used? 4. How will the structural components be decomposed into subcomponents?

55 Architectural Design Classification Architectural Design Architectural Style Control Strategy Modular Decomposition Pipe line Repository View Controller Client Server Layered Centralized Control Object Oriented (nxt wk s topic) Event-Driven Control Function Oriented Call-Return Manager Broadcast Interrupt- Driven

56 PART 4 APPLICATION ARCHITECTURAL

57 Architectural design decisions (NINE QUESTIONS) 5. Is there a generic application architecture that can be used?

58 Application architectures Application systems are designed to meet an organizational need. As businesses have much in common, their application systems also tend to have a common architecture that reflects the application requirements. A generic application architecture is an architecture for a type of software system that may be configured and adapted to create a system that meets specific requirements.

59 Use of application architectures As a starting point for architectural design. As a design checklist. As a way of organizing the work of the development team. As a means of assessing components for reuse. As a vocabulary for talking about application types.

60 Examples of application types 1. Data processing applications Data driven applications that process data in batches without explicit user intervention during the processing. 2. Transaction processing applications Data-centered applications that process user requests and update information in a system database. 3. Event processing systems Applications where system actions depend on interpreting events from the system s environment. 4. Language processing systems Applications where the users intentions are specified in a formal language that is processed and interpreted by the system.

61 Summary of Generic Application Architecture Generic Application Architecture Transaction Processing Systems Language Processing Systems Data Processing Applications Event Processing Systems

62 Application type examples Focus here is on transaction processing and language processing systems. Transaction processing systems E-commerce systems; Reservation systems. Language processing systems Compilers; Command interpreters.

63 Focus of Generic Application Architecture Generic Application Architecture Transaction Processing Systems Language Processing Systems Data Processing Applications Event Processing Systems ATM Information System Compilers Natural Language Translator -Can have pipe and filter Architecture style Web based i.e e- commerce system - Can have either layered or client and server architecture style

64 Transaction processing systems Process user requests for information from a database or requests to update the database. From a user perspective a transaction is: Any coherent sequence of operations that satisfies a goal; For example - find the times of flights from London to Paris. Users make asynchronous requests for service which are then processed by a transaction manager.

65 The structure of transaction processing applications

66 The software architecture of an ATM system

67 Information systems architecture Information systems have a generic architecture that can be organised as a layered architecture. These are transaction-based systems as interaction with these systems generally involves database transactions. Layers include: The user interface User communications Information retrieval System database

68 Layered information system architecture

69 The architecture of the MHC-PMS

70 Web-based information systems Information and resource management systems are now usually web-based systems where the user interfaces are implemented using a web browser. For example, e-commerce systems are Internet-based resource management systems that accept electronic orders for goods or services and then arrange delivery of these goods or services to the customer. In an e-commerce system, the application-specific layer includes additional functionality supporting a shopping cart in which users can place a number of items in separate transactions, then pay for them all together in a single transaction.

71 Server implementation These systems are often implemented as multi-tier client server/architectures (discussed in Chapter 18) The web server is responsible for all user communications, with the user interface implemented using a web browser; The application server is responsible for implementing application-specific logic as well as information storage and retrieval requests; The database server moves information to and from the database and handles transaction management.

72 Focus of Generic Application Architecture Generic Application Architecture Transaction Processing Systems Language Processing Systems Data Processing Applications Event Processing Systems ATM Information System Compilers Natural Language Translator -Can have pipe and filter (pipeline) architecture style Web based i.e e- commerce system - Can have either pipe or filter (pipeline) repository architecture style - Can have either layered or client and server architecture style

73 Language processing systems Accept a natural or artificial language as input and generate some other representation of that language. May include an interpreter to act on the instructions in the language that is being processed. Used in situations where the easiest way to solve a problem is to describe an algorithm or describe the system data Meta-case tools process tool descriptions, method rules, etc and generate tools.

74 The architecture of a language processing system

75 Compiler components A lexical analyzer, which takes input language tokens and converts them to an internal form. A symbol table, which holds information about the names of entities (variables, class names, object names, etc.) used in the text that is being translated. A syntax analyzer, which checks the syntax of the language being translated. A syntax tree, which is an internal structure representing the program being compiled.

76 Compiler components A semantic analyzer that uses information from the syntax tree and the symbol table to check the semantic correctness of the input language text. A code generator that walks the syntax tree and generates abstract machine code.

77 A pipe and filter compiler architecture

78 A repository architecture for a language processing system

79 Focus of Generic Application Architecture Generic Application Architecture Transaction Processing Systems Language Processing Systems Data Processing Applications Event Processing Systems ATM Information System Compilers Natural Language Translator -Can have pipe and filter (pipeline) architecture style Web based i.e e- commerce system - Can have either pipe or filter (pipeline) repository architecture style - Can have either layered or client and server architecture style

80 Architectural design decisions (NINE QUESTIONS) 6. What architectural organization is best for delivering the non functional requirements?

81 Non functional requirements and Architectural Organization 1. Performance Localise critical operations and minimise communications. Use large rather than fine-grain components. 2. Security Use a layered architecture with critical assets in the inner layers. 3. Safety - Localise safety-critical features in a small number of sub-systems. 4. Availability - Include redundant components and mechanisms for fault tolerance. 5. Maintainability - Use fine-grain, replaceable components.

82 Key points A software architecture is a description of how a software system is organized. Architectural design decisions include decisions on the type of application, the distribution of the system, the architectural styles to be used. Architectures may be documented from several different perspectives or views such as a conceptual view, a logical view, a process view, and a development view. Architectural patterns are a means of reusing knowledge about generic system architectures. They describe the architecture, explain when it may be used and describe its advantages and disadvantages.

83 Key points s of application systems architectures help us understand and compare applications, validate application system designs and assess large-scale components for reuse. Transaction processing systems are interactive systems that allow information in a database to be remotely accessed and modified by a number of users. Language processing systems are used to translate texts from one language into another and to carry out the instructions specified in the input language. They include a translator and an abstract machine that executes the generated language.

84 EXERCISE

85 Architectural design decisions (NINE QUESTIONS) 1. What approach will be used to structure the system? 2. What architectural styles are appropriate? 3. What control strategy should be used? 4. How will the structural components be decomposed into subcomponents? 5. Is there a generic application architecture that can be used? 6. What architectural organization is best for delivering the non functional requirements? 7. How will the system be distributed? 8. How will the architectural design be evaluated? 9. How should the architecture be documented?

86 Exercise During architectural design stage, a software architect have to identify the appropriate design decisions for the specified requirements during requirement and analysis stages. These design decisions are crucial for the next phase of development for the proposed application. Suggest the design decisions for your group project based on the specified requirements in previous SRS. Your design decisions must answered all the 6 questions.

Architectural Design

Architectural Design Architectural Design Topics i. Architectural design decisions ii. Architectural views iii. Architectural patterns iv. Application architectures Chapter 6 Architectural design 2 PART 1 ARCHITECTURAL DESIGN

More information

Lecture 1. Chapter 6 Architectural design

Lecture 1. Chapter 6 Architectural design Chapter 6 Architectural Design Lecture 1 1 Topics covered Architectural design decisions Architectural views Architectural patterns Application architectures 2 Software architecture The design process

More information

5/9/2014. Recall the design process. Lecture 1. Establishing the overall structureof a software system. Topics covered

5/9/2014. Recall the design process. Lecture 1. Establishing the overall structureof a software system. Topics covered Topics covered Chapter 6 Architectural Design Architectural design decisions Architectural views Architectural patterns Application architectures Lecture 1 1 2 Software architecture The design process

More information

Chapter 6 Architectural Design. Chapter 6 Architectural design

Chapter 6 Architectural Design. Chapter 6 Architectural design Chapter 6 Architectural Design 1 Topics covered Architectural design decisions Architectural views Architectural patterns Application architectures 2 Software architecture The design process for identifying

More information

Chapter 6 Architectural Design. Lecture 1. Chapter 6 Architectural design

Chapter 6 Architectural Design. Lecture 1. Chapter 6 Architectural design Chapter 6 Architectural Design Lecture 1 1 Topics covered ² Architectural design decisions ² Architectural views ² Architectural patterns ² Application architectures 2 Software architecture ² The design

More information

Chapter 6 Architectural Design

Chapter 6 Architectural Design Chapter 6 Architectural Design Chapter 6 Architectural Design Slide 1 Topics covered The WHAT and WHY of architectural design Architectural design decisions Architectural views/perspectives Architectural

More information

Objectives. Architectural Design. Software architecture. Topics covered. Architectural design. Advantages of explicit architecture

Objectives. Architectural Design. Software architecture. Topics covered. Architectural design. Advantages of explicit architecture Objectives Architectural Design To introduce architectural design and to discuss its importance To explain the architectural design decisions that have to be made To introduce three complementary architectural

More information

Architectural Design

Architectural Design Architectural Design Objectives To introduce architectural design and to discuss its importance To explain the architectural design decisions that have to be made To introduce three complementary architectural

More information

Software Engineering

Software Engineering Software Engineering Engr. Abdul-Rahman Mahmood MS, MCP, QMR(ISO9001:2000) Usman Institute of Technology University Road, Karachi armahmood786@yahoo.com alphasecure@gmail.com alphapeeler.sf.net/pubkeys/pkey.htm

More information

Establishing the overall structure of a software system

Establishing the overall structure of a software system Architectural Design Establishing the overall structure of a software system Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 1 Objectives To introduce architectural design and

More information

Architectural Design. Topics covered. Architectural Design. Software architecture. Recall the design process

Architectural Design. Topics covered. Architectural Design. Software architecture. Recall the design process Architectural Design Objectives To introduce architectural design and to discuss its importance To explain the architectural design decisions that have to be made To introduce three complementary architectural

More information

Engr. M. Fahad Khan Lecturer Software Engineering Department University Of Engineering & Technology Taxila

Engr. M. Fahad Khan Lecturer Software Engineering Department University Of Engineering & Technology Taxila Engr. M. Fahad Khan Lecturer Software Engineering Department University Of Engineering & Technology Taxila Software Design and Architecture Software Design Software design is a process of problem-solving

More information

Architectural Design. Architectural Design. Software Architecture. Architectural Models

Architectural Design. Architectural Design. Software Architecture. Architectural Models Architectural Design Architectural Design Chapter 6 Architectural Design: -the design the desig process for identifying: - the subsystems making up a system and - the relationships between the subsystems

More information

Topic : Object Oriented Design Principles

Topic : Object Oriented Design Principles Topic : Object Oriented Design Principles Software Engineering Faculty of Computing Universiti Teknologi Malaysia Objectives Describe the differences between requirements activities and design activities

More information

Lecture 15 Distributed System Architectures

Lecture 15 Distributed System Architectures Lecturer: Sebastian Coope Ashton Building, Room G.18 E-mail: coopes@liverpool.ac.uk COMP 201 web-page: http://www.csc.liv.ac.uk/~coopes/comp201 Lecture 15 Distributed System Architectures Architectural

More information

EPL603 Topics in Software Engineering

EPL603 Topics in Software Engineering Lecture 5 Architectural Design & Patterns EPL603 Topics in Software Engineering Efi Papatheocharous Visiting Lecturer efi.papatheocharous@cs.ucy.ac.cy Office FST-B107, Tel. ext. 2740 Topics covered Software

More information

Sommerville Chapter 6 The High-Level Structure of a Software Intensive System. Architectural Design. Slides courtesy Prof.

Sommerville Chapter 6 The High-Level Structure of a Software Intensive System. Architectural Design. Slides courtesy Prof. Sommerville Chapter 6 The High-Level Structure of a Software Intensive System Architectural Design Slides courtesy Prof.Mats Heimdahl 1 Fall 2 2013 Architectural Parallels Architects are the technical

More information

CS451 Lecture 8: Architectural Design. Architectural Design: Objectives

CS451 Lecture 8: Architectural Design. Architectural Design: Objectives CS5 Lecture 8: Architectural Design Yugi Lee STB #555 (86) 5-59 leeyu@umkc.edu www.sice.umkc.edu/~leeyu Architectural Design: Objectives Establishing the overall structure of a software system To introduce

More information

Architectural Design. CSCE Lecture 12-09/27/2016

Architectural Design. CSCE Lecture 12-09/27/2016 Architectural Design CSCE 740 - Lecture 12-09/27/2016 Architectural Styles 2 Today s Goals Define what architecture means when discussing software development. Discuss methods of documenting and planning

More information

Architectural design

Architectural design 6 Architectural design Objectives The objective of this chapter is to introduce the concepts of software architecture and architectural design. When you have read the chapter, you will: understand why

More information

An Introduction to Software Architecture. David Garlan & Mary Shaw 94

An Introduction to Software Architecture. David Garlan & Mary Shaw 94 An Introduction to Software Architecture David Garlan & Mary Shaw 94 Motivation Motivation An increase in (system) size and complexity structural issues communication (type, protocol) synchronization data

More information

Introduction to Software Engineering 10. Software Architecture

Introduction to Software Engineering 10. Software Architecture Introduction to Software Engineering 10. Software Architecture Roadmap > What is Software Architecture? > Coupling and Cohesion > Architectural styles: Layered Client-Server Blackboard, Dataflow,... >

More information

An Introduction to Software Architecture

An Introduction to Software Architecture An Introduction to Software Architecture Software Engineering Design Lecture 11 Motivation for studying SW architecture As the size of SW systems increases, the algorithms and data structures of the computation

More information

An Introduction to Software Architecture

An Introduction to Software Architecture An Introduction to Software Architecture Software Requirements and Design CITS 4401 Lecture 11 Motivation for studying SW architecture As the size of SW systems increase, the algorithms and data structures

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of MCA

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of MCA USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of CA INTERNAL ASSESSENT TEST II Date : 20/09/2016 ax.arks: 50 Subject & Code: Software Engineering

More information

Architectural Blueprint The 4+1 View Model of Software Architecture. Philippe Kruchten

Architectural Blueprint The 4+1 View Model of Software Architecture. Philippe Kruchten Architectural Blueprint The 4+1 View Model of Software Architecture Philippe Kruchten Model What is a model? simplified abstract representation information exchange standardization principals (involved)

More information

ESE Einführung in Software Engineering!

ESE Einführung in Software Engineering! ESE Einführung in Software Engineering! 10. Software Architecture! Prof. O. Nierstrasz" Roadmap! > What is Software Architecture?" > Coupling and Cohesion" > Architectural styles:" Layered" Client-Server"

More information

WHAT IS SOFTWARE ARCHITECTURE?

WHAT IS SOFTWARE ARCHITECTURE? WHAT IS SOFTWARE ARCHITECTURE? Chapter Outline What Software Architecture Is and What It Isn t Architectural Structures and Views Architectural Patterns What Makes a Good Architecture? Summary 1 What is

More information

Establishing the overall structure of a software system

Establishing the overall structure of a software system Architectural Design Establishing the overall structure of a software system Objectives To introduce architectural design and to discuss its importance To explain why multiple models are required to document

More information

An Introduction to Software Architecture By David Garlan & Mary Shaw 94

An Introduction to Software Architecture By David Garlan & Mary Shaw 94 IMPORTANT NOTICE TO STUDENTS These slides are NOT to be used as a replacement for student notes. These slides are sometimes vague and incomplete on purpose to spark a class discussion An Introduction to

More information

Ch 1: The Architecture Business Cycle

Ch 1: The Architecture Business Cycle Ch 1: The Architecture Business Cycle For decades, software designers have been taught to build systems based exclusively on the technical requirements. Software architecture encompasses the structures

More information

Object-Oriented Design (OOD) Case Study : Architecture and Detail Design and Software Design Document (SDD) Prepared by Shahliza Abd Halim

Object-Oriented Design (OOD) Case Study : Architecture and Detail Design and Software Design Document (SDD) Prepared by Shahliza Abd Halim Object-Oriented Design (OOD) Case Study : Architecture and Detail Design and Software Design Document (SDD) Prepared by Shahliza Abd Halim Recap on SDLC Phases & Artefacts Domain Analysis @ Business Process

More information

What is Software Architecture

What is Software Architecture What is Software Architecture Is this diagram an architecture? (ATM Software) Control Card Interface Cash Dispenser Keyboard Interface What are ambiguities in the previous diagram? Nature of the elements

More information

Lecturer: Sebastian Coope Ashton Building, Room G.18

Lecturer: Sebastian Coope Ashton Building, Room G.18 Lecturer: Sebastian Coope Ashton Building, Room G.18 E-mail: coopes@liverpool.ac.uk COMP 201 web-page: http://www.csc.liv.ac.uk/~coopes/comp201 http://www.csc.liv.ac.uk/~pbell/comp201.html Lecture 13 Design

More information

Architectural Styles. Reid Holmes

Architectural Styles. Reid Holmes Material and some slide content from: - Emerson Murphy-Hill - Software Architecture: Foundations, Theory, and Practice - Essential Software Architecture Architectural Styles Reid Holmes Lecture 5 - Tuesday,

More information

Architectural Blueprint

Architectural Blueprint IMPORTANT NOTICE TO STUDENTS These slides are NOT to be used as a replacement for student notes. These slides are sometimes vague and incomplete on purpose to spark a class discussion Architectural Blueprint

More information

Design Process Overview. At Each Level of Abstraction. Design Phases. Design Phases James M. Bieman

Design Process Overview. At Each Level of Abstraction. Design Phases. Design Phases James M. Bieman CS314, Colorado State University Software Engineering Notes 4: Principles of Design and Architecture for OO Software Focus: Determining the Overall Structure of a Software System Describes the process

More information

Software Architecture

Software Architecture Software Architecture Lecture 6 Event Systems Rob Pettit George Mason University SWE 443 Software Architecture Event Systems 1 previously data flow and call-return styles data flow batch sequential dataflow

More information

Software Engineering Principles

Software Engineering Principles 1 / 19 Software Engineering Principles Miaoqing Huang University of Arkansas Spring 2010 2 / 19 Outline 1 2 3 Compiler Construction 3 / 19 Outline 1 2 3 Compiler Construction Principles, Methodologies,

More information

Architectural Design

Architectural Design Architectural Design Minsoo Ryu Hanyang University 1. Architecture 2. Architectural Styles 3. Architectural Design Contents 2 2 1. Architecture Architectural design is the initial design process of identifying

More information

Software Architecture

Software Architecture Software Architecture Architectural Design and Patterns. Standard Architectures. Dr. Philipp Leitner @xleitix University of Zurich, Switzerland software evolution & architecture lab Architecting, the planning

More information

Software Architectures

Software Architectures Software Architectures Richard N. Taylor Information and Computer Science University of California, Irvine Irvine, California 92697-3425 taylor@ics.uci.edu http://www.ics.uci.edu/~taylor +1-949-824-6429

More information

BDSA08 Advanced Architecture

BDSA08 Advanced Architecture UI Swing not the Java Swing libraries, but our GUI classes based on Swing Web Domain Sales Payments Taxes Technical Services Persistence Logging RulesEngine BDSA08 Advanced Architecture Jakob E. Bardram

More information

Architectural Styles. Software Architecture Lecture 5. Copyright Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Architectural Styles. Software Architecture Lecture 5. Copyright Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved. Architectural Styles Software Architecture Lecture 5 Copyright Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved. Object-Oriented Style Components are objects Data and associated

More information

Software Reuse and Component-Based Software Engineering

Software Reuse and Component-Based Software Engineering Software Reuse and Component-Based Software Engineering Minsoo Ryu Hanyang University msryu@hanyang.ac.kr Contents Software Reuse Components CBSE (Component-Based Software Engineering) Domain Engineering

More information

In his paper of 1972, Parnas proposed the following problem [42]:

In his paper of 1972, Parnas proposed the following problem [42]: another part of its interface. (In fact, Unix pipe and filter systems do this, the file system playing the role of the repository and initialization switches playing the role of control.) Another example

More information

Architectural Styles I

Architectural Styles I Architectural Styles I Software Architecture VO/KU (707.023/707.024) Denis Helic, Roman Kern KMI, TU Graz Nov 14, 2012 Denis Helic, Roman Kern (KMI, TU Graz) Architectural Styles I Nov 14, 2012 1 / 80

More information

Architectural Design

Architectural Design Architectural Design Establishing the overall structure of a software system Ian Sommerville - Software Engineering 1 Software architecture The design process for identifying the sub-systems making up

More information

Minsoo Ryu. College of Information and Communications Hanyang University.

Minsoo Ryu. College of Information and Communications Hanyang University. Software Reuse and Component-Based Software Engineering Minsoo Ryu College of Information and Communications Hanyang University msryu@hanyang.ac.kr Software Reuse Contents Components CBSE (Component-Based

More information

Software Design Fundamentals. CSCE Lecture 11-09/27/2016

Software Design Fundamentals. CSCE Lecture 11-09/27/2016 Software Design Fundamentals CSCE 740 - Lecture 11-09/27/2016 Today s Goals Define design Introduce the design process Overview of design criteria What results in a good design? Gregory Gay CSCE 740 -

More information

Products of Requirements elicitation and analysis. Chapter 6: System design: decomposing the system

Products of Requirements elicitation and analysis. Chapter 6: System design: decomposing the system Products of Requirements elicitation and analysis Chapter 6: System design: decomposing the system Requirements! elicitation! Requirements! Specification! nonfunctional! requirements! functional! model!

More information

Darshan Institute of Engineering & Technology for Diploma Studies

Darshan Institute of Engineering & Technology for Diploma Studies REQUIREMENTS GATHERING AND ANALYSIS The analyst starts requirement gathering activity by collecting all information that could be useful to develop system. In practice it is very difficult to gather all

More information

Ch 1: The Architecture Business Cycle

Ch 1: The Architecture Business Cycle Ch 1: The Architecture Business Cycle For decades, software designers have been taught to build systems based exclusively on the technical requirements. Software architecture encompasses the structures

More information

Architectural Styles I

Architectural Styles I Architectural Styles I Software Architecture VO/KU (707023/707024) Roman Kern KTI, TU Graz 2015-01-07 Roman Kern (KTI, TU Graz) Architectural Styles I 2015-01-07 1 / 86 Outline 1 Non-Functional Concepts

More information

Object Oriented Design (OOD): The Concept

Object Oriented Design (OOD): The Concept Object Oriented Design (OOD): The Concept Objec,ves To explain how a so8ware design may be represented as a set of interac;ng objects that manage their own state and opera;ons 1 Topics covered Object Oriented

More information

Chapter 8. Database Design. Database Systems: Design, Implementation, and Management, Sixth Edition, Rob and Coronel

Chapter 8. Database Design. Database Systems: Design, Implementation, and Management, Sixth Edition, Rob and Coronel Chapter 8 Database Design Database Systems: Design, Implementation, and Management, Sixth Edition, Rob and Coronel 1 In this chapter, you will learn: That successful database design must reflect the information

More information

Classes and Objects. Object Orientated Analysis and Design. Benjamin Kenwright

Classes and Objects. Object Orientated Analysis and Design. Benjamin Kenwright Classes and Objects Object Orientated Analysis and Design Benjamin Kenwright Outline Review Previous Weeks Object Model, Complexity,.. What do we mean by Classes and Objects? Summary/Discussion Review

More information

ADVANCED SOFTWARE DESIGN LECTURE 4 SOFTWARE ARCHITECTURE

ADVANCED SOFTWARE DESIGN LECTURE 4 SOFTWARE ARCHITECTURE ADVANCED SOFTWARE DESIGN LECTURE 4 SOFTWARE ARCHITECTURE Dave Clarke 1 THIS LECTURE At the end of this lecture you will know notations for expressing software architecture the design principles of cohesion

More information

Architectural Patterns: From Mud to Structure

Architectural Patterns: From Mud to Structure DCC / ICEx / UFMG Architectural Patterns: From Mud to Structure Eduardo Figueiredo http://www.dcc.ufmg.br/~figueiredo From Mud to Structure Layered Architecture It helps to structure applications that

More information

Software Engineering

Software Engineering SOFTWARE ENGINEERING Subject Code: I.A. Marks :25 Hours/Week : 04 Exam Hours: 03 Total Hours : 52 Exam Marks: 100 PART A UNIT 1 6 Hours Overview: Introduction: FAQ's about software engineering, Professional

More information

(Team Name) (Project Title) Software Design Document. Student Name (s):

(Team Name) (Project Title) Software Design Document. Student Name (s): (Team Name) (Project Title) Software Design Document Student Name (s): TABLE OF CONTENTS 1. INTRODUCTION 2 1.1Purpose 2 1.2Scope 2 1.3Overview 2 1.4Reference Material 2 1.5Definitions and Acronyms 2 2.

More information

Software Architecture

Software Architecture Software Architecture Does software architecture global design?, architect designer? Overview What is it, why bother? Architecture Design Viewpoints and view models Architectural styles Architecture asssessment

More information

CHAPTER 9 DESIGN ENGINEERING. Overview

CHAPTER 9 DESIGN ENGINEERING. Overview CHAPTER 9 DESIGN ENGINEERING Overview A software design is a meaningful engineering representation of some software product that is to be built. Designers must strive to acquire a repertoire of alternative

More information

AADL Graphical Editor Design

AADL Graphical Editor Design AADL Graphical Editor Design Peter Feiler Software Engineering Institute phf@sei.cmu.edu Introduction An AADL specification is a set of component type and implementation declarations. They are organized

More information

Architectural Patterns

Architectural Patterns Architectural Patterns Dr. James A. Bednar jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar Dr. David Robertson dr@inf.ed.ac.uk http://www.inf.ed.ac.uk/ssp/members/dave.htm SEOC2 Spring 2005:

More information

Topic: Software Verification, Validation and Testing Software Engineering. Faculty of Computing Universiti Teknologi Malaysia

Topic: Software Verification, Validation and Testing Software Engineering. Faculty of Computing Universiti Teknologi Malaysia Topic: Software Verification, Validation and Testing Software Engineering Faculty of Computing Universiti Teknologi Malaysia 2016 Software Engineering 2 Recap on SDLC Phases & Artefacts Domain Analysis

More information

CS560 Lecture: Software Architecture Includes slides by I. Sommerville

CS560 Lecture: Software Architecture Includes slides by I. Sommerville CS560 Lecture: Software Architecture 2009 Includes slides by I. Sommerville Architectural Design Design process for identifying the sub-systems making up a system and the framework for sub-system control

More information

Design Patterns. Architectural Patterns. Contents of a Design Pattern. Dr. James A. Bednar. Dr. David Robertson

Design Patterns. Architectural Patterns. Contents of a Design Pattern. Dr. James A. Bednar. Dr. David Robertson Design Patterns Architectural Patterns Dr. James A. Bednar jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar Dr. David Robertson dr@inf.ed.ac.uk http://www.inf.ed.ac.uk/ssp/members/dave.htm A

More information

SCADA Software. 3.1 SCADA communication architectures SCADA system

SCADA Software. 3.1 SCADA communication architectures SCADA system 3 SCADA Software 3.1 SCADA communication architectures 3.1.1 SCADA system A supervisory control and data acquisition (SCADA) system means a system consisting of a number of remote terminal units (RTUs)

More information

Software Architecture. Lecture 4

Software Architecture. Lecture 4 Software Architecture Lecture 4 Last time We discussed tactics to achieve architecture qualities We briefly surveyed architectural styles 23-Jan-08 http://www.users.abo.fi/lpetre/sa08/ 2 Today We check

More information

Recap on SDLC Phases & Artefacts

Recap on SDLC Phases & Artefacts Prepared by Shahliza Abd Halim Recap on SDLC Phases & Artefacts Domain Analysis @ Business Process Domain Model (Class Diagram) Requirement Analysis 1) Functional & Non-Functional requirement 2) Use Case

More information

Integration With the Business Modeler

Integration With the Business Modeler Decision Framework, J. Duggan Research Note 11 September 2003 Evaluating OOA&D Functionality Criteria Looking at nine criteria will help you evaluate the functionality of object-oriented analysis and design

More information

Introduction to Software Engineering

Introduction to Software Engineering Introduction to Software Engineering Gérald Monard Ecole GDR CORREL - April 16, 2013 www.monard.info Bibliography Software Engineering, 9th ed. (I. Sommerville, 2010, Pearson) Conduite de projets informatiques,

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 04//17 Max Marks : 50 Subject & Code : Object oriented Modeling & Design (CS71) Section : A and B Name of faculty : Mrs Sumana Sinha Time : 11:30-1:00 pm wer any five

More information

Software Architectures. Lecture 6 (part 1)

Software Architectures. Lecture 6 (part 1) Software Architectures Lecture 6 (part 1) 2 Roadmap of the course What is software architecture? Designing Software Architecture Requirements: quality attributes or qualities How to achieve requirements

More information

ICS 52: Introduction to Software Engineering

ICS 52: Introduction to Software Engineering ICS 52: Introduction to Software Engineering Fall Quarter 2004 Professor Richard N. Taylor Lecture Notes Week 3: Architectures http://www.ics.uci.edu/~taylor/ics_52_fq04/syllabus.html Copyright 2004, Richard

More information

SOFTWARE ARCHITECTURE INTRODUCTION TO SOFTWARE ENGINEERING PHILIPPE LALANDA

SOFTWARE ARCHITECTURE INTRODUCTION TO SOFTWARE ENGINEERING PHILIPPE LALANDA SOFTWARE ARCHITECTURE INTRODUCTION TO SOFTWARE ENGINEERING PHILIPPE LALANDA PURPOSE OF THIS CLASS An introduction to software architecture What is an architecture Why it is important How it is represented

More information

Architectural Patterns. Architectural Patterns. Layers: Pattern. Architectural Pattern Examples. Layer 3. Component 3.1. Layer 2

Architectural Patterns. Architectural Patterns. Layers: Pattern. Architectural Pattern Examples. Layer 3. Component 3.1. Layer 2 Architectural Patterns Architectural Patterns Dr. James A. Bednar jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar Dr. David Robertson dr@inf.ed.ac.uk http://www.inf.ed.ac.uk/ssp/members/dave.htm

More information

Architectural Patterns

Architectural Patterns Architectural Patterns Dr. James A. Bednar jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar Dr. David Robertson dr@inf.ed.ac.uk http://www.inf.ed.ac.uk/ssp/members/dave.htm SAPM Spring 2012:

More information

Software Processes. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 1

Software Processes. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 1 Software Processes Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 1 Objectives To introduce software process models To describe three generic process models and when they may be

More information

6/20/2018 CS5386 SOFTWARE DESIGN & ARCHITECTURE LECTURE 5: ARCHITECTURAL VIEWS C&C STYLES. Outline for Today. Architecture views C&C Views

6/20/2018 CS5386 SOFTWARE DESIGN & ARCHITECTURE LECTURE 5: ARCHITECTURAL VIEWS C&C STYLES. Outline for Today. Architecture views C&C Views 1 CS5386 SOFTWARE DESIGN & ARCHITECTURE LECTURE 5: ARCHITECTURAL VIEWS C&C STYLES Outline for Today 2 Architecture views C&C Views 1 Components and Connectors (C&C) Styles 3 Elements Relations Properties

More information

Today s Lecture. Software Architecture. Lecture 21: Introduction to Software Architecture. Introduction and Background of

Today s Lecture. Software Architecture. Lecture 21: Introduction to Software Architecture. Introduction and Background of Today s Lecture Lecture 21: Introduction to Software Kenneth M. Anderson Foundations of Software Engineering CSCI 5828 - Spring Semester, 2000 Introduction and Background of Software concepts styles domains

More information

Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms?

Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms? Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms? CIS 8690 Enterprise Architectures Duane Truex, 2013 Cognitive Map of 8090

More information

Architecture Styles. Instructor: Yongjie Zheng February 7, CS 5553: Software Architecture and Design

Architecture Styles. Instructor: Yongjie Zheng February 7, CS 5553: Software Architecture and Design Architecture Styles Instructor: Yongjie Zheng February 7, 2017 CS 5553: Software Architecture and Design Architecture styles: a named collection of architecture design decisions that (1) are applicable

More information

Agent-Oriented Software Engineering

Agent-Oriented Software Engineering Agent-Oriented Software Engineering Lin Zuoquan Information Science Department Peking University lz@is.pku.edu.cn http://www.is.pku.edu.cn/~lz/teaching/stm/saswws.html Outline Introduction AOSE Agent-oriented

More information

The requirements engineering process

The requirements engineering process 3 rd Stage Lecture time: 8:30-12:30 AM Instructor: Ali Kadhum AL-Quraby Lecture No. : 5 Subject: Software Engineering Class room no.: Department of computer science Process activities The four basic process

More information

Software Architecture. Lecture 5

Software Architecture. Lecture 5 Software Architecture Lecture 5 Roadmap of the course What is software architecture? Designing Software Architecture Requirements: quality attributes or qualities How to achieve requirements : tactics

More information

Review Sources of Architecture. Why Domain-Specific?

Review Sources of Architecture. Why Domain-Specific? Domain-Specific Software Architectures (DSSA) 1 Review Sources of Architecture Main sources of architecture black magic architectural visions intuition theft method Routine design vs. innovative design

More information

SDD PRELIMINARY CHANGES SUMMARY

SDD PRELIMINARY CHANGES SUMMARY SDD PRELIMINARY CHANGES SUMMARY This document aims to highlight recent changes made to the NSW Software Design and Development Preliminary syllabus. The original syllabus will be examined for the last

More information

CS504-Softwere Engineering -1 Solved Subjective Midterm Papers For Preparation of Midterm Exam

CS504-Softwere Engineering -1 Solved Subjective Midterm Papers For Preparation of Midterm Exam CS504-Softwere Engineering -1 Solved Subjective Midterm Papers For Preparation of Midterm Exam CS504 Subjective Midterm Examination 2011 Question No: 1 ( Marks: 3 ) Define Asynchronous Messages and Synchronous

More information

tokens parser 1. postfix notation, 2. graphical representation (such as syntax tree or dag), 3. three address code

tokens parser 1. postfix notation, 2. graphical representation (such as syntax tree or dag), 3. three address code Intermediate generation source program lexical analyzer tokens parser parse tree generation intermediate language The intermediate language can be one of the following: 1. postfix notation, 2. graphical

More information

Software Architecture in Practice

Software Architecture in Practice Software Architecture in Practice Chapter 5: Architectural Styles - From Qualities to Architecture Pittsburgh, PA 15213-3890 Sponsored by the U.S. Department of Defense Chapter 5 - page 1 Lecture Objectives

More information

Software Architecture

Software Architecture Software Systems Architecture, Models, Methodologies & Design - Introduction Based on slides and information from a variety of sources Including Booch Software Architecture High level design of large software

More information

Lecture 8: Use Case -Driven Design. Where UML fits in

Lecture 8: Use Case -Driven Design. Where UML fits in Lecture 8: Use Case -Driven Design The Role of UML in the Software Process E.g. ICONIX Domain Models Use Cases 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution

More information

Lecture 16: (Architecture IV)

Lecture 16: (Architecture IV) Lecture 16: (Architecture IV) Software System Design and Implementation ITCS/ITIS 6112/8112 091 Fall 2008 Dr. Jamie Payton Department of Computer Science University of North Carolina at Charlotte Oct.

More information

Software Design Document (SDD) Template (summarized from IEEE STD 1016)

Software Design Document (SDD) Template (summarized from IEEE STD 1016) Software Design Document (SDD) Template (summarized from IEEE STD 1016) Software design is a process by which the software requirements are translated into a representation of software components, interfaces,

More information

System Name Software Architecture Description

System Name Software Architecture Description System Name Software Architecture Description Author Name Contact Details Version Date template 2011 Eoin Woods & Nick Rozanski 1 / 25 1. Version History Version Date Author Comments 1 July 08 Eoin Woods

More information

Software Architectures. Lecture 3

Software Architectures. Lecture 3 Software Architectures Lecture 3 2 Roadmap of the course What is software architecture? Designing Software Architecture Requirements: quality attributes or qualities How to achieve requirements : tactics

More information

Adaptive Approach for Developing Client-Driven E-Commerce Systems

Adaptive Approach for Developing Client-Driven E-Commerce Systems Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 237 Adaptive Approach for Developing Client-Driven E-Commerce Systems

More information

Contemporary Design. Traditional Hardware Design. Traditional Hardware Design. HDL Based Hardware Design User Inputs. Requirements.

Contemporary Design. Traditional Hardware Design. Traditional Hardware Design. HDL Based Hardware Design User Inputs. Requirements. Contemporary Design We have been talking about design process Let s now take next steps into examining in some detail Increasing complexities of contemporary systems Demand the use of increasingly powerful

More information