Directed acyclic graphs

Size: px
Start display at page:

Download "Directed acyclic graphs"

Transcription

1 Directed acyclic graphs Madhavan Mukund Chennai Mathematical Institute March, 2

2 Directed Graphs x v y Edges have direction. Cannot be traversed in the opposite direction. w

3 The Task Scheduling Problem A complicated project involves a list of several tasks to be fulfilled and there are dependencies among the tasks. Some tasks have to be completed before some other can be taken up. Here is an example:

4 The Task Scheduling Problem A complicated project involves a list of several tasks to be fulfilled and there are dependencies among the tasks. Some tasks have to be completed before some other can be taken up. Here is an example: Can we list the tasks in an order consistent with the dependencies? (i.e. if p depends on q then q should appear earlier in the listing.)

5 The Task Scheduling Problem A complicated project involves a list of several tasks to be fulfilled and there are dependencies among the tasks. Some tasks have to be completed before some other can be taken up. Here is an example: Can we list the tasks in an order consistent with the dependencies? (i.e. if p depends on q then q should appear earlier in the listing.) Topologically ordered listing

6 Directed Acyclic Graphs A directed graph is said to be acyclic if it has no cycles

7 Directed Acyclic Graphs A directed graph is said to be acyclic if it has no cycles A directed graph can be topologically ordered only if it is acyclic.

8 Some definitions indegree(v) is the number of incoming edges at v.

9 Some definitions indegree(v) is the number of incoming edges at v

10 Some definitions outdegree(v) is the number of outgoing edges at v

11 Some definitions outdegree(v) is the number of outgoing edges at v

12 An Observation If v,v 2,...v n is a topologically ordered listing then indegree(v ) =.

13 An Observation If v,v 2,...v n is a topologically ordered listing then indegree(v ) =. Claim: Every DAG has a vertex whose indegree is.

14 An Observation If v,v 2,...v n is a topologically ordered listing then indegree(v ) =. Claim: Every DAG has a vertex whose indegree is. Start at any vertex and keep walking backwards as long as the indegree is nonzero.

15 Every DAG has a topological ordering Clearly, if the DAG has only one vertex then it can be topologically ordered.

16 Every DAG has a topological ordering Clearly, if the DAG has only one vertex then it can be topologically ordered. Suppose the DAG has n+ vertices. Pick any vertex (v) with indegree = and delete it.

17 Every DAG has a topological ordering Clearly, if the DAG has only one vertex then it can be topologically ordered. Suppose the DAG has n+ vertices. Pick any vertex (v) with indegree = and delete it. The smaller graph with n vertices can be topologically ordered (by the induction hypothesis). Let w,w 2,...w n be a topological order of the smaller graph.

18 Every DAG has a topological ordering Clearly, if the DAG has only one vertex then it can be topologically ordered. Suppose the DAG has n+ vertices. Pick any vertex (v) with indegree = and delete it. The smaller graph with n vertices can be topologically ordered (by the induction hypothesis). Let w,w 2,...w n be a topological order of the smaller graph. v,w,...,w n is a topological ordering of the full graph.

19 An Algorithm

20 An Algorithm :

21 An Algorithm : 2 :

22 An Algorithm 3 4 : 2 : 5 :

23 An Algorithm 3 : 2 : 5 : 4 :

24 An Algorithm : 2 : 5 : 4 : 3 :

25 An Algorithm 7 8 : 2 : 5 : 4 : 3 : 6 :

26 An Algorithm 8 : 2 : 5 : 4 : 3 : 6 : 7 :

27 An Algorithm : 2 : 5 : 4 : 3 : 6 : 7 : 8

28 Complexity Direct adjacency matrix implementation takes O(n 2 ) time. Row i of adjacency matrix has outgoing edges from vertex i Column i of adjacency matrix has incoming edges to vertex i Compute indegree[i] initially by scanning all columns O(n 2 ) In each iteration,2,...,n Identify an unvisited vertex i with indegree[i] = O(n) Scan row i and update indegree[j] for each outgoing neighbour of i O(n) Loop takes O(n 2 )

29 Complexity... Improve to O(n + m) using adjacency list representation For each vertex i, scan list nbr[i] and increment indegree[j] for each j in the list O(m) Build a queue of vertices with indegree O(n) While the queue is not empty Pick up i from head of queue Update indegree[i] for all neighbours of i If indegree[j] becomes, add j to queue Loop takes O(m)

30 Longest Path in a DAG How do we compute the length of the longest path in a DAG?

31 Longest Path in a DAG How do we compute the length of the longest path in a DAG? For each vertex find the length of the longest path ending at the vertex.

32 Longest Paths For a vertex v with indegree = this length l(v) =.

33 Longest Paths For a vertex v with indegree = this length l(v) =

34 Longest Paths For a vertex v with indegree = this length l(v) = For any vertex v with incoming edges from w,w 2,...,w k l(v) = +Max(l(w ),l(w 2 ),...,l(w k ))

35 Longest Paths For a vertex v with indegree = this length l(v) = For any vertex v with incoming edges from w,w 2,...,w k l(v) = +Max(l(w ),l(w 2 ),...,l(w k )) Does this give an algorithm?

36 Length via topological ordering If there is an edge from w to v then w appears before v in any topological ordering.

37 Length via topological ordering If there is an edge from w to v then w appears before v in any topological ordering. Let v,v 2,...,v N be a topological ordering of the vertices.

38 Length via topological ordering If there is an edge from w to v then w appears before v in any topological ordering. Let v,v 2,...,v N be a topological ordering of the vertices. l(v ) =.

39 Length via topological ordering If there is an edge from w to v then w appears before v in any topological ordering. Let v,v 2,...,v N be a topological ordering of the vertices. l(v ) =. Use the equation l(v) = +Max(l(w ),l(w 2 ),...,l(w k )) (where w,w 2,...w k are the vertices with edges to v) to determine l(v) for v {v 2,v 3,...v N } in that order.

40 Propagating the length We may also combine the computation of the topological ordering and the values of l(v).

41 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+)

42 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+)

43 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 3 4 5

44 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 3 4 5

45 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 3 4

46 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 3 4 2

47 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 4 2

48 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 4 2 2

49 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 2 2

50 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 2 2

51 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+)

52 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+)

53 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 3 8 2

54 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 3 8 4

55 Propagating the length We may also combine the computation of the topological ordering and the values of l(v). When the node v is processed, we have with us the value of l(v) and we propagate this information to each w with an incoming edge form v by setting l(w) = Max(l(w),l(v)+) 4

56 The Algorithm Initialize l(v) = for all vertices. In each round Pick a vertex v with indegree(v) =. For each w with v w, set l(w) = Max(l(w),l(v)+). Delete v from the graph.

57 What if the graph had cycles? Recall that finding shortest paths in graphs is very easy.

58 What if the graph had cycles? Recall that finding shortest paths in graphs is very easy. As shown above finding the longest path in a DAG is very easy too.

59 What if the graph had cycles? Recall that finding shortest paths in graphs is very easy. As shown above finding the longest path in a DAG is very easy too. It turns out that finding the length of the longest path in a graph (directed or undirected) is very hard. (NP-Complete) It is extremely unlikely that this problem will have an efficient solution.

DESIGN AND ANALYSIS OF ALGORITHMS

DESIGN AND ANALYSIS OF ALGORITHMS NPTEL MOOC,JAN-FEB 205 Week 3, Module 6 DESIGN AND ANALYSIS OF ALGORITHMS Directed acyclic graphs (DAGs) MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan Tasks with constraints

More information

DESIGN AND ANALYSIS OF ALGORITHMS

DESIGN AND ANALYSIS OF ALGORITHMS NPTEL MOOC,JAN-FEB 0 Week, Module DESIGN AND ANALYSIS OF ALGORITHMS Depth first search (DFS) MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan Depth first search Start from

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

CHENNAI MATHEMATICAL INSTITUTE M.Sc. / Ph.D. Programme in Computer Science

CHENNAI MATHEMATICAL INSTITUTE M.Sc. / Ph.D. Programme in Computer Science CHENNAI MATHEMATICAL INSTITUTE M.Sc. / Ph.D. Programme in Computer Science Entrance Examination, 5 May 23 This question paper has 4 printed sides. Part A has questions of 3 marks each. Part B has 7 questions

More information

IS 709/809: Computational Methods in IS Research. Graph Algorithms: Introduction

IS 709/809: Computational Methods in IS Research. Graph Algorithms: Introduction IS 709/809: Computational Methods in IS Research Graph Algorithms: Introduction Nirmalya Roy Department of Information Systems University of Maryland Baltimore County www.umbc.edu Motivation Several real-life

More information

Strongly connected: A directed graph is strongly connected if every pair of vertices are reachable from each other.

Strongly connected: A directed graph is strongly connected if every pair of vertices are reachable from each other. Directed Graph In a directed graph, each edge (u, v) has a direction u v. Thus (u, v) (v, u). Directed graph is useful to model many practical problems (such as one-way road in traffic network, and asymmetric

More information

Lecture 5: Graphs & their Representation

Lecture 5: Graphs & their Representation Lecture 5: Graphs & their Representation Why Do We Need Graphs Graph Algorithms: Many problems can be formulated as problems on graphs and can be solved with graph algorithms. To learn those graph algorithms,

More information

Introduction to Graphs. CS2110, Spring 2011 Cornell University

Introduction to Graphs. CS2110, Spring 2011 Cornell University Introduction to Graphs CS2110, Spring 2011 Cornell University A graph is a data structure for representing relationships. Each graph is a set of nodes connected by edges. Synonym Graph Hostile Slick Icy

More information

CSE 331: Introduction to Algorithm Analysis and Design Graphs

CSE 331: Introduction to Algorithm Analysis and Design Graphs CSE 331: Introduction to Algorithm Analysis and Design Graphs 1 Graph Definitions Graph: A graph consists of a set of verticies V and a set of edges E such that: G = (V, E) V = {v 0, v 1,..., v n 1 } E

More information

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Undirected graphs Concepts: connectivity, connected components paths (undirected) cycles Basic problems, given undirected graph G: is G connected how many

More information

Graph Algorithms. Imran Rashid. Jan 16, University of Washington

Graph Algorithms. Imran Rashid. Jan 16, University of Washington Graph Algorithms Imran Rashid University of Washington Jan 16, 2008 1 / 26 Lecture Outline 1 BFS Bipartite Graphs 2 DAGs & Topological Ordering 3 DFS 2 / 26 Lecture Outline 1 BFS Bipartite Graphs 2 DAGs

More information

CSI 604 Elementary Graph Algorithms

CSI 604 Elementary Graph Algorithms CSI 604 Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. (Second edition) 1 / 25 Graphs: Basic Definitions Undirected Graph G(V, E): V is set of nodes (or vertices) and E is the

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information

COL 702 : Assignment 1 solutions

COL 702 : Assignment 1 solutions COL 70 : Assignment 1 solutions 1(a ( n T (n = T + bn log n ( n = T + b n ( n log + bn log n ( n = T + b n ( n 8 log + b n log ( n + bn log n = bn log n + b n log n + bn log n +... log n terms = nb [(log

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Lecture 9 Graph Traversal

Lecture 9 Graph Traversal Lecture 9 Graph Traversal Euiseong Seo (euiseong@skku.edu) SWE00: Principles in Programming Spring 0 Euiseong Seo (euiseong@skku.edu) Need for Graphs One of unifying themes of computer science Closely

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

CSE 421 DFS / Topological Ordering

CSE 421 DFS / Topological Ordering CSE 421 DFS / Topological Ordering Shayan Oveis Gharan 1 Depth First Search Follow the first path you find as far as you can go; back up to last unexplored edge when you reach a dead end, then go as far

More information

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph:

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Graph G(V, E): V set of nodes (vertices); E set of edges. Notation: n = V and m = E. (Vertices are numbered

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs CLRS 12-13 Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 25 3.4 Testing Bipartiteness Bipartite Graphs Def. An undirected graph G = (V, E) is bipartite

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Graphs hapter hapter Graphs. Basic efinitions and Applications Graph. G = (V, ) n V = nodes. n = edges between pairs of nodes. n aptures pairwise relationship between objects: Undirected graph represents

More information

3.4 Testing Bipartiteness

3.4 Testing Bipartiteness 3.4 Testing Bipartiteness Bipartite Graphs Def. An undirected graph G = (V, E) is bipartite (2-colorable) if the nodes can be colored red or blue such that no edge has both ends the same color. Applications.

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 10 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 10 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 10 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 13 (1) HW5 is due

More information

Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M.

Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M. Lecture 9 Graphs Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M. Wootters (2017) 1 Graphs A graph is a set of vertices

More information

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. V = {

More information

22.3 Depth First Search

22.3 Depth First Search 22.3 Depth First Search Depth-First Search(DFS) always visits a neighbour of the most recently visited vertex with an unvisited neighbour. This means the search moves forward when possible, and only backtracks

More information

Graphs & Digraphs Tuesday, November 06, 2007

Graphs & Digraphs Tuesday, November 06, 2007 Graphs & Digraphs Tuesday, November 06, 2007 10:34 PM 16.1 Directed Graphs (digraphs) like a tree but w/ no root node & no guarantee of paths between nodes consists of: nodes/vertices - a set of elements

More information

Chapter 3. Graphs. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 3.1 Basic Definitions and Applications Undirected Graphs Undirected graph. G = (V, E) V = nodes. E

More information

CS Data Structures and Algorithm Analysis

CS Data Structures and Algorithm Analysis CS 483 - Data Structures and Algorithm Analysis Lecture VI: Chapter 5, part 2; Chapter 6, part 1 R. Paul Wiegand George Mason University, Department of Computer Science March 8, 2006 Outline 1 Topological

More information

Applications of BDF and DFS

Applications of BDF and DFS January 14, 2016 1 Deciding whether a graph is bipartite using BFS. 2 Finding connected components of a graph (both BFS and DFS) works. 3 Deciding whether a digraph is strongly connected. 4 Finding cut

More information

Graph Representations and Traversal

Graph Representations and Traversal COMPSCI 330: Design and Analysis of Algorithms 02/08/2017-02/20/2017 Graph Representations and Traversal Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Fred Zhang, Tianyu Wang 1 Overview This lecture

More information

e-pg PATHSHALA- Computer Science Design and Analysis of Algorithms Module 14 Component-I (A) - Personal Details

e-pg PATHSHALA- Computer Science Design and Analysis of Algorithms Module 14 Component-I (A) - Personal Details e-pg PATHSHALA- Computer Science Design and Analysis of Algorithms Module 14 Component-I (A) - Personal Details Role Name Designation Principal Investigator Dr.T.V.Geetha Senior Professor, Department of

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

UNIT Name the different ways of representing a graph? a.adjacencymatrix b. Adjacency list

UNIT Name the different ways of representing a graph? a.adjacencymatrix b. Adjacency list UNIT-4 Graph: Terminology, Representation, Traversals Applications - spanning trees, shortest path and Transitive closure, Topological sort. Sets: Representation - Operations on sets Applications. 1. Name

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 31 Advanced Data Structures and Algorithms Graphs July 18, 17 Tong Wang UMass Boston CS 31 July 18, 17 1 / 4 Graph Definitions Graph a mathematical construction that describes objects and relations

More information

Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices.

Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices. Traversal Techniques for Graphs Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices. Applications: Strongly connected components, topological sorting,

More information

Practice Problems for the Final

Practice Problems for the Final ECE-250 Algorithms and Data Structures (Winter 2012) Practice Problems for the Final Disclaimer: Please do keep in mind that this problem set does not reflect the exact topics or the fractions of each

More information

Goals! CSE 417: Algorithms and Computational Complexity!

Goals! CSE 417: Algorithms and Computational Complexity! Goals! CSE : Algorithms and Computational Complexity! Graphs: defns, examples, utility, terminology! Representation: input, internal! Traversal: Breadth- & Depth-first search! Three Algorithms:!!Connected

More information

Lecture 8: PATHS, CYCLES AND CONNECTEDNESS

Lecture 8: PATHS, CYCLES AND CONNECTEDNESS Discrete Mathematics August 20, 2014 Lecture 8: PATHS, CYCLES AND CONNECTEDNESS Instructor: Sushmita Ruj Scribe: Ishan Sahu & Arnab Biswas 1 Paths, Cycles and Connectedness 1.1 Paths and Cycles 1. Paths

More information

GRAPHS Lecture 19 CS2110 Spring 2013

GRAPHS Lecture 19 CS2110 Spring 2013 GRAPHS Lecture 19 CS2110 Spring 2013 Announcements 2 Prelim 2: Two and a half weeks from now Tuesday, April16, 7:30-9pm, Statler Exam conflicts? We need to hear about them and can arrange a makeup It would

More information

These are not polished as solutions, but ought to give a correct idea of solutions that work. Note that most problems have multiple good solutions.

These are not polished as solutions, but ought to give a correct idea of solutions that work. Note that most problems have multiple good solutions. CSE 591 HW Sketch Sample Solutions These are not polished as solutions, but ought to give a correct idea of solutions that work. Note that most problems have multiple good solutions. Problem 1 (a) Any

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Chapter 3 Graphs Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 3.1 Basic Definitions and Applications Undirected Graphs Undirected graph. G = (V, E) V = nodes. E

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

CSC 172 Data Structures and Algorithms. Lecture 24 Fall 2017

CSC 172 Data Structures and Algorithms. Lecture 24 Fall 2017 CSC 172 Data Structures and Algorithms Lecture 24 Fall 2017 ANALYSIS OF DIJKSTRA S ALGORITHM CSC 172, Fall 2017 Implementation and analysis The initialization requires Q( V ) memory and run time We iterate

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Plan. CMPSCI 311: Introduction to Algorithms. Recall. Adjacency List Representation. DFS Descriptions. BFS Description

Plan. CMPSCI 311: Introduction to Algorithms. Recall. Adjacency List Representation. DFS Descriptions. BFS Description Plan CMPSCI 311: Introduction to Algorithms Akshay Krishnamurthy and Andrew McGregor University of Massachusetts Review: Breadth First Search Depth First Search Traversal Implementation and Running Time

More information

CS170 Discussion Section 4: 9/18

CS170 Discussion Section 4: 9/18 CS170 Discussion Section 4: 9/18 1. Alien alphabet. Suppose you have a dictionary of an alien language which lists words in some sorted lexicographical ordering. For example, given the following list of

More information

Breadth First Search. Graph Traversal. CSE 2011 Winter Application examples. Two common graph traversal algorithms

Breadth First Search. Graph Traversal. CSE 2011 Winter Application examples. Two common graph traversal algorithms Breadth irst Search CSE Winter Graph raversal Application examples Given a graph representation and a vertex s in the graph ind all paths from s to the other vertices wo common graph traversal algorithms

More information

CS 3410 Ch 14 Graphs and Paths

CS 3410 Ch 14 Graphs and Paths CS 3410 Ch 14 Graphs and Paths Sections 14.1-14.3 Pages 527-552 Exercises 1,2,5,7-9 14.1 Definitions 1. A vertex (node) and an edge are the basic building blocks of a graph. Two vertices, (, ) may be connected

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Depth-First Search Depth-first search (DFS) is another way to traverse the graph.

Depth-First Search Depth-first search (DFS) is another way to traverse the graph. Depth-First Search Depth-first search (DFS) is another way to traverse the graph. Motivating example: In a video game, you are searching for a path from a point in a maze to the exit. The maze can be modeled

More information

CSE 417: Algorithms and Computational Complexity. 3.1 Basic Definitions and Applications. Goals. Chapter 3. Winter 2012 Graphs and Graph Algorithms

CSE 417: Algorithms and Computational Complexity. 3.1 Basic Definitions and Applications. Goals. Chapter 3. Winter 2012 Graphs and Graph Algorithms Chapter 3 CSE 417: Algorithms and Computational Complexity Graphs Reading: 3.1-3.6 Winter 2012 Graphs and Graph Algorithms Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 13 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity CSE : Algorithms and Computational Complexity More Graph Algorithms Autumn 00 Paul Beame Given: a directed acyclic graph (DAG) G=(V,E) Output: numbering of the vertices of G with distinct numbers from

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019 CS 341: Algorithms Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo February 26, 2019 D.R. Stinson (SCS) CS 341 February 26, 2019 1 / 296 1 Course Information 2 Introduction

More information

3.1 Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Some Graph Applications

3.1 Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Some Graph Applications Chapter 3 31 Basic Definitions and Applications Graphs Slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley All rights reserved 1 Undirected Graphs Some Graph Applications Undirected graph G = (V,

More information

Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix

Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix Spring 2010 Review Topics Big O Notation Heaps Sorting Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix Hashtables Tree Balancing: AVL trees and DSW algorithm Graphs: Basic terminology and

More information

CS 491 CAP Introduction to Graphs and Search

CS 491 CAP Introduction to Graphs and Search CS 491 CAP Introduction to Graphs and Search Jingbo Shang University of Illinois at Urbana-Champaign Sep 9, 2016 Outline Graphs Adjacency Matrix vs. Adjacency List Special Graphs Depth-first and Breadth-first

More information

Introduction to Graphs. common/notes/ppt/

Introduction to Graphs.   common/notes/ppt/ Introduction to Graphs http://people.cs.clemson.edu/~pargas/courses/cs212/ common/notes/ppt/ Introduction Graphs are a generalization of trees Nodes or verticies Edges or arcs Two kinds of graphs irected

More information

Solution for Homework set 3

Solution for Homework set 3 TTIC 300 and CMSC 37000 Algorithms Winter 07 Solution for Homework set 3 Question (0 points) We are given a directed graph G = (V, E), with two special vertices s and t, and non-negative integral capacities

More information

CMPSCI 311: Introduction to Algorithms Practice Final Exam

CMPSCI 311: Introduction to Algorithms Practice Final Exam CMPSCI 311: Introduction to Algorithms Practice Final Exam Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more detail including

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

Trees. Arash Rafiey. 20 October, 2015

Trees. Arash Rafiey. 20 October, 2015 20 October, 2015 Definition Let G = (V, E) be a loop-free undirected graph. G is called a tree if G is connected and contains no cycle. Definition Let G = (V, E) be a loop-free undirected graph. G is called

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite

More information

Solutions to relevant spring 2000 exam problems

Solutions to relevant spring 2000 exam problems Problem 2, exam Here s Prim s algorithm, modified slightly to use C syntax. MSTPrim (G, w, r): Q = V[G]; for (each u Q) { key[u] = ; key[r] = 0; π[r] = 0; while (Q not empty) { u = ExtractMin (Q); for

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Graphs. A graph is a data structure consisting of nodes (or vertices) and edges. An edge is a connection between two nodes

Graphs. A graph is a data structure consisting of nodes (or vertices) and edges. An edge is a connection between two nodes Graphs Graphs A graph is a data structure consisting of nodes (or vertices) and edges An edge is a connection between two nodes A D B E C Nodes: A, B, C, D, E Edges: (A, B), (A, D), (D, E), (E, C) Nodes

More information

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting CS2 Algorithms and Data Structures Note 10 Depth-First Search and Topological Sorting In this lecture, we will analyse the running time of DFS and discuss a few applications. 10.1 A recursive implementation

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 12: Graph Search: BFS Applications, DFS Feb 20, 2018 BFS Review BFS Algorithm: Input: source node! " # =! " % = all neighbors of " # " & = all neighbors

More information

Some Graph Theory for Network Analysis. CS 249B: Science of Networks Week 01: Thursday, 01/31/08 Daniel Bilar Wellesley College Spring 2008

Some Graph Theory for Network Analysis. CS 249B: Science of Networks Week 01: Thursday, 01/31/08 Daniel Bilar Wellesley College Spring 2008 Some Graph Theory for Network Analysis CS 9B: Science of Networks Week 0: Thursday, 0//08 Daniel Bilar Wellesley College Spring 008 Goals this lecture Introduce you to some jargon what we call things in

More information

Strongly Connected Components

Strongly Connected Components Strongly Connected Components Let G = (V, E) be a directed graph Write if there is a path from to in G Write if and is an equivalence relation: implies and implies s equivalence classes are called the

More information

Algorithms and Data Structures 2014 Exercises and Solutions Week 9

Algorithms and Data Structures 2014 Exercises and Solutions Week 9 Algorithms and Data Structures 2014 Exercises and Solutions Week 9 November 26, 2014 1 Directed acyclic graphs We are given a sequence (array) of numbers, and we would like to find the longest increasing

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Linear Time: O(n) CS 580: Algorithm Design and Analysis 2.4 A Survey of Common Running Times Merge. Combine two sorted lists A = a 1,a 2,,a n with B = b 1,b 2,,b n into sorted whole. Jeremiah Blocki Purdue

More information

CS781 Lecture 2 January 13, Graph Traversals, Search, and Ordering

CS781 Lecture 2 January 13, Graph Traversals, Search, and Ordering CS781 Lecture 2 January 13, 2010 Graph Traversals, Search, and Ordering Review of Lecture 1 Notions of Algorithm Scalability Worst-Case and Average-Case Analysis Asymptotic Growth Rates: Big-Oh Prototypical

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 04 / 06 / 2018 Instructor: Michael Eckmann Today s Topics Questions? Comments? Graphs Definition Terminology two ways to represent edges in implementation traversals

More information

Graph Algorithms. Andreas Klappenecker. [based on slides by Prof. Welch]

Graph Algorithms. Andreas Klappenecker. [based on slides by Prof. Welch] Graph Algorithms Andreas Klappenecker [based on slides by Prof. Welch] 1 Directed Graphs Let V be a finite set and E a binary relation on V, that is, E VxV. Then the pair G=(V,E) is called a directed graph.

More information

Graph Traversals. CS200 - Graphs 1

Graph Traversals. CS200 - Graphs 1 Graph Traversals CS200 - Graphs 1 Tree traversal reminder A Pre order A B D G H C E F I B C In order G D H B A E C F I D E F Post order G H D B E I F C A G H I Level order A B C D E F G H I Connected Components

More information

Outline. Graphs. Divide and Conquer.

Outline. Graphs. Divide and Conquer. GRAPHS COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Outline Graphs.

More information

Advanced Data Structures and Algorithms

Advanced Data Structures and Algorithms dvanced ata Structures and lgorithms ssociate Professor r. Raed Ibraheem amed University of uman evelopment, College of Science and Technology Computer Science epartment 2015 2016 epartment of Computer

More information

Notes 4 : Approximating Maximum Parsimony

Notes 4 : Approximating Maximum Parsimony Notes 4 : Approximating Maximum Parsimony MATH 833 - Fall 2012 Lecturer: Sebastien Roch References: [SS03, Chapters 2, 5], [DPV06, Chapters 5, 9] 1 Coping with NP-completeness Local search heuristics.

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

CS 270 Algorithms. Oliver Kullmann. Analysing BFS. Depth-first search. Analysing DFS. Dags and topological sorting.

CS 270 Algorithms. Oliver Kullmann. Analysing BFS. Depth-first search. Analysing DFS. Dags and topological sorting. General remarks Week 5 2 We finish, by analysing it. Then we consider the second main graph- algorithm, depth-first (). And we consider one application of, of graphs. Reading from CLRS for week 5 Chapter

More information

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs).

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs). Lecture 13 Graph Algorithms I 13.1 Overview This is the first of several lectures on graph algorithms. We will see how simple algorithms like depth-first-search can be used in clever ways (for a problem

More information

Graph Algorithms. Definition

Graph Algorithms. Definition Graph Algorithms Many problems in CS can be modeled as graph problems. Algorithms for solving graph problems are fundamental to the field of algorithm design. Definition A graph G = (V, E) consists of

More information

Exam 3 Practice Problems

Exam 3 Practice Problems Exam 3 Practice Problems HONOR CODE: You are allowed to work in groups on these problems, and also to talk to the TAs (the TAs have not seen these problems before and they do not know the solutions but

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Seven Bridges of Königsberg Can one take a walk that crosses each bridge exactly once? Seven Bridges of Königsberg Model as a graph Is there a path

More information

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees Axiomatizing Arithmetic Logic: The Big Picture Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic (+,, =, >, 0, 1). Typical true formulas include:

More information

BIL694-Lecture 1: Introduction to Graphs

BIL694-Lecture 1: Introduction to Graphs BIL694-Lecture 1: Introduction to Graphs Lecturer: Lale Özkahya Resources for the presentation: http://www.math.ucsd.edu/ gptesler/184a/calendar.html http://www.inf.ed.ac.uk/teaching/courses/dmmr/ Outline

More information

CSC 8301 Design & Analysis of Algorithms: Linear Programming

CSC 8301 Design & Analysis of Algorithms: Linear Programming CSC 8301 Design & Analysis of Algorithms: Linear Programming Professor Henry Carter Fall 2016 Iterative Improvement Start with a feasible solution Improve some part of the solution Repeat until the solution

More information

Shortest Path Problem

Shortest Path Problem Shortest Path Problem CLRS Chapters 24.1 3, 24.5, 25.2 Shortest path problem Shortest path problem (and variants) Properties of shortest paths Algorithmic framework Bellman-Ford algorithm Shortest paths

More information

Topological Sort. Version of October 11, Version of October 11, 2014 Topological Sort 1 / 14

Topological Sort. Version of October 11, Version of October 11, 2014 Topological Sort 1 / 14 Topological Sort Version of October 11, 2014 Version of October 11, 2014 Topological Sort 1 / 14 Directed Graph In a directed graph, we distinguish between edge (u, v) and edge (v, u) 6 3 0 1 2 9 4 Version

More information

Breadth First Search. cse2011 section 13.3 of textbook

Breadth First Search. cse2011 section 13.3 of textbook Breadth irst Search cse section. of textbook Graph raversal (.) Application example Given a graph representation and a vertex s in the graph, find all paths from s to the other vertices. wo common graph

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10 CS 220: Discrete Structures and their Applications graphs zybooks chapter 10 directed graphs A collection of vertices and directed edges What can this represent? undirected graphs A collection of vertices

More information

CSE 21 Spring 2016 Homework 5. Instructions

CSE 21 Spring 2016 Homework 5. Instructions CSE 21 Spring 2016 Homework 5 Instructions Homework should be done in groups of one to three people. You are free to change group members at any time throughout the quarter. Problems should be solved together,

More information

Graph. Vertex. edge. Directed Graph. Undirected Graph

Graph. Vertex. edge. Directed Graph. Undirected Graph Module : Graphs Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Graph Graph is a data structure that is a collection

More information

Dr. Amotz Bar-Noy s Compendium of Algorithms Problems. Problems, Hints, and Solutions

Dr. Amotz Bar-Noy s Compendium of Algorithms Problems. Problems, Hints, and Solutions Dr. Amotz Bar-Noy s Compendium of Algorithms Problems Problems, Hints, and Solutions Chapter 1 Searching and Sorting Problems 1 1.1 Array with One Missing 1.1.1 Problem Let A = A[1],..., A[n] be an array

More information