CMPS 181, Database Systems II, Final Exam, Spring 2016 Instructor: Shel Finkelstein. Student ID: UCSC

Size: px
Start display at page:

Download "CMPS 181, Database Systems II, Final Exam, Spring 2016 Instructor: Shel Finkelstein. Student ID: UCSC"

Transcription

1 CMPS 181, Database Systems II, Final Exam, Spring 2016 Instructor: Shel Finkelstein Student Name: Student ID: UCSC Final Points: Part Max Points Points I 15 II 29 III 31 IV 19 V 16 Total 110 Closed book, but okay to bring a single two-sided 8.5 x 11 sheet of paper with as much info written on it as you can fit and read unassisted. You may write answers on the backs of previous pages of the exam if you need extra space. Please indicate which questions you re answering if you do this.

2 Part I: Storage and Records Question 1 (6 points): a) What does it mean to say that a page is pinned in the database buffer pool? b) How does a page become pinned? c) How does a page become unpinned? Answers 1a, b and c:

3 Question 2 (3 points): True or False: Although we used (pageid, slotid) as the rid for records, a better approach for variable-length records would be to use (pageid, offset), where offset is the record s position on the page. Answer 2: Question 3 (6 points): We talked about two general approaches to faulttolerant RAID, mirroring and parity. a) Explain what parity is, and how it enables recovery from a failure. b) What s an advantage that parity has versus mirroring? Answer 3:

4 Part II: Access Paths and Query Optimization #1 Question 4 (3 points): True or False: Even though finding a good way to execute a query is important, database optimizers don t always estimate the cost of every query plan, because there are too many plans. Answer 4: Question 5 (8 points): Two of the join algorithms that we discussed were (indexed) nested loop join and merge join. a) Give an example of two relations, a join query, indexes and cardinalities where a plan using nested loop join has lower cost than any merge join plan. Give cost estimates to demonstrate the lower cost. b) Give another (could be completely different) example of two relations, a join query, indexes and cardinalities, where a merge join plan has lower cost than any (indexed) nested loop join. Give cost estimates to demonstrate the lower cost. Answers 5a and b:

5 Question 6 (4 points): Pipelining is one way of introducing parallelism into query execution, allowing partial results from an early operation to be processed by a later operation. But sometimes, pipelines can be blocked, meaning that the early operation must be fully completed before the later operation can be started. a) Describe an example of pipelining that allows parallelism. b) Describe an example where a pipeline is blocked. Answers 6a and b:

6 Question 7 (3 points): The System R optimizer avoids doing Cartesian products whenever possible. Explain why this is a good approach. Answer 7:

7 Question 8 (6 points): Hash Join has two stages, a) the Build Stage and b) the Match Stage. Give a brief description (using pictures to help, if you d like) of what happens in each of the two stages a) and b). Be sure to explain why the hash function used in Match is different than the one that was used in Build. Answer 8a and b:

8 Question 9 (5 points): The Sailors relation has 100,000 tuples in it. The rating column for Sailors has low value 1 and high value 10, and age column for Sailors has low value 21 and high value 60. Both rating and age are integers. Consider the query: SELECT * FROM Sailors WHERE rating = 7 AND age <= 30; a) How many tuples would a System R style optimizer assume are in the result of that query? b) Suppose that there are 50,000 Sailors whose age is 30 or less. Explain specifically how histograms could help improve the optimizer s size estimate for this query, and give the size estimate when using histograms. Answers 9a and b:

9 Part III: Transaction Management Question 10 (3 points): True or False: When a transaction executes with Repeatable Read as the Isolation Level, then all data that the transaction reads existed simultaneously at a single logical point in time. (Data at a logical point in time means the database state after some fixed set of transactions had committed, with no uncommitted data.) Answer 10: Question 11: (6 points): a) What are Cascading Rollbacks? b) Give an example showing how a Cascading Rollback could arise in a database system that didn t prevent Cascading Rollbacks. c) What do database systems do to avoid Cascading Rollbacks? Give an explanation, not just a term or phrase. Answers 11a, b and c:

10 Question 12 (6 points): a) What is a deadlock? b) Suppose that your database system assigned priorities to transactions when they began executing, and it handled deadlocks by rolling back the transaction T involved in the deadlock that had the lowest priority (p). That Transaction T would be restarted after a small interval, with the same priority p. What would be a major disadvantage of this approach? c) Suppose that your database system handled deadlocks by rolling back the transaction involved in the deadlock that had started at the earliest time. What would be a major disadvantage of this approach? Answers 12 a, b and c:

11 Question 13 (3 points): True or False: In the locking protocols that we studied, shared and exclusive locks on B-trees are handled using two-phase locking. Answer 13: Question 14 (4 points): a) Describe a significant advantage of locking over optimistic concurrency control. b) Describe a significant advantage of optimistic concurrency control over locking. Answers 14a and b:

12 Question 15 (6 points): a) When does Write-Ahead Logging force the database log to disk? Assume that this is a transaction on a single database, not a distributed transaction. b) Why does the log need to be forced then? (Be clear about what could go wrong if the log wasn t forced.) c) Database systems enforce ordering requirements on the records in the log, and on forces of the log. Describe those requirements. Answers 15a, b and c:

13 Question 16 (3 points): Distributed commit protocols are complex. For a distributed transaction T updating 3 databases (DB1, DB2 and DB3), it would be much simpler just to commit T s updates on DB1, and if that succeeded, commit T s updates on DB2, and if that also succeeded, commit T s updates on DB3. Explain significant disadvantages of this much simpler approach. Answer 16:

14 Part IV: Access Paths and Query Optimization #2 Question 17 (3 points): True or False: When you search an R-tree and reach an entry in a leaf node, the entry that you found might not satisfy the original query, so you have to do some additional checking. Answer 17: Question 18 (4 points): We focused on queries with AND predicates, but indexes can be used for queries with OR as well. Consider the relation: Employees(empnum:INTEGER, name:char(20), salary:integer, title:char(6)) Suppose that there is a B-tree index on salary and a hash index on title. Explain how a database system could efficiently use these two access paths together to return the correct answer to the following query: SELECT empnum, name FROM Employees WHERE salary < 9000 OR title = INTERN ; Answer 18:

15 Question 19 (12 points): The Executives relation has the attributes execname, title, deptname, and address; execname is the key. All attributes are string fields of the same length, 100 bytes, so that records are 400 bytes. There are 10 buffer pages available. The relation contains 10,000 pages. Pages are size 4K and you can assume that all pages are full. (So how many records are there per page?) Also, assume that the leaf pages of a B-tree index on one-column would have 2500 pages. Suppose that a database systems has to execute the following query: SELECT DISTINCT deptname, FROM Executives; Answer the following questions. If you need to make some addition assumptions to answer these questions, say what they are. Some of these questions are tough, and you ll be graded in part based on how sensible your answers (and assumptions are). 19a) Give a rough estimate for the cost of executing the query by sorting on deptname. Explain your calculation. Note that in the initial sorting pass, you don t have to keep all the attributes, only deptname. Answer 19a:

16 19b) Suppose that there is a clustered index on deptname. Give an estimate of the cost of answering the query using that index. Explain your calculation. Answer 19b):

17 19c) Suppose that you had a hash index on deptname. Describe a way to execute the query using that hash index, and estimate its cost. Remember that you can state additional reasonable assumptions if you want to do so. Explain your calculation. Answer 19c):

18 Part V: Parallelization and Distribution Question 20 (6 points): a) What are Shared-Everything and Shared-Nothing database architectures? b) What is an advantage of Shared-Everything database architecture over Shared-Nothing database architecture? c) What is an advantage of Shared-Nothing database architecture over Shared-Everything database architecture? Answers 20a, b and c:

19 Question 21 (4 points): Partitions separate relations into pieces, sometimes called shards. a) What is partition pruning? b) Give an example of a query and a partitioned relation where you can use partition pruning to make processing cheaper. Answers 21a and b:

20 Question 22 (6 points): This question is about Two-Phase Commit across multiple database sites. a) After a subordinate database site replies to a PREPARE saying Yes, what are its obligations? b) What did it have to do before it replied Yes? c) After the coordinator database site receives YES votes from all subordinate sites and writes a COMMIT record to its log, does it have any obligations to the subordinate sites? If so, what are they? Answer 22a, b and c:

Principles of Data Management. Lecture #9 (Query Processing Overview)

Principles of Data Management. Lecture #9 (Query Processing Overview) Principles of Data Management Lecture #9 (Query Processing Overview) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Notable News v Midterm

More information

Implementing Relational Operators: Selection, Projection, Join. Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Implementing Relational Operators: Selection, Projection, Join. Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Implementing Relational Operators: Selection, Projection, Join Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Readings [RG] Sec. 14.1-14.4 Database Management Systems, R. Ramakrishnan and

More information

COSC-4411(M) Midterm #1

COSC-4411(M) Midterm #1 COSC-4411(M) Midterm #1 Sur / Last Name: Given / First Name: Student ID: Instructor: Parke Godfrey Exam Duration: 75 minutes Term: Winter 2004 Answer the following questions to the best of your knowledge.

More information

Spring 2013 CS 122C & CS 222 Midterm Exam (and Comprehensive Exam, Part I) (Max. Points: 100)

Spring 2013 CS 122C & CS 222 Midterm Exam (and Comprehensive Exam, Part I) (Max. Points: 100) Spring 2013 CS 122C & CS 222 Midterm Exam (and Comprehensive Exam, Part I) (Max. Points: 100) Instructions: - This exam is closed book and closed notes but open cheat sheet. - The total time for the exam

More information

INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados

INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados -------------------------------------------------------------------------------------------------------------- INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados Exam 1 - Solution

More information

University of California, Berkeley. (2 points for each row; 1 point given if part of the change in the row was correct)

University of California, Berkeley. (2 points for each row; 1 point given if part of the change in the row was correct) University of California, Berkeley CS 186 Intro to Database Systems, Fall 2012, Prof. Michael J. Franklin MIDTERM II - Questions This is a closed book examination but you are allowed one 8.5 x 11 sheet

More information

CSE 190D Spring 2017 Final Exam

CSE 190D Spring 2017 Final Exam CSE 190D Spring 2017 Final Exam Full Name : Student ID : Major : INSTRUCTIONS 1. You have up to 2 hours and 59 minutes to complete this exam. 2. You can have up to one letter/a4-sized sheet of notes, formulae,

More information

CS 245 Midterm Exam Winter 2014

CS 245 Midterm Exam Winter 2014 CS 245 Midterm Exam Winter 2014 This exam is open book and notes. You can use a calculator and your laptop to access course notes and videos (but not to communicate with other people). You have 70 minutes

More information

Query Evaluation! References:! q [RG-3ed] Chapter 12, 13, 14, 15! q [SKS-6ed] Chapter 12, 13!

Query Evaluation! References:! q [RG-3ed] Chapter 12, 13, 14, 15! q [SKS-6ed] Chapter 12, 13! Query Evaluation! References:! q [RG-3ed] Chapter 12, 13, 14, 15! q [SKS-6ed] Chapter 12, 13! q Overview! q Optimization! q Measures of Query Cost! Query Evaluation! q Sorting! q Join Operation! q Other

More information

Transaction Management: Crash Recovery (Chap. 18), part 1

Transaction Management: Crash Recovery (Chap. 18), part 1 Transaction Management: Crash Recovery (Chap. 18), part 1 CS634 Class 17 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke ACID Properties Transaction Management must fulfill

More information

some sequential execution crash! Recovery Manager replacement MAIN MEMORY policy DISK

some sequential execution crash! Recovery Manager replacement MAIN MEMORY policy DISK ACID Properties Transaction Management: Crash Recovery (Chap. 18), part 1 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke CS634 Class 17 Transaction Management must fulfill

More information

A7-R3: INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS

A7-R3: INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS A7-R3: INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered

More information

Announcement. Reading Material. Overview of Query Evaluation. Overview of Query Evaluation. Overview of Query Evaluation 9/26/17

Announcement. Reading Material. Overview of Query Evaluation. Overview of Query Evaluation. Overview of Query Evaluation 9/26/17 Announcement CompSci 516 Database Systems Lecture 10 Query Evaluation and Join Algorithms Project proposal pdf due on sakai by 5 pm, tomorrow, Thursday 09/27 One per group by any member Instructor: Sudeepa

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) DBMS Internals- Part VI Lecture 14, March 12, 2014 Mohammad Hammoud Today Last Session: DBMS Internals- Part V Hash-based indexes (Cont d) and External Sorting Today s Session:

More information

Database Management Systems (COP 5725) Homework 3

Database Management Systems (COP 5725) Homework 3 Database Management Systems (COP 5725) Homework 3 Instructor: Dr. Daisy Zhe Wang TAs: Yang Chen, Kun Li, Yang Peng yang, kli, ypeng@cise.uf l.edu November 26, 2013 Name: UFID: Email Address: Pledge(Must

More information

Overview of Implementing Relational Operators and Query Evaluation

Overview of Implementing Relational Operators and Query Evaluation Overview of Implementing Relational Operators and Query Evaluation Chapter 12 Motivation: Evaluating Queries The same query can be evaluated in different ways. The evaluation strategy (plan) can make orders

More information

External Sorting Implementing Relational Operators

External Sorting Implementing Relational Operators External Sorting Implementing Relational Operators 1 Readings [RG] Ch. 13 (sorting) 2 Where we are Working our way up from hardware Disks File abstraction that supports insert/delete/scan Indexing for

More information

User Perspective. Module III: System Perspective. Module III: Topics Covered. Module III Overview of Storage Structures, QP, and TM

User Perspective. Module III: System Perspective. Module III: Topics Covered. Module III Overview of Storage Structures, QP, and TM Module III Overview of Storage Structures, QP, and TM Sharma Chakravarthy UT Arlington sharma@cse.uta.edu http://www2.uta.edu/sharma base Management Systems: Sharma Chakravarthy Module I Requirements analysis

More information

Evaluation of Relational Operations: Other Techniques. Chapter 14 Sayyed Nezhadi

Evaluation of Relational Operations: Other Techniques. Chapter 14 Sayyed Nezhadi Evaluation of Relational Operations: Other Techniques Chapter 14 Sayyed Nezhadi Schema for Examples Sailors (sid: integer, sname: string, rating: integer, age: real) Reserves (sid: integer, bid: integer,

More information

INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados

INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados -------------------------------------------------------------------------------------------------------------- INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados Exam 1 - solution

More information

Database Management Systems

Database Management Systems Database Management Systems Distributed Databases Doug Shook What does it mean to be distributed? Multiple nodes connected by a network Data on the nodes is logically related The nodes do not need to be

More information

ACID Properties. Transaction Management: Crash Recovery (Chap. 18), part 1. Motivation. Recovery Manager. Handling the Buffer Pool.

ACID Properties. Transaction Management: Crash Recovery (Chap. 18), part 1. Motivation. Recovery Manager. Handling the Buffer Pool. ACID Properties Transaction Management: Crash Recovery (Chap. 18), part 1 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke CS634 Class 20, Apr 13, 2016 Transaction Management

More information

CompSci 516 Data Intensive Computing Systems

CompSci 516 Data Intensive Computing Systems CompSci 516 Data Intensive Computing Systems Lecture 9 Join Algorithms and Query Optimizations Instructor: Sudeepa Roy CompSci 516: Data Intensive Computing Systems 1 Announcements Takeaway from Homework

More information

Database Management Systems Written Exam

Database Management Systems Written Exam Database Management Systems Written Exam 07.0.011 First name Student number Last name Signature Instructions for Students Write your name, student number, and signature on the exam sheet and on every solution

More information

COSC-4411(M) Midterm #1

COSC-4411(M) Midterm #1 12 February 2004 COSC-4411(M) Midterm #1 & answers p. 1 of 10 COSC-4411(M) Midterm #1 Sur / Last Name: Given / First Name: Student ID: Instructor: Parke Godfrey Exam Duration: 75 minutes Term: Winter 2004

More information

Relational Query Optimization

Relational Query Optimization Relational Query Optimization Module 4, Lectures 3 and 4 Database Management Systems, R. Ramakrishnan 1 Overview of Query Optimization Plan: Tree of R.A. ops, with choice of alg for each op. Each operator

More information

Relational Query Optimization. Overview of Query Evaluation. SQL Refresher. Yanlei Diao UMass Amherst October 23 & 25, 2007

Relational Query Optimization. Overview of Query Evaluation. SQL Refresher. Yanlei Diao UMass Amherst October 23 & 25, 2007 Relational Query Optimization Yanlei Diao UMass Amherst October 23 & 25, 2007 Slide Content Courtesy of R. Ramakrishnan, J. Gehrke, and J. Hellerstein 1 Overview of Query Evaluation Query Evaluation Plan:

More information

University of California, Berkeley. CS 186 Introduction to Databases, Spring 2014, Prof. Dan Olteanu MIDTERM

University of California, Berkeley. CS 186 Introduction to Databases, Spring 2014, Prof. Dan Olteanu MIDTERM University of California, Berkeley CS 186 Introduction to Databases, Spring 2014, Prof. Dan Olteanu MIDTERM This is a closed book examination sided). but you are allowed one 8.5 x 11 sheet of notes (double

More information

IMPORTANT: Circle the last two letters of your class account:

IMPORTANT: Circle the last two letters of your class account: Spring 2011 University of California, Berkeley College of Engineering Computer Science Division EECS MIDTERM I CS 186 Introduction to Database Systems Prof. Michael J. Franklin NAME: STUDENT ID: IMPORTANT:

More information

Introduction. Storage Failure Recovery Logging Undo Logging Redo Logging ARIES

Introduction. Storage Failure Recovery Logging Undo Logging Redo Logging ARIES Introduction Storage Failure Recovery Logging Undo Logging Redo Logging ARIES Volatile storage Main memory Cache memory Nonvolatile storage Stable storage Online (e.g. hard disk, solid state disk) Transaction

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) DBMS Internals- Part VI Lecture 17, March 24, 2015 Mohammad Hammoud Today Last Two Sessions: DBMS Internals- Part V External Sorting How to Start a Company in Five (maybe

More information

Queen s University Faculty of Arts and Science School of Computing CISC 432* / 836* Advanced Database Systems

Queen s University Faculty of Arts and Science School of Computing CISC 432* / 836* Advanced Database Systems HAND IN Queen s University Faculty of Arts and Science School of Computing CISC 432* / 836* Advanced Database Systems Final Examination December 14, 2002 Instructor: Pat Martin Instructions: 1. This examination

More information

CS330. Query Processing

CS330. Query Processing CS330 Query Processing 1 Overview of Query Evaluation Plan: Tree of R.A. ops, with choice of alg for each op. Each operator typically implemented using a `pull interface: when an operator is `pulled for

More information

Topics in Reliable Distributed Systems

Topics in Reliable Distributed Systems Topics in Reliable Distributed Systems 049017 1 T R A N S A C T I O N S Y S T E M S What is A Database? Organized collection of data typically persistent organization models: relational, object-based,

More information

Overview of Query Evaluation. Overview of Query Evaluation

Overview of Query Evaluation. Overview of Query Evaluation Overview of Query Evaluation Chapter 12 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Overview of Query Evaluation v Plan: Tree of R.A. ops, with choice of alg for each op. Each operator

More information

Datenbanksysteme II: Caching and File Structures. Ulf Leser

Datenbanksysteme II: Caching and File Structures. Ulf Leser Datenbanksysteme II: Caching and File Structures Ulf Leser Content of this Lecture Caching Overview Accessing data Cache replacement strategies Prefetching File structure Index Files Ulf Leser: Implementation

More information

IMPORTANT: Circle the last two letters of your class account:

IMPORTANT: Circle the last two letters of your class account: Fall 2001 University of California, Berkeley College of Engineering Computer Science Division EECS Prof. Michael J. Franklin FINAL EXAM CS 186 Introduction to Database Systems NAME: STUDENT ID: IMPORTANT:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Database Systems: Fall 2008 Quiz II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Database Systems: Fall 2008 Quiz II Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.830 Database Systems: Fall 2008 Quiz II There are 14 questions and 11 pages in this quiz booklet. To receive

More information

Name Class Account UNIVERISTY OF CALIFORNIA, BERKELEY College of Engineering Department of EECS, Computer Science Division J.

Name Class Account UNIVERISTY OF CALIFORNIA, BERKELEY College of Engineering Department of EECS, Computer Science Division J. Do not write in this space CS186 Spring 2001 Name Class Account UNIVERISTY OF CALIFORNIA, BERKELEY College of Engineering Department of EECS, Computer Science Division J. Hellerstein Final Exam Final Exam:

More information

Administrivia. CS 133: Databases. Cost-based Query Sub-System. Goals for Today. Midterm on Thursday 10/18. Assignments

Administrivia. CS 133: Databases. Cost-based Query Sub-System. Goals for Today. Midterm on Thursday 10/18. Assignments Administrivia Midterm on Thursday 10/18 CS 133: Databases Fall 2018 Lec 12 10/16 Prof. Beth Trushkowsky Assignments Lab 3 starts after fall break No problem set out this week Goals for Today Cost-based

More information

Course No: 4411 Database Management Systems Fall 2008 Midterm exam

Course No: 4411 Database Management Systems Fall 2008 Midterm exam Course No: 4411 Database Management Systems Fall 2008 Midterm exam Last Name: First Name: Student ID: Exam is 80 minutes. Open books/notes The exam is out of 20 points. 1 1. (16 points) Multiple Choice

More information

CS 564 Final Exam Fall 2015 Answers

CS 564 Final Exam Fall 2015 Answers CS 564 Final Exam Fall 015 Answers A: STORAGE AND INDEXING [0pts] I. [10pts] For the following questions, clearly circle True or False. 1. The cost of a file scan is essentially the same for a heap file

More information

Review. Relational Query Optimization. Query Optimization Overview (cont) Query Optimization Overview. Cost-based Query Sub-System

Review. Relational Query Optimization. Query Optimization Overview (cont) Query Optimization Overview. Cost-based Query Sub-System Review Relational Query Optimization R & G Chapter 12/15 Implementation of single Relational Operations Choices depend on indexes, memory, stats, Joins Blocked nested loops: simple, exploits extra memory

More information

Transactions and Recovery Study Question Solutions

Transactions and Recovery Study Question Solutions 1 1 Questions Transactions and Recovery Study Question Solutions 1. Suppose your database system never STOLE pages e.g., that dirty pages were never written to disk. How would that affect the design of

More information

Introduction to Data Management. Lecture #26 (Transactions, cont.)

Introduction to Data Management. Lecture #26 (Transactions, cont.) Introduction to Data Management Lecture #26 (Transactions, cont.) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v HW and exam

More information

7. Query Processing and Optimization

7. Query Processing and Optimization 7. Query Processing and Optimization Processing a Query 103 Indexing for Performance Simple (individual) index B + -tree index Matching index scan vs nonmatching index scan Unique index one entry and one

More information

Rajiv GandhiCollegeof Engineering& Technology, Kirumampakkam.Page 1 of 10

Rajiv GandhiCollegeof Engineering& Technology, Kirumampakkam.Page 1 of 10 Rajiv GandhiCollegeof Engineering& Technology, Kirumampakkam.Page 1 of 10 RAJIV GANDHI COLLEGE OF ENGINEERING & TECHNOLOGY, KIRUMAMPAKKAM-607 402 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING QUESTION BANK

More information

Schema for Examples. Query Optimization. Alternative Plans 1 (No Indexes) Motivating Example. Alternative Plans 2 With Indexes

Schema for Examples. Query Optimization. Alternative Plans 1 (No Indexes) Motivating Example. Alternative Plans 2 With Indexes Schema for Examples Query Optimization (sid: integer, : string, rating: integer, age: real) (sid: integer, bid: integer, day: dates, rname: string) Similar to old schema; rname added for variations. :

More information

CompSci 516: Database Systems

CompSci 516: Database Systems CompSci 516 Database Systems Lecture 16 Transactions Recovery Instructor: Sudeepa Roy Duke CS, Fall 2018 CompSci 516: Database Systems 1 Announcements Keep working on your project Midterm report due on

More information

Lassonde School of Engineering Winter 2016 Term Course No: 4411 Database Management Systems

Lassonde School of Engineering Winter 2016 Term Course No: 4411 Database Management Systems Lassonde School of Engineering Winter 2016 Term Course No: 4411 Database Management Systems Last Name: First Name: Student ID: 1. Exam is 2 hours long 2. Closed books/notes Problem 1 (6 points) Consider

More information

QUERY OPTIMIZATION [CH 15]

QUERY OPTIMIZATION [CH 15] Spring 2017 QUERY OPTIMIZATION [CH 15] 4/12/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 1 Example SELECT distinct ename FROM Emp E, Dept D WHERE E.did = D.did and D.dname = Toy EMP

More information

CMSC 461 Final Exam Study Guide

CMSC 461 Final Exam Study Guide CMSC 461 Final Exam Study Guide Study Guide Key Symbol Significance * High likelihood it will be on the final + Expected to have deep knowledge of can convey knowledge by working through an example problem

More information

Final Review. May 9, 2017

Final Review. May 9, 2017 Final Review May 9, 2017 1 SQL 2 A Basic SQL Query (optional) keyword indicating that the answer should not contain duplicates SELECT [DISTINCT] target-list A list of attributes of relations in relation-list

More information

CMSC424: Database Design. Instructor: Amol Deshpande

CMSC424: Database Design. Instructor: Amol Deshpande CMSC424: Database Design Instructor: Amol Deshpande amol@cs.umd.edu Databases Data Models Conceptual representa1on of the data Data Retrieval How to ask ques1ons of the database How to answer those ques1ons

More information

Overview of Query Evaluation

Overview of Query Evaluation Overview of Query Evaluation Chapter 12 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Overview of Query Evaluation Plan: Tree of R.A. ops, with choice of alg for each op. Each operator

More information

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Database Management Systems need to:

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Database Management Systems need to: Storing : Disks and Files base Management System, R. Ramakrishnan and J. Gehrke 1 Storing and Retrieving base Management Systems need to: Store large volumes of data Store data reliably (so that data is

More information

Final Review. May 9, 2018 May 11, 2018

Final Review. May 9, 2018 May 11, 2018 Final Review May 9, 2018 May 11, 2018 1 SQL 2 A Basic SQL Query (optional) keyword indicating that the answer should not contain duplicates SELECT [DISTINCT] target-list A list of attributes of relations

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe CHAPTER 19 Query Optimization Introduction Query optimization Conducted by a query optimizer in a DBMS Goal: select best available strategy for executing query Based on information available Most RDBMSs

More information

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Chapter 7

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Chapter 7 Storing : Disks and Files Chapter 7 base Management Systems, R. Ramakrishnan and J. Gehrke 1 Storing and Retrieving base Management Systems need to: Store large volumes of data Store data reliably (so

More information

Query Optimization. Schema for Examples. Motivating Example. Similar to old schema; rname added for variations. Reserves: Sailors:

Query Optimization. Schema for Examples. Motivating Example. Similar to old schema; rname added for variations. Reserves: Sailors: Query Optimization Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Schema for Examples (sid: integer, sname: string, rating: integer, age: real) (sid: integer, bid: integer, day: dates,

More information

CAS CS 460/660 Introduction to Database Systems. Recovery 1.1

CAS CS 460/660 Introduction to Database Systems. Recovery 1.1 CAS CS 460/660 Introduction to Database Systems Recovery 1.1 Review: The ACID properties Atomicity: All actions in the Xact happen, or none happen. Consistency: If each Xact is consistent, and the DB starts

More information

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes?

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes? Storing and Retrieving Storing : Disks and Files base Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve data efficiently Alternatives for

More information

CSE 344 Final Review. August 16 th

CSE 344 Final Review. August 16 th CSE 344 Final Review August 16 th Final In class on Friday One sheet of notes, front and back cost formulas also provided Practice exam on web site Good luck! Primary Topics Parallel DBs parallel join

More information

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes?

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes? Storing and Retrieving Storing : Disks and Files Chapter 9 base Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve data efficiently Alternatives

More information

Query Optimization. Schema for Examples. Motivating Example. Similar to old schema; rname added for variations. Reserves: Sailors:

Query Optimization. Schema for Examples. Motivating Example. Similar to old schema; rname added for variations. Reserves: Sailors: Query Optimization atabase Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Schema for Examples (sid: integer, sname: string, rating: integer, age: real) (sid: integer, bid: integer, day: dates,

More information

CS 525 Advanced Database Organization - Spring 2017 Mon + Wed 1:50-3:05 PM, Room: Stuart Building 111

CS 525 Advanced Database Organization - Spring 2017 Mon + Wed 1:50-3:05 PM, Room: Stuart Building 111 CS 525 Advanced Database Organization - Spring 2017 Mon + Wed 1:50-3:05 PM, Room: Stuart Building 111 Instructor: Boris Glavic, Stuart Building 226 C, Phone: 312 567 5205, Email: bglavic@iit.edu Office

More information

Principles of Data Management. Lecture #3 (Managing Files of Records)

Principles of Data Management. Lecture #3 (Managing Files of Records) Principles of Management Lecture #3 (Managing Files of Records) Instructor: Mike Carey mjcarey@ics.uci.edu base Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Topics v Today should fill

More information

Introduction to Data Management. Lecture #25 (Transactions II)

Introduction to Data Management. Lecture #25 (Transactions II) Introduction to Data Management Lecture #25 (Transactions II) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v HW and exam info:

More information

Midterm Review CS634. Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke

Midterm Review CS634. Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke Midterm Review CS634 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke Coverage Text, chapters 8 through 15 (hw1 hw4) PKs, FKs, E-R to Relational: Text, Sec. 3.2-3.5, to pg.

More information

Question 1 (a) 10 marks

Question 1 (a) 10 marks Question 1 (a) Consider the tree in the next slide. Find any/ all violations of a B+tree structure. Identify each bad node and give a brief explanation of each error. Assume the order of the tree is 4

More information

Concurrent & Distributed Systems Supervision Exercises

Concurrent & Distributed Systems Supervision Exercises Concurrent & Distributed Systems Supervision Exercises Stephen Kell Stephen.Kell@cl.cam.ac.uk November 9, 2009 These exercises are intended to cover all the main points of understanding in the lecture

More information

A tomicity: All actions in the Xact happen, or none happen. D urability: If a Xact commits, its effects persist.

A tomicity: All actions in the Xact happen, or none happen. D urability: If a Xact commits, its effects persist. Review: The ACID properties A tomicity: All actions in the Xact happen, or none happen. Logging and Recovery C onsistency: If each Xact is consistent, and the DB starts consistent, it ends up consistent.

More information

L9: Storage Manager Physical Data Organization

L9: Storage Manager Physical Data Organization L9: Storage Manager Physical Data Organization Disks and files Record and file organization Indexing Tree-based index: B+-tree Hash-based index c.f. Fig 1.3 in [RG] and Fig 2.3 in [EN] Functional Components

More information

Concurrency Control. R &G - Chapter 19

Concurrency Control. R &G - Chapter 19 Concurrency Control R &G - Chapter 19 Smile, it is the key that fits the lock of everybody's heart. Anthony J. D'Angelo, The College Blue Book Review DBMSs support concurrency, crash recovery with: ACID

More information

CSE 190D Spring 2017 Final Exam Answers

CSE 190D Spring 2017 Final Exam Answers CSE 190D Spring 2017 Final Exam Answers Q 1. [20pts] For the following questions, clearly circle True or False. 1. The hash join algorithm always has fewer page I/Os compared to the block nested loop join

More information

CS 222/122C Fall 2016, Midterm Exam

CS 222/122C Fall 2016, Midterm Exam STUDENT NAME: STUDENT ID: Instructions: CS 222/122C Fall 2016, Midterm Exam Principles of Data Management Department of Computer Science, UC Irvine Prof. Chen Li (Max. Points: 100) This exam has six (6)

More information

University of Waterloo Midterm Examination Sample Solution

University of Waterloo Midterm Examination Sample Solution 1. (4 total marks) University of Waterloo Midterm Examination Sample Solution Winter, 2012 Suppose that a relational database contains the following large relation: Track(ReleaseID, TrackNum, Title, Length,

More information

Query optimization. Elena Baralis, Silvia Chiusano Politecnico di Torino. DBMS Architecture D B M G. Database Management Systems. Pag.

Query optimization. Elena Baralis, Silvia Chiusano Politecnico di Torino. DBMS Architecture D B M G. Database Management Systems. Pag. Database Management Systems DBMS Architecture SQL INSTRUCTION OPTIMIZER MANAGEMENT OF ACCESS METHODS CONCURRENCY CONTROL BUFFER MANAGER RELIABILITY MANAGEMENT Index Files Data Files System Catalog DATABASE

More information

Atomicity: All actions in the Xact happen, or none happen. Consistency: If each Xact is consistent, and the DB starts consistent, it ends up

Atomicity: All actions in the Xact happen, or none happen. Consistency: If each Xact is consistent, and the DB starts consistent, it ends up CRASH RECOVERY 1 REVIEW: THE ACID PROPERTIES Atomicity: All actions in the Xact happen, or none happen. Consistency: If each Xact is consistent, and the DB starts consistent, it ends up consistent. Isolation:

More information

In This Lecture. Transactions and Recovery. Transactions. Transactions. Isolation and Durability. Atomicity and Consistency. Transactions Recovery

In This Lecture. Transactions and Recovery. Transactions. Transactions. Isolation and Durability. Atomicity and Consistency. Transactions Recovery In This Lecture Database Systems Lecture 15 Natasha Alechina Transactions Recovery System and Media s Concurrency Concurrency problems For more information Connolly and Begg chapter 20 Ullmanand Widom8.6

More information

Query Optimization. Query Optimization. Optimization considerations. Example. Interaction of algorithm choice and tree arrangement.

Query Optimization. Query Optimization. Optimization considerations. Example. Interaction of algorithm choice and tree arrangement. COS 597: Principles of Database and Information Systems Query Optimization Query Optimization Query as expression over relational algebraic operations Get evaluation (parse) tree Leaves: base relations

More information

Query Evaluation Overview, cont.

Query Evaluation Overview, cont. Query Evaluation Overview, cont. Lecture 9 Feb. 29, 2016 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke Architecture of a DBMS Query Compiler Execution Engine Index/File/Record

More information

Transactions and Concurrency Control

Transactions and Concurrency Control Transactions and Concurrency Control Transaction: a unit of program execution that accesses and possibly updates some data items. A transaction is a collection of operations that logically form a single

More information

CS222P Fall 2017, Final Exam

CS222P Fall 2017, Final Exam STUDENT NAME: STUDENT ID: CS222P Fall 2017, Final Exam Principles of Data Management Department of Computer Science, UC Irvine Prof. Chen Li (Max. Points: 100 + 15) Instructions: This exam has seven (7)

More information

Examples of Physical Query Plan Alternatives. Selected Material from Chapters 12, 14 and 15

Examples of Physical Query Plan Alternatives. Selected Material from Chapters 12, 14 and 15 Examples of Physical Query Plan Alternatives Selected Material from Chapters 12, 14 and 15 1 Query Optimization NOTE: SQL provides many ways to express a query. HENCE: System has many options for evaluating

More information

CSE 544 Principles of Database Management Systems

CSE 544 Principles of Database Management Systems CSE 544 Principles of Database Management Systems Alvin Cheung Fall 2015 Lecture 5 - DBMS Architecture and Indexing 1 Announcements HW1 is due next Thursday How is it going? Projects: Proposals are due

More information

Query Processing and Query Optimization. Prof Monika Shah

Query Processing and Query Optimization. Prof Monika Shah Query Processing and Query Optimization Query Processing SQL Query Is in Library Cache? System catalog (Dict / Dict cache) Scan and verify relations Parse into parse tree (relational Calculus) View definitions

More information

Database Management Systems Written Examination

Database Management Systems Written Examination Database Management Systems Written Examination 14.02.2007 First name Student number Last name Signature Instructions for Students Write your name, student number, and signature on the exam sheet. Write

More information

Problems Caused by Failures

Problems Caused by Failures Problems Caused by Failures Update all account balances at a bank branch. Accounts(Anum, CId, BranchId, Balance) Update Accounts Set Balance = Balance * 1.05 Where BranchId = 12345 Partial Updates - Lack

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) DBMS Internals- Part VII Lecture 15, March 17, 2014 Mohammad Hammoud Today Last Session: DBMS Internals- Part VI Algorithms for Relational Operations Today s Session: DBMS

More information

ECS 165B: Database System Implementa6on Lecture 7

ECS 165B: Database System Implementa6on Lecture 7 ECS 165B: Database System Implementa6on Lecture 7 UC Davis April 12, 2010 Acknowledgements: por6ons based on slides by Raghu Ramakrishnan and Johannes Gehrke. Class Agenda Last 6me: Dynamic aspects of

More information

CS 222/122C Fall 2017, Final Exam. Sample solutions

CS 222/122C Fall 2017, Final Exam. Sample solutions CS 222/122C Fall 2017, Final Exam Principles of Data Management Department of Computer Science, UC Irvine Prof. Chen Li (Max. Points: 100 + 15) Sample solutions Question 1: Short questions (15 points)

More information

Atomic Transactions

Atomic Transactions 15-410 Atomic Transactions December 5, 2005 Jeffrey L. Eppinger Professor of the Practice School of Computer Science So Who Is This Guy? Jeff Eppinger (eppinger@cmu.edu, EDSH 229) Ph.D. Computer Science

More information

Something to think about. Problems. Purpose. Vocabulary. Query Evaluation Techniques for large DB. Part 1. Fact:

Something to think about. Problems. Purpose. Vocabulary. Query Evaluation Techniques for large DB. Part 1. Fact: Query Evaluation Techniques for large DB Part 1 Fact: While data base management systems are standard tools in business data processing they are slowly being introduced to all the other emerging data base

More information

Midterm 1: CS186, Spring I. Storage: Disk, Files, Buffers [11 points] cs186-

Midterm 1: CS186, Spring I. Storage: Disk, Files, Buffers [11 points] cs186- Midterm 1: CS186, Spring 2016 Name: Class Login: cs186- You should receive 1 double-sided answer sheet and an 11-page exam. Mark your name and login on both sides of the answer sheet, and in the blanks

More information

Principles of Data Management. Lecture #13 (Query Optimization II)

Principles of Data Management. Lecture #13 (Query Optimization II) Principles of Data Management Lecture #13 (Query Optimization II) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Notable News v Reminder:

More information

Midterm 1: CS186, Spring I. Storage: Disk, Files, Buffers [11 points] SOLUTION. cs186-

Midterm 1: CS186, Spring I. Storage: Disk, Files, Buffers [11 points] SOLUTION. cs186- Midterm 1: CS186, Spring 2016 Name: Class Login: SOLUTION cs186- You should receive 1 double-sided answer sheet and an 10-page exam. Mark your name and login on both sides of the answer sheet, and in the

More information

An SQL query is parsed into a collection of query blocks optimize one block at a time. Nested blocks are usually treated as calls to a subroutine

An SQL query is parsed into a collection of query blocks optimize one block at a time. Nested blocks are usually treated as calls to a subroutine QUERY OPTIMIZATION 1 QUERY OPTIMIZATION QUERY SUB-SYSTEM 2 ROADMAP 3. 12 QUERY BLOCKS: UNITS OF OPTIMIZATION An SQL query is parsed into a collection of query blocks optimize one block at a time. Nested

More information

Monitoring and Resolving Lock Conflicts. Copyright 2004, Oracle. All rights reserved.

Monitoring and Resolving Lock Conflicts. Copyright 2004, Oracle. All rights reserved. Monitoring and Resolving Lock Conflicts Objectives After completing this lesson you should be able to do the following: Detect and resolve lock conflicts Manage deadlocks Locks Prevent multiple sessions

More information

UNIT 9 Crash Recovery. Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8

UNIT 9 Crash Recovery. Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8 UNIT 9 Crash Recovery Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8 Learning Goals Describe the steal and force buffer policies and explain how they affect a transaction s properties

More information