Power Set of a set and Relations

Size: px
Start display at page:

Download "Power Set of a set and Relations"

Transcription

1 Power Set of a set and Relations 1

2 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}} Let A={{a,b},c}, P(A)={,{{a,b}},{c},{{a,b},c}} Note: the empty set and the set itself are always elements of the power set.

3 Power Set (2) The power set is a fundamental combinatorial object useful when considering all possible combinations of elements of a set Fact: Let S be a set such that S =n, then P(S) = 2 n

4 Proof of P(A) =2^ A Proof: ( By induction) Base case holds: A =0, then A={} and P(A)={ }. Induction Hypothesis: Assume to be true for all sets of cardinality n-1, i.e. A =n-1 implies P(A) =2^{n-1}. For A =n Let A={a_1,a_2,,a_n}. Any subset not containing a_n is a subset of B=A\{a_n}. How many subsets of A are there not containing a_n? This is nothing but the set of all subsets of B. The number is 2^{n-1} by induction hypothesis. 4

5 Proof of P(A) =2^ A Contd How to get a subset of A containing a_n? Take a subset S of B. Let S =S {a_n}. Now S is a subset of A containing a_n. Can any subset of A containing a_n be obtained in this way? Answer is Yes!! Let S be any subset of A containing a_n. Let S=S \{a_n}. Now S is a subset of A not containing a_n. 5

6 Proof of P(A) =2^ A Contd Let X_1 be the set of all subsets of A not containing a_n Let X_2 be the set of all subsets of A containg a_n. Now P(A)= X_1 X_2 and X_1 X_2 =. Also S S =S {a_n} is a bijection. This implies S = S =2^{n-1} by induction hypothesis So P(A)) = S + S = 2^{n-1} +2^{n-1}=2^{n}. 6

7 How to generate all subsets of a Set of n elements? 7

8 Computer Representation of Sets (1) There really aren t ways to represent infinite sets by a computer since a computer has a finite amount of memory If we assume that the universal set U is finite, then we can easily and effectively represent sets by bit vectors Specifically, we force an ordering on the objects, say: U={a 1, a 2,,a n } For a set A U, a bit vector can be defined as, for i=1,2,,n b i =0 if a i A b i =1 if a i A

9 Computer Representation of Sets (2) Examples Let U={0,1,2,3,4,5,6,7} and A={0,1,6,7} The bit vector representing A is: How is the empty set represented? How is U represented? Set operations become trivial when sets are represented by bit vectors Union is obtained by making the bit-wise OR Intersection is obtained by making the bit-wise AND

10 BITWISE OPERATOR (IN C) Operators & Meaning of operators Bitwise AND Bitwise OR ^ Bitwise exclusive OR ~ Bitwise complement << Shift left >> Shift right

11 Computer Representation of Sets (3) Let U={0,1,2,3,4,5,6,7}, A={0,1,6,7}, B={0,4,5} What is the bit-vector representation of B? Compute, bit-wise, the bit-vector representation of A B Compute, bit-wise, the bit-vector representation of A B What sets do these bit vectors represent?

12 Computer Representation of Sets Array representations: U={1,2,.n} S can be represented by an array A such that A[i]=1 if i S else A[i]=0. Disjoint Set operations: Union, j=find(i) if I in S_j. 12

13 Programming Question Using bit vector, we can represent sets of cardinality equal to the size of the vector What if we want to represent an arbitrary sized set in a computer (i.e., that we do not know a priori the size of the set)? What data structure could we use? Tree representation of disjoint Set: To be discussed after Graphs are introduced.

14 Relations 14

15 Relations and Their Properties To represent relationships between elements of sets Ordered pairs: binary relations Definition 1: Let A and B be sets. A binary relation from A to B is a subset of A B. a R b: (a,b) R a is related to b by R R a b: (a,b) R Ex.1-3 Functions as relations Relations are generalization of functions

16 FIGURE 1 (8.1) FIGURE 1 Displaying the Ordered Pairs in the Relation R from Example 3.

17 Relations on a Set Definition 2: a relation on the set A is a relation from A to A. How many relations are there on a set with n elements? ( Such questions will be discussed in Counting and advanced counting)

18 FIGURE 2 Displaying the Ordered Pairs in the Relation R from Example 4.

19 Properties of Relations Definition 3: A relation R on a set A is called reflexive if (a,a) R for every element a A. a((a,a) R) Definition 4: A relation R on a set A is called symmetric if (b,a) R whenever (a,b) R, for all a,b A. A relation R on a set A such that for all a,b A, if (a,b) R and (b,a) R, then a=b is called antisymmetric. a b((a,b) R (b,a) R) a b(((a,b) R (b,a) R) (a=b)) Not opposites

20 Definition 5: A relation R on a set A is called transitive if whenever (a,b) R and (b,c) R, then (a,c) R, for all a,b,c A. a b c(((a,b) R (b,c) R) (a,c) R)

21 Combining Relations Two relations can be combined in any way two sets can be combined Definition 6: R: relation from A to B, S: relation from B to C. The composite of R and S is the relation consisting of ordered pairs (a,c), where a A, c C, and there exists an element b B such that (a,b) R and (b,c) S. (denoted by S R)

22 Definition 7: Let R be a relation on the set A. The powers R n, n=1,2,3,, are defined recursively by R 1 =R, and R n+1 =R n R. Theorem 1: The relation R on a set A is transitive iff R n R for n=1,2,3, Proof.

23 Representing Relations To represent binary relations Ordered pairs Tables Zero-one matrices Directed graphs

24 Representing Relations Using Matrices Suppose that R is a relation from A={a 1,a 2,,a m } to B={b 1,b 2,,b n }. R can be represented by the matrix M R =[m ij ], where m ij =1 if (a i,b j ) R, or 0 if (a i,b j ) R.

25 FIGURE 1 The Zero-One Matrix for a Reflexive Relation.

26 FIGURE 2 (8.3) FIGURE 2 The Zero-One Matrices for Symmetric and Antisymmetric Relations.

27 Representing Relations Using Digraphs Definition 1: A directed graph (digraph) consists of a set V of vertices (or nodes) and a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a,b), and the vertex b is called the terminal vertex of this edge.

28 FIGURE 3 The Directed Graph.

29 FIGURE 4 (8.3) FIGURE 4 The Directed Graph of the Relations R.

30 FIGURE 5 (8.3) FIGURE 5 The Directed Graph of the Relations R.

31 FIGURE 6 (8.3) FIGURE 6 The Directed Graph of the Relations R and S.

32 Closures of Relations Ex. Telephone line connections Let R be a relation on a set A. R may or may not have some property P. If there is a relation S with property P containing R such that S is a subset of every relation with property P containing R, then S is called the closure of R with respect to P. S: the smallest relation that contains R

33 Closures Reflexive closure Ex: R={(1,1),(1,2),(2,1),(3,2)} on the set A={1,2,3} The smallest relation contains R? The reflexive closure of R=R, where ={(a,a) a A} Symmetric closure The symmetric closure of R=R R -1, where R -1 ={(b,a) (a,b) R} Transitive closure

34 Paths in Directed Graphs Definition 1: A path from a to b in the directed graph G is a sequence of edges (x0,x1), (x1,x2),,(xn-1,xn) in G, where n is a nonnegative integer, and x0=a and xn = b. The path denoted by x0,x1,,xn-1, xn has length n. A path of length n >=1 that begins and ends at the same vertex is called a circuit or cycle. There is a path from a to b in R if there is a sequence of elements a, x1, x2,, xn-1, b with (a,x1) R, (x1,x2) R,, and (xn-1,b) R.

35 FIGURE 1 A Directed Graph.

36 Theorem 1: Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b iff (a,b) R n. Proof. (by mathematical induction)

37 Transitive Closures Definition 2: Let R be a relation on a set A. The connectivity relation R* consists of pairs (a,b) such that there is a path of length at least one from a to b in R. R*= n=1.. R n.

38 Theorem 2: The transitive closure of a relation R equals the connectivity relation R*. Proof. Lemma 1: Let A be a set with n elements, and R be a relation on A. If there is a path of length at least one in R from a to b, then there is such as path with length not exceeding n. When a b, if there is a path of length at least one in R from a to b, then there is such as path with length not exceeding n-1. Proof.

39 FIGURE 2 Producing a Path with Length Not Exceeding n.

40 Theorem 3: Let M R be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R* is M R* = M R M R [2] M R [3] M R [n].

41 Algorithm 1: A procedure for computing the transitive closure. Procedure transitive closure (M R : zero-one n*n matrix) A:= M R B:=A for i:=2 to n begin A:=A M R B:=B A end O(n 4 ) bit operations

42 Warshall s Algorithm Named after Stephen Warshall in n 3 bit operation Also called Roy-Warshall algorithm, Bernard Roy in 1959 Interior vertices W0, W1,, Wn Wk=[w ij (k) ], where w ij (k) =1 if there is a path from v i to v j such that all interior vertices of this path are in the set [v1, v2,, vk]. Wn= M R*

43 FIGURE 3 The Directed Graph of the Relations R.

44 Observation: we can compute Wk directly from Wk-1 Two cases (Fig. 4) There is a path from vi to vj with its interior vertices among the first k-1 vertices w ij (k-1) =1 There are paths from vi to vk and from vk to vj that have interior vertices only among the first k-1 vertices w ik (k-1) =1 and w kj (k-1) =1

45 FIGURE 4 Adding v k to the Set of Allowable Interior Vertices.

46 Lemma 2: Let Wk=w ij (k) be the zero-one matrix that has a 1 in its (i,j)th position iff there is a path from vi to vj with interior vertices from the set {v1, v2,, vk}. Then w ij (k) =w ij (k-1) (w ik (k-1) w kj (k-1) ), whenever I, j, and k are positive integers not exceeding n.

47 Algorithm 2: Warshall Algorithm Procedure Warshall(M R : n*n zero-one matrix) W:= M R for k:=1 to n begin for i:=1 to n begin for j:=1 to n wij:=wij (wik wkj) end end

48 Equivalence Relations Definition 1: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Definition 2: Two elements a and b are related by an equivalence relation are called equivalent. The notation a~b: to denote that a and b are equivalent elements with respect to a particular equivalence relation

49 Equivalence Classes Definition 3: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. Denoted by [a] R or [a] [a] R = {s (a,s) R} If b [a] R, then b is called a representative of the equivalence class

50 Equivalence Classes and Partitions Theorem 1: Let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent: a R b [a]=[b] [a] [b] Proof.

51 Observations a A [a] R =A [a] [b]= when [a] R [b] R The equivalence classes form a partition of A A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union Ai for i I, Ai Aj= when i j i I Ai=S

52 FIGURE 1 A Partition of a Set.

53 Theorem 2: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition {Ai i I} of the set S, there is an equivalence relation R that has the sets Ai, i I, as its equivalence classes.

54 Partial Orderings Definition 1: A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set S together with its partial ordering R is called a partially ordered set, or poset, (S, R). Proof. Ex.1-3:,, Ex.4: older than Notation: : a b, but a b

55 Definition 2: The elements a and b of a poset (S, ) are called comparable if either a b or b a. If neither a b nor b a, a and b are incomparable. ( partial ) Ex. 5 When every two elements in the set are comparable, the relation is called a total ordering

56 Definition 3: If (S, ) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set (or a chain), and is called a total order or a linear order. Ex.6: (Z, ) Ex.7: (Z+, ) Definition 4: (S, ) is a well-ordered set if it is a poset such that is a total ordering and every nonempty subset of S has a least element. Ex.8

57 Theorem 1: (The Principle of Well-Ordered Induction) Suppose that S is a well-ordered set. Then P(x) is true for all x S, if (inductive step): For every y S, if P(x) is true for all x S with x y, then P(y) is true. Proof.

58 Lexicographic Order (a 1, a 2 ) (b 1, b 2 ) (A 1, 1), (A 2, 2) Either if a 1 1 b 1 Or if a 1 =b 1 and a 2 2 b 2 n-tuples (Fig. 1)

59 FIGURE 1 The Ordered Pairs Less Than (3,4) in Lexicographic Order.

60 Hasse Diagrams Hasse Diagrams: some edges do not have to be shown Reflexive: loops can be removed Transitive: if (a,b) and (b,c), then (a,c) can be removed Remove all the arrows

61 FIGURE 2 Constructing the Hasse Diagram for ({1,2,3,4}, ).

62 FIGURE 3 (8.6) FIGURE 3 Constructing the Hasse Diagram of ({1,2,3,4,6,8,12}, ).

63 FIGURE 4 The Hasse Diagram of (P({a,b,c}), ).

64 Maximal and Minimal Elements a is maximal in the poset (S, ) if there is no b S such that a b. a is minimal in the poset (S, ) if there is no b S such that b a.

65 FIGURE 5 The Hasse Diagram of a Poset.

66 FIGURE 6 Hasse Diagrams of Four Posets. FIGURE 6 (8.6)

67 In a subset A of a poset (S, ), if u is an element of S such that a u for all a A, then u is an upper bound of A. In a subset A of a poset (S, ), if l is an element of S such that l a for all a A, then l is an lower bound of A.

68 FIGURE 7 The Hasse Diagram of a Poset.

69 Lattices A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice

70 FIGURE 8 Hasse Diagrams of Three Posets. FIGURE 8 (8.6)

71 Topological Sorting Topological sorting: constructing a compatible total ordering from a partial ordering A total ordering is said to be compatible with the partial ordering R if a b whenever a R b. Lemma 1: Every finite nonempty poset (S, ) has at lease one minimal element.

72 Algorithm 1: topological sorting Procedure topological sort(s, : finite poset) k:=1 while S begin ak:=a minimal element of S S:=S-{ak} k:=k+1 end

73 FIGURE 9 (8.6) FIGURE 9 A Topological Sort of ({1,2,4,5,12,20}, ).

74 FIGURE 10 The Hasse Diagram for Seven Tasks.

75 FIGURE 11 A Topological Sort of the Tasks. FIGURE 11 (8.6)

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation CS 441 Discrete Mathematics for CS Lecture 24 Relations IV Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Equivalence relation Definition: A relation R on a set A is called an equivalence relation

More information

Binary Relations McGraw-Hill Education

Binary Relations McGraw-Hill Education Binary Relations A binary relation R from a set A to a set B is a subset of A X B Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B. We can also represent

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Discrete Mathematics. Kruskal, order, sorting, induction

Discrete Mathematics.   Kruskal, order, sorting, induction Discrete Mathematics wwwmifvult/~algis Kruskal, order, sorting, induction Kruskal algorithm Kruskal s Algorithm for Minimal Spanning Trees The algorithm constructs a minimal spanning tree as follows: Starting

More information

Antisymmetric Relations. Definition A relation R on A is said to be antisymmetric

Antisymmetric Relations. Definition A relation R on A is said to be antisymmetric Antisymmetric Relations Definition A relation R on A is said to be antisymmetric if ( a, b A)(a R b b R a a = b). The picture for this is: Except For Example The relation on R: if a b and b a then a =

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

CHAPTER 3 FUZZY RELATION and COMPOSITION

CHAPTER 3 FUZZY RELATION and COMPOSITION CHAPTER 3 FUZZY RELATION and COMPOSITION Crisp relation! Definition (Product set) Let A and B be two non-empty sets, the prod uct set or Cartesian product A B is defined as follows, A B = {(a, b) a A,

More information

Relations, Equivalence Relations, and Partial Orders

Relations, Equivalence Relations, and Partial Orders Massachusetts Institute of Technology Lecture 6 6.042J/18.062J: Mathematics for Computer Science February 17, 2000 Professors David Karger and Nancy Lynch Relations, Equivalence Relations, and Partial

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis Contents Chapter 1. Relations 8 1. Relations and Their Properties 8 1.1. Definition of a Relation 8 1.2. Directed Graphs 9 1.3. Representing Relations with Matrices 10 1.4. Example 1.4.1 10 1.5. Inverse

More information

10/11/2018. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings

10/11/2018. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings Sometimes, relations define an order on the elements in a set. Definition: A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

CHAPTER 3 FUZZY RELATION and COMPOSITION

CHAPTER 3 FUZZY RELATION and COMPOSITION CHAPTER 3 FUZZY RELATION and COMPOSITION The concept of fuzzy set as a generalization of crisp set has been introduced in the previous chapter. Relations between elements of crisp sets can be extended

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order).

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Exercises Exercises 1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). a) {(1, 1), (1, 2), (1, 3)} b) {(1, 2), (2, 1), (2, 2), (3,

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

Combinatorial properties and n-ary topology on product of power sets

Combinatorial properties and n-ary topology on product of power sets Combinatorial properties and n-ary topology on product of power sets Seethalakshmi.R 1, Kamaraj.M 2 1 Deaprtmant of mathematics, Jaya collage of arts and Science, Thiruninravuir - 602024, Tamilnadu, India.

More information

Fundamentals of Discrete Mathematical Structures

Fundamentals of Discrete Mathematical Structures Fundamentals of Discrete Mathematical Structures THIRD EDITION K.R. Chowdhary Campus Director JIET School of Engineering and Technology for Girls Jodhpur Delhi-110092 2015 FUNDAMENTALS OF DISCRETE MATHEMATICAL

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

THEORY OF COMPUTATION

THEORY OF COMPUTATION THEORY OF COMPUTATION UNIT-1 INTRODUCTION Overview This chapter begins with an overview of those areas in the theory of computation that are basic foundation of learning TOC. This unit covers the introduction

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

Recursive Definitions Structural Induction Recursive Algorithms

Recursive Definitions Structural Induction Recursive Algorithms Chapter 4 1 4.3-4.4 Recursive Definitions Structural Induction Recursive Algorithms 2 Section 4.1 3 Principle of Mathematical Induction Principle of Mathematical Induction: To prove that P(n) is true for

More information

Lattice Tutorial Version 1.0

Lattice Tutorial Version 1.0 Lattice Tutorial Version 1.0 Nenad Jovanovic Secure Systems Lab www.seclab.tuwien.ac.at enji@infosys.tuwien.ac.at November 3, 2005 1 Introduction This tutorial gives an introduction to a number of concepts

More information

Nim-Regularity of Graphs

Nim-Regularity of Graphs Nim-Regularity of Graphs Nathan Reading School of Mathematics, University of Minnesota Minneapolis, MN 55455 reading@math.umn.edu Submitted: November 24, 1998; Accepted: January 22, 1999 Abstract. Ehrenborg

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University)

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University) Math 395: Topology Bret Benesh (College of Saint Benedict/Saint John s University) October 30, 2012 ii Contents Acknowledgments v 1 Topological Spaces 1 2 Closed sets and Hausdorff spaces 7 iii iv CONTENTS

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions 1 Distance Reading [SB], Ch. 29.4, p. 811-816 A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions (a) Positive definiteness d(x, y) 0, d(x, y) =

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example Sets Slides by Christopher M. ourke Instructor: erthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

CMSC Honors Discrete Mathematics

CMSC Honors Discrete Mathematics CMSC 27130 Honors Discrete Mathematics Lectures by Alexander Razborov Notes by Justin Lubin The University of Chicago, Autumn 2017 1 Contents I Number Theory 4 1 The Euclidean Algorithm 4 2 Mathematical

More information

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Section 5.3 1 Recursion 2 Recursion Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Previously sequences were defined using a specific

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

Definition. Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class.

Definition. Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class. Resolvable BIBDs Definition Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class. A partition of B into parallel classes (there must be r of them) is

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it

More information

Simple graph Complete graph K 7. Non- connected graph

Simple graph Complete graph K 7. Non- connected graph A graph G consists of a pair (V; E), where V is the set of vertices and E the set of edges. We write V (G) for the vertices of G and E(G) for the edges of G. If no two edges have the same endpoints we

More information

Lamé s Theorem. Strings. Recursively Defined Sets and Structures. Recursively Defined Sets and Structures

Lamé s Theorem. Strings. Recursively Defined Sets and Structures. Recursively Defined Sets and Structures Lamé s Theorem Gabriel Lamé (1795-1870) Recursively Defined Sets and Structures Lamé s Theorem: Let a and b be positive integers with a b Then the number of divisions used by the Euclidian algorithm to

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Foundations of Computer Science Spring Mathematical Preliminaries

Foundations of Computer Science Spring Mathematical Preliminaries Foundations of Computer Science Spring 2017 Equivalence Relation, Recursive Definition, and Mathematical Induction Mathematical Preliminaries Mohammad Ashiqur Rahman Department of Computer Science College

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory Proof Techniques Alphabets, Strings, and Languages Foundations of Computer Science Theory Proof By Case Enumeration Sometimes the most straightforward way to prove that a property holds for all elements

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

Integer Partition Poset

Integer Partition Poset Integer Partition Poset Teena Carroll St. Norbert College Presented at the Clemson REU Summer 2010 Integer Partitions Given an integer, how can we break it down into the sum of positive integers? ex: n=5

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV Sr.No. Question Option A Option B Option C Option D 1 2 3 4 5 6 Class : S.E.Comp Which one of the following is the example of non linear data structure Let A be an adjacency matrix of a graph G. The ij

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

ON CONSISTENCY CHECKING OF SPATIAL RELATIONSHIPS IN CONTENT-BASED IMAGE DATABASE SYSTEMS

ON CONSISTENCY CHECKING OF SPATIAL RELATIONSHIPS IN CONTENT-BASED IMAGE DATABASE SYSTEMS COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2005 International Press Vol. 5, No. 3, pp. 341-366, 2005 004 ON CONSISTENCY CHECKING OF SPATIAL RELATIONSHIPS IN CONTENT-BASED IMAGE DATABASE SYSTEMS QING-LONG

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

Recognizing Interval Bigraphs by Forbidden Patterns

Recognizing Interval Bigraphs by Forbidden Patterns Recognizing Interval Bigraphs by Forbidden Patterns Arash Rafiey Simon Fraser University, Vancouver, Canada, and Indiana State University, IN, USA arashr@sfu.ca, arash.rafiey@indstate.edu Abstract Let

More information

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise.

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise. Final exam This is a closed book exam. No calculators are allowed. Unless stated otherwise, justify all your steps. You may use lemmas and theorems that were proven in class and on assignments unless stated

More information

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions Logic and Discrete Mathematics Section 2.5 Equivalence relations and partitions Slides version: January 2015 Equivalence relations Let X be a set and R X X a binary relation on X. We call R an equivalence

More information

DISCRETE MATHEMATICS

DISCRETE MATHEMATICS DISCRETE MATHEMATICS WITH APPLICATIONS THIRD EDITION SUSANNA S. EPP DePaul University THOIVISON * BROOKS/COLE Australia Canada Mexico Singapore Spain United Kingdom United States CONTENTS Chapter 1 The

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

Chapter I PRELIMINARIES

Chapter I PRELIMINARIES Chapter I PRELIMINARIES 6, i CHAPTER I PRELIMINARIES Definition 1.1 Let V = { VI,V2,V3,... } be a set and E = {ei, e2, e3,... } be another set such that each ek is an unordered pair of elements of V so

More information

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. Chapter 8 out of 7 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal 8 Matrices Definitions and Basic Operations Matrix algebra is also known

More information

What Is A Relation? Example. is a relation from A to B.

What Is A Relation? Example. is a relation from A to B. 3.3 Relations What Is A Relation? Let A and B be nonempty sets. A relation R from A to B is a subset of the Cartesian product A B. If R A B and if (a, b) R, we say that a is related to b by R and we write

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Alphabets, strings and formal. An introduction to information representation

Alphabets, strings and formal. An introduction to information representation Alphabets, strings and formal languages An introduction to information representation 1 Symbols Definition: A symbol is an object endowed with a denotation (i.e. literal meaning) Examples: Variables are

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

1 Digraphs. Definition 1

1 Digraphs. Definition 1 1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

More information

Polygon Triangulation

Polygon Triangulation Polygon Triangulation Definition Simple Polygons 1. A polygon is the region of a plane bounded by a finite collection of line segments forming a simple closed curve. 2. Simple closed curve means a certain

More information

3 Fractional Ramsey Numbers

3 Fractional Ramsey Numbers 27 3 Fractional Ramsey Numbers Since the definition of Ramsey numbers makes use of the clique number of graphs, we may define fractional Ramsey numbers simply by substituting fractional clique number into

More information

Recursively Defined Functions

Recursively Defined Functions Section 5.3 Recursively Defined Functions Definition: A recursive or inductive definition of a function consists of two steps. BASIS STEP: Specify the value of the function at zero. RECURSIVE STEP: Give

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

Ambiguous Grammars and Compactification

Ambiguous Grammars and Compactification Ambiguous Grammars and Compactification Mridul Aanjaneya Stanford University July 17, 2012 Mridul Aanjaneya Automata Theory 1/ 44 Midterm Review Mathematical Induction and Pigeonhole Principle Finite Automata

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

Elementary Topology. Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way.

Elementary Topology. Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way. Elementary Topology Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way. Definition. properties: (i) T and X T, A topology on

More information

1 Non greedy algorithms (which we should have covered

1 Non greedy algorithms (which we should have covered 1 Non greedy algorithms (which we should have covered earlier) 1.1 Floyd Warshall algorithm This algorithm solves the all-pairs shortest paths problem, which is a problem where we want to find the shortest

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach.

Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach. Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach. S. Bessy, Projet Mascotte, CNRS/INRIA/UNSA, INRIA Sophia-Antipolis, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis

More information

I BSc(Computer Science)[ ] Semester - II Allied:DISCRETE MATHEMATICS - 207D Multiple Choice Questions.

I BSc(Computer Science)[ ] Semester - II Allied:DISCRETE MATHEMATICS - 207D Multiple Choice Questions. 1 of 23 1/20/2018, 2:35 PM Dr.G.R.Damodaran College of Science (Autonomous, affiliated to the Bharathiar University, recognized by the UGC)Reaccredited at the 'A' Grade Level by the NAAC and ISO 9001:2008

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements Paul Renteln California State University San Bernardino and Caltech April, 2008 Outline Hyperplane Arrangements Counting Regions

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

(l) Represent each of the sets A, B and C using bit strings. Then, use bit string representation and bitwise logical operations to find

(l) Represent each of the sets A, B and C using bit strings. Then, use bit string representation and bitwise logical operations to find Fall 2004 Ahmed Elgammal CS 205: Sample Final Exam December 6th, 2004 1. [10 points] Let A = {1, 3, 5, 7, 9}, B = {4, 5, 6, 7, 8}, C = {2, 4, 6, 8, 10}, D = {1, 2, 3} and let the universal set be U = {1,

More information

Introduction to Graphs

Introduction to Graphs Graphs Introduction to Graphs Graph Terminology Directed Graphs Special Graphs Graph Coloring Representing Graphs Connected Graphs Connected Component Reading (Epp s textbook) 10.1-10.3 1 Introduction

More information

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

CS3102 Theory of Computation Solutions to Problem Set 1, Spring 2012 Department of Computer Science, University of Virginia

CS3102 Theory of Computation Solutions to Problem Set 1, Spring 2012 Department of Computer Science, University of Virginia CS3102 Theory of Computation Solutions to Problem Set 1, Spring 2012 Department of Computer Science, University of Virginia Gabriel Robins Please start solving these problems immediately, and work in study

More information