The Slide does not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams.

Size: px
Start display at page:

Download "The Slide does not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams."

Transcription

1

2 The Slide does not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams.

3 System Model Deadlock Characterization Methods of handling deadlock Deadlock prevention Deadlock Avoidance Deadlock Detection Recovery from deadlock

4 Deadlocks occur two or more process are each waiting for an event that will never occur, since it can only be generated by another process in that set Deadlock is one of the most difficult problems that OS designers face As we examine various approaches to deal with deadlocks, notice the tradeoff between, how well the approach solves the problem, and its performance/ OS overhead

5 Resource types R1, R2. Rm( CPU Cycles, memory space, I/O Devices Each resource type Ri has Wi instances Each process utilizes a resource as follows Request -> use -> Release Resources are Physical(tape drives, CPU cycles, printers, memory space) Logical(Files, Semaphores)

6 Mutual Exclusion Only one process can use a resource at a time. Hold and Wait A process are allowed to hold one resource and be waiting to acquire additional resources held by other processes No preemption Resources are released voluntarily; neither other process nor OS can force a process to release the resource Circular Wait: A set of waiting process must exist such that P0 is waiting for a process held by P1 and so on and Pn for P0

7 A deadlock condition can be modeled using a directed graph called a resource allocation graph 2 kinds of nodes: Boxes represent resources Instances of the resource are represented as dots within the box Circles represent threads / processes 2 kinds of (directed) edges: Request edge from process to resource - indicates the process has requested the resource, and is waiting to acquire it Assignment edge from resource instance to process indicates the process is holding the resource instance

8 When a request is made, a request edge is added When request is fulfilled, the request edge is transformed into an assignment edge When process releases the resource, the assignment edge is deleted

9

10

11

12 If graph contains no cycles no deadlock. If graph contains a cycle if only one instance per resource type, then deadlock. if several instances per resource type, possibility of deadlock.

13 1. Ensure that the system will never enter a deadlock state. Deadlock prevention prevent deadlock from occurring by eliminating one of the 4 deadlock conditions Deadlock avoidance algorithms consider resources currently available, resources allocated to each thread, and possible future requests, and only fulfil requests that will not lead to deadlock 2. Allow the system to enter a deadlock state and detect it and then recover. Deadlock detection algorithm detect when deadlock occur, Deadlock recovery algorithms break the deadlock 3. Ignore the problem and pretend that deadlocks never occur in the system (The ostrich approach)

14 Basic idea: ensure that one of the 4 conditions for deadlock cannot hold Mutual exclusion if one process holds a resource, other processes requesting that resource must wait until the process releases it (only one can use it at a time) Hard to avoid mutual exclusion for nonsharable resources Printer & other I/O devices Files However, many resources are sharable, so deadlock can be avoided for those resources Read-only files How to avoid mutual exclusion for printer? through spooling then process won t have to wait on physical printer

15 Hold and wait processes are allowed to hold one (or more) resource and be waiting to acquire additional resources that are being held by other processes To avoid, ensure that whenever a process requests a resource, it doesn t hold any other resources Request all resources (at once) at beginning of process execution To get a new resource, release all current resources, and then request new ones Difficult to know what to request in advance Wasteful; ties up resources and reduces resource utilization Starvation is possible

16 No preemption resources are released voluntarily; neither another process nor the OS can force a process to release a resource To avoid, allow preemption If process A requests resources that aren t available, see who holds those resources If the holder (process B) is waiting on additional resources, preempt the resource requested by process A Otherwise, process A has to wait» While waiting, some of its current resources may be preempted» Can only wake up when it acquires the new resources plus any preempted resources If a process requests a resource that cannot be allocated to it, all resources held by that process are preempted Can only wake up when it can acquire all the requested resources Only works for resources whose state can be saved/restored(cpu registers and memory space, not printer or tape drives)

17 Circular wait there must exist a set of waiting processes such that P0 is waiting for a resource held by P1, P1 is waiting for a resource held by P2, Pn-1 is waiting for a resource held by Pn, and Pn is waiting for a resource held P0 To avoid, impose a total order on all resources, and require process to request resource in that order Order: disk drive, printer, CDROM Process A requests disk drive, then printer Process B requests disk drive, then printer Process B does not request printer, then disk drive, which could lead to deadlock Order should be in the logical sequence that the resources are usually acquired Allow process to release all resources, and start request sequence over Or force process to request total number of each resource in a single request

18 Requires that the system has some additional a priori information available about the use of resources by processes. Simplest and most useful model requires that each process declare the maximum number of resources of each type that it may need. The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be a circular-wait condition. Resource-allocation state is defined by the number of available and allocated resources, and the maximum demands of the processes.

19 A system is in safe if the system can allocate resources to each process(upto maximum) and still avoid deadlock safe sequence of all processes Sequence <P 1, P 2,, P n > is safe if for each P i, the resources that P i can still request can be satisfied by currently available resources + resources held by all the P j, with j<i. If P i resource needs are not immediately available, then P i can wait until all P j have finished. When P j is finished, P i can obtain needed resources, execute, return allocated resources, and terminate. When P i terminates, P i+1 can obtain its needed resources, and so on.

20 If a system is in safe state => no deadlocks If a system is in unsafe state => possibility of deadlock due to behavior of processes Avoidance => Ensure that system never enters an unsafe state

21 The behavior of process controls unsafe state 12 tape drives Process Max Current P P1 4 2 P2 9 2 What is the safe sequence? What if P2 requested 1 more tape drive at t1? Allocate more resources only if it leaves the system in safe state An unsafe state is not deadlocked, but no such scheduling order exists It may even work, if a process releases resources at the right time

22 Claim edge P i R j indicated that process P j may request resource R j ; represented by a dashed line. Claim edge converts to request edge when a process requests a resource. And assignment edge when assigned. When a resource is released by a process, assignment edge reconverts to a claim edge. Resources must be claimed a priori in the system.

23 An algorithm for detecting a cycle in a graph requires order of n 2 operations A resource is not allocated if this action will create a cycle, so the claim edge will be left as request edge

24 Multiple instances of resources. Each process must a priori claim maximum use. When a process requests a resource it may have to wait. When a process gets all its resources it must return them in a finite amount of time.

25 Let n = number of processes, and m = number of resources types. Available: Vector of length m. If available [j] = k, there are k instances of resource type R j available. Max: n x m matrix. If Max [i,j] = k, then process P i may request at most k instances of resource type R j. Allocation: n x m matrix. If Allocation[i,j] = k then P i is currently allocated k instances of R j. Need: n x m matrix. If Need[i,j] = k, then P i may need k more instances of R j to complete its task. Need [i,j] = Max[i,j] Allocation [i,j].

26 1. Let Work and Finish be vectors of length m and n, respectively. Initialize: Work = Available Finish [i] = false for i - 1,3,, n. 2. Find and i such that both: (a) Finish [i] = false (b) Need i Work (available) If no such i exists, go to step Work = Work + Allocation i Finish[i] = true go to step If Finish [i] == true for all i, then the system is in a safe state.

27 Request = request vector for process P i. If Request i [j] = k then process P i wants k instances of resource type R j. 1. If Request i Need i go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim. 2. If Request i Available, go to step 3. Otherwise P i must wait, since resources are not available. 3. Pretend to allocate requested resources to P i by modifying the state as follows: Available = Available - Request i ; Allocation i = Allocation i + Request i ; Need i = Need i Request i ; If safe the resources are allocated to Pi. If unsafe Pi must wait, and the old resourceallocation state is restored

28 5 processes P 0 through P 4 ; 3 resource types A (10 instances) B (5 instances) C (7 instances). Snapshot at time T 0 : Allocation Max Available A B C A B C A B C P P P P P Is the system safe?

29 The content of the matrix. Need is defined to be Max Allocation. Need A B C P P P P P The system is in a safe state since the sequence < P 1, P 3, P 4, P 2, P 0 > satisfies safety criteria.

30 Check that Request Available (that is, (1,0,2) (3,3,2) true. Allocation Need Available A B C A B C A B C P P P P P Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety requirement. Can request for (3,3,0) by P4 be granted? Can request for (0,2,0) by P0 be granted?

31 Allow system to enter deadlock state Detection algorithm Recovery scheme

32 Maintain wait-for graph Nodes are processes. P i P j if P i is waiting for P j. Periodically invoke an algorithm that searches for a cycle in the graph. An algorithm to detect a cycle in a graph requires an order of n 2 operations, where n is the number of vertices in the graph.

33

34 Available: A vector of length m indicates the number of available resources of each type. Allocation: An n x m matrix defines the number of resources of each type currently allocated to each process. Request: An n x m matrix indicates the current request of each process. If Request [i j ] = k, then process P i is requesting k more instances of resource type. R j.

35 1. Let Work and Finish be vectors of length m and n, respectively Initialize: (a) Work = Available (b) For i = 1,2,, n, if Allocation i 0, then Finish[i] = false;otherwise, Finish[i] = true. 2. Find an index i such that both: (a) Finish[i] == false (b) Request i Work If no such i exists, go to step Work = Work + Allocation i Finish[i] = true go to step If Finish[i] == false, for some i, 1 i n, then the system is in deadlock state. Moreover, if Finish[i] == false, then P i is deadlocked. Algorithm requires an order of O(m x n 2) operations to detect whether the system is in deadlocked state.

36 Five processes P 0 through P 4 ; three resource types A (7 instances), B (2 instances), and C (6 instances). Snapshot at time T 0 : Allocation Request Available A B C A B C A B C P P P P P State of system? Can reclaim resources held by process P 0, but insufficient resources to fulfill other processes; requests. Deadlock exists, consisting of processes P 1, P 2, P 3, and P 4.

37 When, and how often, to invoke depends on: How often a deadlock is likely to occur? How many processes will need to be rolled back? one for each disjoint cycle If detection algorithm is Invoke at each request we can identify deadlocked processes and specific process that caused the deadlock Incur considerable overhead Invoked arbitrarily - there may be many cycles in the resource graph and not be able to tell which of the many deadlocked processes caused the deadlock.

38 Whenever detection algorithm determines that deadlock exists several alternatives are available Two options of breaking the deadlock Process Termination Abort one or more process to break the circular wait Resource Preemption Preempt some resources from one or more of the deadlocked processes

39 1. Abort all deadlocked processes. great expense as processes must have computed for a long time and results must be discarded 2. Abort one process at a time until the deadlock cycle is eliminated Considerable overhead since after each process is aborted deadlock detection must be performed In which order should we choose to abort? Priority of the process. How long process has computed, and how much longer to completion. Resources the process has used. Resources process needs to complete. How many processes will need to be terminated. Is process interactive or batch?

40 Preempt some resources from processes and give these to other process until deadlock cycle is broken Three issues needs to be addressed Selecting a victim chose the order of preemption to minimize cost. Rollback return to some safe state, restart process for that state or total rollback Starvation same process may always be picked as victim, include number of rollback in cost factor.

41 What method does your operating system use? Deadlock Prevention Deadlock Avoidance Deadlock Detection and Recovery Ignore the problem and pretend deadlock never occur The last solution is used in Unix and Windows and it is then up to the application developer to write programs that handle deadlock

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks Chapter 7: Deadlocks 7.1 System Model 7.2 Deadlock Characterization 7.3 Methods for Handling Deadlocks 7.4 Deadlock Prevention 7.5 Deadlock Avoidance 7.6 Deadlock Detection 7.7 Recovery

More information

Chapter 8: Deadlocks

Chapter 8: Deadlocks Chapter 8: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

Chapter 8: Deadlocks. The Deadlock Problem. System Model. Bridge Crossing Example. Resource-Allocation Graph. Deadlock Characterization

Chapter 8: Deadlocks. The Deadlock Problem. System Model. Bridge Crossing Example. Resource-Allocation Graph. Deadlock Characterization Chapter 8: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined

More information

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Chapter

More information

The Deadlock Problem

The Deadlock Problem The Deadlock Problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 disk drives. P 1 and P 2 each hold one

More information

Module 7: Deadlocks. The Deadlock Problem. Bridge Crossing Example. System Model

Module 7: Deadlocks. The Deadlock Problem. Bridge Crossing Example. System Model Module 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined

More information

Chapter 8: Deadlocks. The Deadlock Problem

Chapter 8: Deadlocks. The Deadlock Problem Chapter 8: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

Chapter 7: Deadlocks. Chapter 7: Deadlocks. The Deadlock Problem. Chapter Objectives. System Model. Bridge Crossing Example

Chapter 7: Deadlocks. Chapter 7: Deadlocks. The Deadlock Problem. Chapter Objectives. System Model. Bridge Crossing Example Silberschatz, Galvin and Gagne 2009 Chapter 7: Deadlocks Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance

More information

Deadlock Prevention. Restrain the ways request can be made. Mutual Exclusion not required for sharable resources; must hold for nonsharable resources.

Deadlock Prevention. Restrain the ways request can be made. Mutual Exclusion not required for sharable resources; must hold for nonsharable resources. Deadlock Prevention Restrain the ways request can be made. Mutual Exclusion not required for sharable resources; must hold for nonsharable resources. Hold and Wait must guarantee that whenever a process

More information

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition,

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition, Chapter 7: Deadlocks, Silberschatz, Galvin and Gagne 2009 Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance

More information

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from

More information

Deadlocks. Deadlock Overview

Deadlocks. Deadlock Overview Deadlocks Gordon College Stephen Brinton Deadlock Overview The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Chapter 7 : 7: Deadlocks Silberschatz, Galvin and Gagne 2009 Operating System Concepts 8th Edition, Chapter 7: Deadlocks

Chapter 7 : 7: Deadlocks Silberschatz, Galvin and Gagne 2009 Operating System Concepts 8th Edition, Chapter 7: Deadlocks Chapter 7: Deadlocks, Silberschatz, Galvin and Gagne 2009 Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance

More information

Chapter 7: Deadlocks. Operating System Concepts with Java 8 th Edition

Chapter 7: Deadlocks. Operating System Concepts with Java 8 th Edition Chapter 7: Deadlocks 7.1 Silberschatz, Galvin and Gagne 2009 Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock

More information

CSE Opera+ng System Principles

CSE Opera+ng System Principles CSE 30341 Opera+ng System Principles Deadlocks Overview System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

UNIT-5 Q1. What is deadlock problem? Explain the system model of deadlock.

UNIT-5 Q1. What is deadlock problem? Explain the system model of deadlock. UNIT-5 Q1. What is deadlock problem? Explain the system model of deadlock. The Deadlock Problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process

More information

CMSC 412. Announcements

CMSC 412. Announcements CMSC 412 Deadlock Reading Announcements Chapter 7 Midterm next Monday In class Will have a review on Wednesday Project 3 due Friday Project 4 will be posted the same day 1 1 The Deadlock Problem A set

More information

The Deadlock Problem (1)

The Deadlock Problem (1) Deadlocks The Deadlock Problem (1) A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 disk drives. P 1 and P 2

More information

Chapter 8: Deadlocks. Operating System Concepts with Java

Chapter 8: Deadlocks. Operating System Concepts with Java Chapter 8: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

Silberschatz, Galvin and Gagne 2013! CPU cycles, memory space, I/O devices! " Silberschatz, Galvin and Gagne 2013!

Silberschatz, Galvin and Gagne 2013! CPU cycles, memory space, I/O devices!  Silberschatz, Galvin and Gagne 2013! Chapter 7: Deadlocks Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock 7.2 Chapter

More information

Module 7: Deadlocks. The Deadlock Problem

Module 7: Deadlocks. The Deadlock Problem Module 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

Module 7: Deadlocks. System Model. Deadlock Characterization. Methods for Handling Deadlocks. Deadlock Prevention. Deadlock Avoidance

Module 7: Deadlocks. System Model. Deadlock Characterization. Methods for Handling Deadlocks. Deadlock Prevention. Deadlock Avoidance Module 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

Deadlocks. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Deadlocks. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Deadlocks Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics What is deadlock? Deadlock characterization Four conditions for deadlock

More information

Deadlocks. Prepared By: Kaushik Vaghani

Deadlocks. Prepared By: Kaushik Vaghani Deadlocks Prepared By : Kaushik Vaghani Outline System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection & Recovery The Deadlock Problem

More information

CS307 Operating Systems Deadlocks

CS307 Operating Systems Deadlocks CS307 Deadlocks Fan Wu Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2016 Bridge Crossing Example Traffic only in one direction Each section of a bridge can be viewed

More information

Deadlocks. Bridge Crossing Example. The Problem of Deadlock. Deadlock Characterization. Resource-Allocation Graph. System Model

Deadlocks. Bridge Crossing Example. The Problem of Deadlock. Deadlock Characterization. Resource-Allocation Graph. System Model CS07 Bridge Crossing Example Deadlocks Fan Wu Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2016 Traffic only in one direction Each section of a bridge can be viewed

More information

Deadlock. Concepts to discuss. A System Model. Deadlock Characterization. Deadlock: Dining-Philosophers Example. Deadlock: Bridge Crossing Example

Deadlock. Concepts to discuss. A System Model. Deadlock Characterization. Deadlock: Dining-Philosophers Example. Deadlock: Bridge Crossing Example Concepts to discuss Deadlock CSCI 315 Operating Systems Design Department of Computer Science Deadlock Livelock Spinlock vs. Blocking Notice: The slides for this lecture have been largely based on those

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Chapter 7: Deadlocks. Operating System Concepts 9th Edition DM510-14

Chapter 7: Deadlocks. Operating System Concepts 9th Edition DM510-14 Chapter 7: Deadlocks Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock 7.2 Chapter

More information

CHAPTER 7: DEADLOCKS. By I-Chen Lin Textbook: Operating System Concepts 9th Ed.

CHAPTER 7: DEADLOCKS. By I-Chen Lin Textbook: Operating System Concepts 9th Ed. CHAPTER 7: DEADLOCKS By I-Chen Lin Textbook: Operating System Concepts 9th Ed. Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention

More information

Roadmap. Safe State. Deadlock Avoidance. Basic Facts. Safe, Unsafe, Deadlock State. Tevfik Koşar. CSC Operating Systems Spring 2007

Roadmap. Safe State. Deadlock Avoidance. Basic Facts. Safe, Unsafe, Deadlock State. Tevfik Koşar. CSC Operating Systems Spring 2007 CSC 4103 - Operating Systems Spring 2007 Roadmap Lecture - IX Deadlocks - II Deadlocks Deadlock Avoidance Deadlock Detection Recovery from Deadlock Tevfik Koşar Louisiana State University February 15 th,

More information

System Model. Types of resources Reusable Resources Consumable Resources

System Model. Types of resources Reusable Resources Consumable Resources Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock System Model Types

More information

Deadlock Risk Management

Deadlock Risk Management Lecture 5: Deadlocks, Deadlock Risk Management Contents The Concept of Deadlock Resource Allocation Graph Approaches to Handling Deadlocks Deadlock Avoidance Deadlock Detection Recovery from Deadlock AE3B33OSD

More information

Lecture 7 Deadlocks (chapter 7)

Lecture 7 Deadlocks (chapter 7) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 7 Deadlocks (chapter 7) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The slides here are

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 11 - Deadlocks Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian, and course

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition! Silberschatz, Galvin and Gagne 2013!

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition! Silberschatz, Galvin and Gagne 2013! Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013! Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009!

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009! Chapter 7: Deadlocks Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009! Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Operating Systems 2015 Spring by Euiseong Seo DEAD LOCK

Operating Systems 2015 Spring by Euiseong Seo DEAD LOCK Operating Systems 2015 Spring by Euiseong Seo DEAD LOCK Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

CHAPTER 7 - DEADLOCKS

CHAPTER 7 - DEADLOCKS CHAPTER 7 - DEADLOCKS 1 OBJECTIVES To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks To present a number of different methods for preventing

More information

Module 6: Deadlocks. Reading: Chapter 7

Module 6: Deadlocks. Reading: Chapter 7 Module 6: Deadlocks Reading: Chapter 7 Objective: To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks To present a number of different methods

More information

Chapter 7: Deadlocks. Operating System Concepts 8th Edition, modified by Stewart Weiss

Chapter 7: Deadlocks. Operating System Concepts 8th Edition, modified by Stewart Weiss Chapter 7: Deadlocks, Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance (briefly) Deadlock Detection

More information

Roadmap. Deadlock Prevention. Deadlock Prevention (Cont.) Deadlock Detection. Exercise. Tevfik Koşar. CSE 421/521 - Operating Systems Fall 2012

Roadmap. Deadlock Prevention. Deadlock Prevention (Cont.) Deadlock Detection. Exercise. Tevfik Koşar. CSE 421/521 - Operating Systems Fall 2012 CSE 421/521 - Operating Systems Fall 2012 Roadmap Lecture - XI Deadlocks - II Deadlocks Deadlock Prevention Deadlock Detection Deadlock Recovery Deadlock Avoidance Tevfik Koşar University at Buffalo October

More information

CSC Operating Systems Fall Lecture - XII Deadlocks - III. Tevfik Ko!ar. Louisiana State University. October 6 th, 2009

CSC Operating Systems Fall Lecture - XII Deadlocks - III. Tevfik Ko!ar. Louisiana State University. October 6 th, 2009 CSC 4103 - Operating Systems Fall 2009 Lecture - XII Deadlocks - III Tevfik Ko!ar Louisiana State University October 6 th, 2009 1 Deadlock Detection Allow system to enter deadlock state Detection algorithm

More information

COP 4610: Introduction to Operating Systems (Spring 2016) Chapter 7 Deadlocks. Zhi Wang Florida State University

COP 4610: Introduction to Operating Systems (Spring 2016) Chapter 7 Deadlocks. Zhi Wang Florida State University COP 4610: Introduction to Operating Systems (Spring 2016) Chapter 7 Deadlocks Zhi Wang Florida State University Contents Deadlock problem System model Handling deadlocks deadlock prevention deadlock avoidance

More information

Chapter 8: Deadlocks. The Deadlock Problem

Chapter 8: Deadlocks. The Deadlock Problem Chapter 8: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

The Deadlock Problem. Chapter 8: Deadlocks. Bridge Crossing Example. System Model. Deadlock Characterization. Resource-Allocation Graph

The Deadlock Problem. Chapter 8: Deadlocks. Bridge Crossing Example. System Model. Deadlock Characterization. Resource-Allocation Graph Chapter 8: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined

More information

Deadlocks. Dr. Yingwu Zhu

Deadlocks. Dr. Yingwu Zhu Deadlocks Dr. Yingwu Zhu Deadlocks Synchronization is a live gun we can easily shoot ourselves in the foot Incorrect use of synchronization can block all processes You have likely been intuitively avoiding

More information

Deadlocks. Operating System Concepts - 7 th Edition, Feb 14, 2005

Deadlocks. Operating System Concepts - 7 th Edition, Feb 14, 2005 Deadlocks Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock 7.2 Silberschatz,

More information

The Deadlock Problem

The Deadlock Problem Deadlocks The Deadlock Problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 disk drives. P1 and P2 each

More information

ICS Principles of Operating Systems. Lectures Set 5- Deadlocks Prof. Nalini Venkatasubramanian

ICS Principles of Operating Systems. Lectures Set 5- Deadlocks Prof. Nalini Venkatasubramanian ICS 143 - Principles of Operating Systems Lectures Set 5- Deadlocks Prof. Nalini Venkatasubramanian nalini@ics.uci.edu Outline System Model Deadlock Characterization Methods for handling deadlocks Deadlock

More information

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition,

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition, Chapter 7: Deadlocks, Silberschatz, Galvin and Gagne 2009 Chapter Objectives To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks To present a number

More information

The Deadlock Problem

The Deadlock Problem Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock The Deadlock

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 16-17 - Deadlocks Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian, and

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Bridge Crossing Example

Bridge Crossing Example CSCI 4401 Principles of Operating Systems I Deadlocks Vassil Roussev vassil@cs.uno.edu Bridge Crossing Example 2 Traffic only in one direction. Each section of a bridge can be viewed as a resource. If

More information

Chapter 8: Deadlocks. The Deadlock Problem

Chapter 8: Deadlocks. The Deadlock Problem Chapter 8: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

CS420: Operating Systems. Deadlocks & Deadlock Prevention

CS420: Operating Systems. Deadlocks & Deadlock Prevention Deadlocks & Deadlock Prevention James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne The Deadlock Problem

More information

Chapter 7: Deadlocks CS370 Operating Systems

Chapter 7: Deadlocks CS370 Operating Systems Chapter 7: Deadlocks CS370 Operating Systems Objectives: Description of deadlocks, which prevent sets of concurrent processes from completing their tasks Different methods for preventing or avoiding deadlocks

More information

Deadlocks. Minsoo Ryu. Real-Time Computing and Communications Lab. Hanyang University.

Deadlocks. Minsoo Ryu. Real-Time Computing and Communications Lab. Hanyang University. Deadlocks Minsoo Ryu Real-Time Computing and Communications Lab. Hanyang University msryu@hanyang.ac.kr Topics Covered System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Unit-03 Deadlock and Memory Management Unit-03/Lecture-01

Unit-03 Deadlock and Memory Management Unit-03/Lecture-01 1 Unit-03 Deadlock and Memory Management Unit-03/Lecture-01 The Deadlock Problem 1. A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 17 Deadlock Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Claim edge may request- request

More information

Deadlock Risk Management

Deadlock Risk Management Lecture 6: Deadlocks, Deadlock Risk Management Readers and Writers with Readers Priority Shared data semaphore wrt, readcountmutex; int readcount Initialization wrt = 1; readcountmutex = 1; readcount =

More information

Deadlock. Chapter Objectives

Deadlock. Chapter Objectives Deadlock This chapter will discuss the following concepts: The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Chapter 7: Deadlocks. Chapter 7: Deadlocks. System Model. Chapter Objectives

Chapter 7: Deadlocks. Chapter 7: Deadlocks. System Model. Chapter Objectives Chapter 7: Deadlocks Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Silberschatz,

More information

University of Babylon / College of Information Technology / Network Department. Operating System / Dr. Mahdi S. Almhanna & Dr. Rafah M.

University of Babylon / College of Information Technology / Network Department. Operating System / Dr. Mahdi S. Almhanna & Dr. Rafah M. Chapter 6 Methods for Handling Deadlocks Generally speaking, we can deal with the deadlock problem in one of three ways: We can use a protocol to prevent or avoid deadlocks, ensuring that the system will

More information

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock 2009/11/30

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 1019 L14 Deadlocks Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Creating threads without using

More information

Chapter 7: Deadlocks. Chapter 7: Deadlocks. Deadlock Example. Chapter Objectives

Chapter 7: Deadlocks. Chapter 7: Deadlocks. Deadlock Example. Chapter Objectives Chapter 7: Deadlocks Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Silberschatz,

More information

Potential Deadlock Example

Potential Deadlock Example Deadlock Handling Notice: The slides for this lecture have been largely based on those accompanying an earlier edition of the course text Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and

More information

The Deadlock Problem. A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.

The Deadlock Problem. A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Deadlock The Deadlock Problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set Example semaphores A and B, initialized to 1 P 0 P

More information

OPERATING SYSTEMS. Prescribed Text Book. Operating System Principles, Seventh Edition. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne

OPERATING SYSTEMS. Prescribed Text Book. Operating System Principles, Seventh Edition. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne OPERATING SYSTEMS Prescribed Text Book Operating System Principles, Seventh Edition By Abraham Silberschatz, Peter Baer Galvin and Greg Gagne 1 DEADLOCKS In a multi programming environment, several processes

More information

UNIT-3 DEADLOCKS DEADLOCKS

UNIT-3 DEADLOCKS DEADLOCKS UNIT-3 DEADLOCKS Deadlocks: System Model - Deadlock Characterization - Methods for Handling Deadlocks - Deadlock Prevention. Deadlock Avoidance - Deadlock Detection - Recovery from Deadlock DEADLOCKS Definition:

More information

Operating systems. Lecture 5. Deadlock: System Model. Deadlock: System Model. Process synchronization Deadlocks. Deadlock: System Model

Operating systems. Lecture 5. Deadlock: System Model. Deadlock: System Model. Process synchronization Deadlocks. Deadlock: System Model Lecture 5 Operating systems Process synchronization Deadlocks Deadlock: System Model Computer system: Processes (program in execution); Resources (CPU, memory space, files, I/O devices, on so on). Deadlock:

More information

Introduction to Deadlocks

Introduction to Deadlocks Unit 5 Introduction to Deadlocks Structure 5.1 Introduction Objectives 5.2 System Model 5.3 Deadlock Characterization Necessary Conditions for Deadlock Resource-Allocation Graph. 5.4 Deadlock Handling

More information

Deadlocks. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Deadlocks. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Deadlocks Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics What is the deadlock problem? Four conditions for deadlock Handling deadlock

More information

Contents. Chapter 8 Deadlocks

Contents. Chapter 8 Deadlocks Contents * All rights reserved, Tei-Wei Kuo, National Taiwan University,.. Introduction. Computer-System Structures. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization

More information

COMP 3713 Operating Systems Slides Part 3. Jim Diamond CAR 409 Jodrey School of Computer Science Acadia University

COMP 3713 Operating Systems Slides Part 3. Jim Diamond CAR 409 Jodrey School of Computer Science Acadia University COMP 3713 Operating Systems Slides Part 3 Jim Diamond CAR 409 Jodrey School of Computer Science Acadia University Acknowledgements These slides borrow from those prepared for Operating System Concepts

More information

OPERATING SYSTEMS. Deadlocks

OPERATING SYSTEMS. Deadlocks OPERATING SYSTEMS CS3502 Spring 2018 Deadlocks Chapter 7 Resource Allocation and Deallocation When a process needs resources, it will normally follow the sequence: 1. Request a number of instances of one

More information

Chapter 8: Deadlocks. Bridge Crossing Example. The Deadlock Problem

Chapter 8: Deadlocks. Bridge Crossing Example. The Deadlock Problem Chapter 8: Deadlocks Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock 8.1 Bridge Crossing Example Bridge has one

More information

Chapter - 4. Deadlocks Important Questions

Chapter - 4. Deadlocks Important Questions Chapter - 4 Deadlocks Important Questions 1 1.What do you mean by Deadlocks? A process request for some resources. If the resources are not available at that time, the process enters a waiting state. The

More information

Outlook. Deadlock Characterization Deadlock Prevention Deadlock Avoidance

Outlook. Deadlock Characterization Deadlock Prevention Deadlock Avoidance Deadlocks Outlook Deadlock Characterization Deadlock Prevention Deadlock Avoidance Deadlock Detection and Recovery e 2 Deadlock Characterization 3 Motivation System owns many resources of the types Memory,

More information

Fall 2015 COMP Operating Systems. Lab 06

Fall 2015 COMP Operating Systems. Lab 06 Fall 2015 COMP 3511 Operating Systems Lab 06 Outline Monitor Deadlocks Logical vs. Physical Address Space Segmentation Example of segmentation scheme Paging Example of paging scheme Paging-Segmentation

More information

Final Exam Review. CPSC 457, Spring 2016 June 29-30, M. Reza Zakerinasab Department of Computer Science, University of Calgary

Final Exam Review. CPSC 457, Spring 2016 June 29-30, M. Reza Zakerinasab Department of Computer Science, University of Calgary Final Exam Review CPSC 457, Spring 2016 June 29-30, 2015 M. Reza Zakerinasab Department of Computer Science, University of Calgary Final Exam Components Final Exam: Monday July 4, 2016 @ 8 am in ICT 121

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L16 Deadlocks, Main Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Where we are: Deadlocks

More information

TDDB68 + TDDD82. Lecture: Deadlocks

TDDB68 + TDDD82. Lecture: Deadlocks TDDB68 + TDDD82 Lecture: Deadlocks Mikael Asplund, Senior Lecturer Real-time Systems Laboratory Department of Computer and Information Science Thanks to Simin Nadjm-Tehrani and Christoph Kessler for much

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 16 Deadlock Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Does a cycle in a resource

More information

Deadlock. A Bit More on Synchronization. The Deadlock Problem. Deadlock Characterization. Operating Systems 2/7/2005. CSC 256/456 - Spring

Deadlock. A Bit More on Synchronization. The Deadlock Problem. Deadlock Characterization. Operating Systems 2/7/2005. CSC 256/456 - Spring A Bit More on Synchronization Deadlock CS 256/456 Dept. of Computer Science, University of Rochester Synchronizing interrupt handlers: Interrupt handlers run at highest priority and they must not block.

More information

Deadlock. Operating Systems. Autumn CS4023

Deadlock. Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline Deadlock 1 Deadlock Outline Deadlock 1 Deadlock The Deadlock Problem Deadlock A set of blocked processes each holding a resource and waiting to acquire a resource

More information

Maximum CPU utilization obtained with multiprogramming. CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait

Maximum CPU utilization obtained with multiprogramming. CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Thread Scheduling Operating Systems Examples Java Thread Scheduling Algorithm Evaluation CPU

More information

Deadlocks. System Model

Deadlocks. System Model Deadlocks System Model Several processes competing for resources. A process may wait for resources. If another waiting process holds resources, possible deadlock. NB: this is a process-coordination problem

More information

Operating Systems. Deadlocks. Stephan Sigg. November 30, Distributed and Ubiquitous Systems Technische Universität Braunschweig

Operating Systems. Deadlocks. Stephan Sigg. November 30, Distributed and Ubiquitous Systems Technische Universität Braunschweig Operating Systems Deadlocks Stephan Sigg Distributed and Ubiquitous Systems Technische Universität Braunschweig November 30, 2010 Stephan Sigg Operating Systems 1/86 Overview and Structure Introduction

More information

The deadlock problem

The deadlock problem Deadlocks Arvind Krishnamurthy Spring 2004 The deadlock problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process. Example locks A and B P 0 P

More information

Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - XI Deadlocks - II. University at Buffalo. Deadlocks. October 6 th, 2011

Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - XI Deadlocks - II. University at Buffalo. Deadlocks. October 6 th, 2011 CSE 421/521 - Operating Systems Fall 2011 Lecture - XI Deadlocks - II Tevfik Koşar University at Buffalo October 6 th, 2011 1 Roadmap Deadlocks Resource Allocation Graphs Deadlock Prevention Deadlock Detection

More information

When Deadlock Happens

When Deadlock Happens Deadlock Detection Notice: The slides for this lecture have been largely based on those accompanying an earlier edition of the course text Operating Systems Concepts, 9th ed., by Silberschatz, Galvin,

More information