Fractional Similarity : Cross-lingual Feature Selection for Search

Size: px
Start display at page:

Download "Fractional Similarity : Cross-lingual Feature Selection for Search"

Transcription

1 : Cross-lingual Feature Selection for Search Jagadeesh Jagarlamudi University of Maryland, College Park, USA Joint work with Paul N. Bennett Microsoft Research, Redmond, USA

2 Using All the Data Existing Search Engine Get Help Search Engine in a New language/market Training Data (Judgements, Clicks, etc.) Query and result documents are in the same language 2

3 Problem Statement Improve foreign language ranker using English Search Engine data Query and result documents are in the same language Different from CLIR Obtaining relevance judgments is expensive Potentially advantageous Increased training data Quality of behavioral data Trivial solution may not be optimal Amount of signal carried by features can be different Differences in languages/ regions 3

4 Outline Problem Statement Approaches and Sub-problems Challenges in capturing a feature similarity Our Approach Fractional Similarity Cross-lingual Feature Selection Experiments Conclusion 4

5 Approaches and sub-problems 1. Using the queries in both languages a) Linguistically non-ambiguous queries [Gao et al. 2008] E.g. Harry Potter b) Joint Relevance Estimation for bilingual queries [Gao et al. 2009] c) Multi-PRF [Chinnakotla et al. ACL, 2010, SIGIR 2010] 2. Feature based Transfer Learning 17% of unique queries are translation Natural approach in Learning to Rank situations Query-document as a feature vector E.g., PageRank, QueryWordsInDoc, etc Amount of signal carried by a feature can vary based on language 5

6 Matching feature distributions E.g: Norm Estimate pdf. using Kernel-density estimation probability Normalized Norm Feature-value Quantify the similarity and when are they different 6

7 Challenges in capturing similarity Query-Document correlation Consider the feature NoQueryWordsInDocTitle (for Harry Potter ) Top-10 candidate result documents likely to take the same value (of 2) 50 queries with 20 results on average gives 1000 training instances Query-set variance Different type of queries based on the region / characteristics of language Can t capture the differences using significance tests Normalization of the feature Continuous and Discrete features 7

8 Outline Problem Statement Approaches and Sub-problems Challenges in capturing a feature similarity Our Approach Fractional Similarity Cross-lingual Feature Selection Experiments Conclusion 8

9 Our approach 1. Fractional Similarity Significance tests such as T-test may not be useful Due to query Set Variance Robust method to verify if two populations have same mean Making features comparable to each other 2. Cross-lingual Feature Selection Identify features that are similar across languages A direct application compares means of a feature across languages Use of log-likelihood at random points Compare distributions Query-document correlation 9

10 10

11 11

12 Sample ref 12

13 Sample Sample ref 13

14 Sample Sample ref 14

15 Sample Sample ref p- are computed using T-test 15

16 1 Sample Sample ref p- are computed using T-test 16

17 1 Sample Sample ref p ef p- are computed using T-test 17

18 1 Sample Sample ref p ef frac = p ef p- are computed using T-test 18

19 1 Sample Sample ref p ef frac = p ef p- are computed using T-test frac 19

20 1 Sample Sample ref Combined ( = 0) p ef frac = p ef p- are computed using T-test frac 20

21 1 Sample Sample ref Combined ( = 0) 0.2) p ef frac = p ef p- are computed using T-test frac 21

22 1 Sample Sample ref Combined ( = 0) 0.2) p ef frac = p ef p- are computed using T-test frac 22

23 1 Sample Sample ref Combined ( = 0) 0.2) 0.4) p ef frac = p ef p- are computed using T-test frac 23

24 1 Sample Sample ref Combined ( = 0) 0.2) 0.4) p ef frac = p ef p- are computed using T-test frac 24

25 1 Sample Sample ref Combined ( = 0) 0.2) 0.4) 0.6) p ef frac = p ef p- are computed using T-test frac 25

26 1 Sample Sample ref Combined ( = 0) 0.2) 0.4) 0.6) 0.8) p ef frac = p ef p- are computed using T-test frac 26

27 1 Sample Sample ref Combined ( = 0.2) 0.4) 0.6) 0.8) 1.0) p ef frac = p ef p- are computed using T-test frac 27

28 1 Sample Sample ref Combined ( = 0.2) 0.4) 0.6) 0.8) 1.0) p ef frac = p ef p- are computed using T-test As increases p ef decreases & frac (decreases) frac 28

29 1 Sample Sample ref Combined ( = 0.2) 0.4) 0.6) 0.8) 1.0) p- are computed using T-test Fractional Similarity p ef frac = p ef frac The maximum allowed such that, frac C (Binary Search for [0,1] ) C 29

30 Cross-lingual Feature Selection Direct application of Fractional Similarity will compare means Instead we want to compare pdfs Use of Log-likelihood We estimate a pdf from English Compute the likelihood of English and German Samples Enables comparison of pdfs Applicable to both discrete and continuous features Query-document correlation Query based sampling and Aggregate statistic of the query 30

31 Experiments Data sets Between English and German Queries and documents are sampled from a web search engine English 347 Common features Graded Human Relevance Judgments German # Queries 15K 7K # urls / query # Features LambdaMART for training a ranker Outperformed other approaches in Yahoo LETOR challenge 31

32 Using English data Adapt: Train ranker on English and Adapt to German Align: Simply train on both English and German data German Only Eng_adapt+German Δ over baseline Eng_align+German Δ over baseline Simply adding English training data of the common features performed better 32

33 Cross-lingual Feature Selection Rank all the common features based on similarity score Drop the data of mismatched features Add the filtered English data to German training data Baseline Use all the common features ( Align from prev.) 33

34 Discussion Using English training data is helpful Cross-lingual Feature Selection improves further Fractional Similarity identifies similar features better than KL Evidenced by the consistent improvement over KL For both the methods, the improvement drops at higher ranks Aggressive feature selection also hurts Removing ~ 25% gave best performance Theoretical arguments are outlined in the paper. 34

35 Conclusions For features with high variance Traditional significance tests are not useful Give almost zero p- Fractional Similarity overcomes this by using intra language variance Increased robustness Not limited to IR setting General to situations with correlated instances Applicable to both discrete and continuous features Appropriate selection of pdf. estimation technique 35

36 Thank You 36

WebSci and Learning to Rank for IR

WebSci and Learning to Rank for IR WebSci and Learning to Rank for IR Ernesto Diaz-Aviles L3S Research Center. Hannover, Germany diaz@l3s.de Ernesto Diaz-Aviles www.l3s.de 1/16 Motivation: Information Explosion Ernesto Diaz-Aviles

More information

From Neural Re-Ranking to Neural Ranking:

From Neural Re-Ranking to Neural Ranking: From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing Hamed Zamani (1), Mostafa Dehghani (2), W. Bruce Croft (1), Erik Learned-Miller (1), and Jaap Kamps (2)

More information

Learning Dense Models of Query Similarity from User Click Logs

Learning Dense Models of Query Similarity from User Click Logs Learning Dense Models of Query Similarity from User Click Logs Fabio De Bona, Stefan Riezler*, Keith Hall, Massi Ciaramita, Amac Herdagdelen, Maria Holmqvist Google Research, Zürich *Dept. of Computational

More information

Entity and Knowledge Base-oriented Information Retrieval

Entity and Knowledge Base-oriented Information Retrieval Entity and Knowledge Base-oriented Information Retrieval Presenter: Liuqing Li liuqing@vt.edu Digital Library Research Laboratory Virginia Polytechnic Institute and State University Blacksburg, VA 24061

More information

Northeastern University in TREC 2009 Million Query Track

Northeastern University in TREC 2009 Million Query Track Northeastern University in TREC 2009 Million Query Track Evangelos Kanoulas, Keshi Dai, Virgil Pavlu, Stefan Savev, Javed Aslam Information Studies Department, University of Sheffield, Sheffield, UK College

More information

A Few Things to Know about Machine Learning for Web Search

A Few Things to Know about Machine Learning for Web Search AIRS 2012 Tianjin, China Dec. 19, 2012 A Few Things to Know about Machine Learning for Web Search Hang Li Noah s Ark Lab Huawei Technologies Talk Outline My projects at MSRA Some conclusions from our research

More information

Personalized Web Search

Personalized Web Search Personalized Web Search Dhanraj Mavilodan (dhanrajm@stanford.edu), Kapil Jaisinghani (kjaising@stanford.edu), Radhika Bansal (radhika3@stanford.edu) Abstract: With the increase in the diversity of contents

More information

Rishiraj Saha Roy and Niloy Ganguly IIT Kharagpur India. Monojit Choudhury and Srivatsan Laxman Microsoft Research India India

Rishiraj Saha Roy and Niloy Ganguly IIT Kharagpur India. Monojit Choudhury and Srivatsan Laxman Microsoft Research India India Rishiraj Saha Roy and Niloy Ganguly IIT Kharagpur India Monojit Choudhury and Srivatsan Laxman Microsoft Research India India ACM SIGIR 2012, Portland August 15, 2012 Dividing a query into individual semantic

More information

Unsupervised Rank Aggregation with Distance-Based Models

Unsupervised Rank Aggregation with Distance-Based Models Unsupervised Rank Aggregation with Distance-Based Models Alexandre Klementiev, Dan Roth, and Kevin Small University of Illinois at Urbana-Champaign Motivation Consider a panel of judges Each (independently)

More information

Modern Retrieval Evaluations. Hongning Wang

Modern Retrieval Evaluations. Hongning Wang Modern Retrieval Evaluations Hongning Wang CS@UVa What we have known about IR evaluations Three key elements for IR evaluation A document collection A test suite of information needs A set of relevance

More information

Learning to Rank. Tie-Yan Liu. Microsoft Research Asia CCIR 2011, Jinan,

Learning to Rank. Tie-Yan Liu. Microsoft Research Asia CCIR 2011, Jinan, Learning to Rank Tie-Yan Liu Microsoft Research Asia CCIR 2011, Jinan, 2011.10 History of Web Search Search engines powered by link analysis Traditional text retrieval engines 2011/10/22 Tie-Yan Liu @

More information

Learning Temporal-Dependent Ranking Models

Learning Temporal-Dependent Ranking Models Learning Temporal-Dependent Ranking Models Miguel Costa, Francisco Couto, Mário Silva LaSIGE @ Faculty of Sciences, University of Lisbon IST/INESC-ID, University of Lisbon 37th Annual ACM SIGIR Conference,

More information

Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University

Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University http://disa.fi.muni.cz The Cranfield Paradigm Retrieval Performance Evaluation Evaluation Using

More information

CSCI 599: Applications of Natural Language Processing Information Retrieval Evaluation"

CSCI 599: Applications of Natural Language Processing Information Retrieval Evaluation CSCI 599: Applications of Natural Language Processing Information Retrieval Evaluation" All slides Addison Wesley, Donald Metzler, and Anton Leuski, 2008, 2012! Evaluation" Evaluation is key to building

More information

Chapter 8. Evaluating Search Engine

Chapter 8. Evaluating Search Engine Chapter 8 Evaluating Search Engine Evaluation Evaluation is key to building effective and efficient search engines Measurement usually carried out in controlled laboratory experiments Online testing can

More information

Web Query Translation with Representative Synonyms in Cross Language Information Retrieval

Web Query Translation with Representative Synonyms in Cross Language Information Retrieval Web Query Translation with Representative Synonyms in Cross Language Information Retrieval August 25, 2005 Bo-Young Kang, Qing Li, Yun Jin, Sung Hyon Myaeng Information Retrieval and Natural Language Processing

More information

Fall Lecture 16: Learning-to-rank

Fall Lecture 16: Learning-to-rank Fall 2016 CS646: Information Retrieval Lecture 16: Learning-to-rank Jiepu Jiang University of Massachusetts Amherst 2016/11/2 Credit: some materials are from Christopher D. Manning, James Allan, and Honglin

More information

Learning to Reweight Terms with Distributed Representations

Learning to Reweight Terms with Distributed Representations Learning to Reweight Terms with Distributed Representations School of Computer Science Carnegie Mellon University August 12, 215 Outline Goal: Assign weights to query terms for better retrieval results

More information

Overview of the NTCIR-13 OpenLiveQ Task

Overview of the NTCIR-13 OpenLiveQ Task Overview of the NTCIR-13 OpenLiveQ Task Makoto P. Kato, Takehiro Yamamoto (Kyoto University), Sumio Fujita, Akiomi Nishida, Tomohiro Manabe (Yahoo Japan Corporation) Agenda Task Design (3 slides) Data

More information

External Query Reformulation for Text-based Image Retrieval

External Query Reformulation for Text-based Image Retrieval External Query Reformulation for Text-based Image Retrieval Jinming Min and Gareth J. F. Jones Centre for Next Generation Localisation School of Computing, Dublin City University Dublin 9, Ireland {jmin,gjones}@computing.dcu.ie

More information

TREC-7 Experiments at the University of Maryland Douglas W. Oard Digital Library Research Group College of Library and Information Services University

TREC-7 Experiments at the University of Maryland Douglas W. Oard Digital Library Research Group College of Library and Information Services University TREC-7 Experiments at the University of Maryland Douglas W. Oard Digital Library Research Group College of Library and Information Services University of Maryland, College Park, MD 20742 oard@glue.umd.edu

More information

Exploring Reductions for Long Web Queries

Exploring Reductions for Long Web Queries Exploring Reductions for Long Web Queries Niranjan Balasubramanian University of Massachusetts Amherst 140 Governors Drive, Amherst, MA 01003 niranjan@cs.umass.edu Giridhar Kumaran and Vitor R. Carvalho

More information

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University CS6200 Information Retrieval David Smith College of Computer and Information Science Northeastern University Indexing Process!2 Indexes Storing document information for faster queries Indexes Index Compression

More information

UMass at TREC 2017 Common Core Track

UMass at TREC 2017 Common Core Track UMass at TREC 2017 Common Core Track Qingyao Ai, Hamed Zamani, Stephen Harding, Shahrzad Naseri, James Allan and W. Bruce Croft Center for Intelligent Information Retrieval College of Information and Computer

More information

Advanced Topics in Information Retrieval. Learning to Rank. ATIR July 14, 2016

Advanced Topics in Information Retrieval. Learning to Rank. ATIR July 14, 2016 Advanced Topics in Information Retrieval Learning to Rank Vinay Setty vsetty@mpi-inf.mpg.de Jannik Strötgen jannik.stroetgen@mpi-inf.mpg.de ATIR July 14, 2016 Before we start oral exams July 28, the full

More information

CriES 2010

CriES 2010 CriES Workshop @CLEF 2010 Cross-lingual Expert Search - Bridging CLIR and Social Media Institut AIFB Forschungsgruppe Wissensmanagement (Prof. Rudi Studer) Organizing Committee: Philipp Sorg Antje Schultz

More information

Exploring Econometric Model Selection Using Sensitivity Analysis

Exploring Econometric Model Selection Using Sensitivity Analysis Exploring Econometric Model Selection Using Sensitivity Analysis William Becker Paolo Paruolo Andrea Saltelli Nice, 2 nd July 2013 Outline What is the problem we are addressing? Past approaches Hoover

More information

Predicting Query Performance on the Web

Predicting Query Performance on the Web Predicting Query Performance on the Web No Author Given Abstract. Predicting performance of queries has many useful applications like automatic query reformulation and automatic spell correction. However,

More information

Northeastern University in TREC 2009 Web Track

Northeastern University in TREC 2009 Web Track Northeastern University in TREC 2009 Web Track Shahzad Rajput, Evangelos Kanoulas, Virgil Pavlu, Javed Aslam College of Computer and Information Science, Northeastern University, Boston, MA, USA Information

More information

NUS-I2R: Learning a Combined System for Entity Linking

NUS-I2R: Learning a Combined System for Entity Linking NUS-I2R: Learning a Combined System for Entity Linking Wei Zhang Yan Chuan Sim Jian Su Chew Lim Tan School of Computing National University of Singapore {z-wei, tancl} @comp.nus.edu.sg Institute for Infocomm

More information

A Dynamic Bayesian Network Click Model for Web Search Ranking

A Dynamic Bayesian Network Click Model for Web Search Ranking A Dynamic Bayesian Network Click Model for Web Search Ranking Olivier Chapelle and Anne Ya Zhang Apr 22, 2009 18th International World Wide Web Conference Introduction Motivation Clicks provide valuable

More information

Robust Shape Retrieval Using Maximum Likelihood Theory

Robust Shape Retrieval Using Maximum Likelihood Theory Robust Shape Retrieval Using Maximum Likelihood Theory Naif Alajlan 1, Paul Fieguth 2, and Mohamed Kamel 1 1 PAMI Lab, E & CE Dept., UW, Waterloo, ON, N2L 3G1, Canada. naif, mkamel@pami.uwaterloo.ca 2

More information

Assignment 1. Assignment 2. Relevance. Performance Evaluation. Retrieval System Evaluation. Evaluate an IR system

Assignment 1. Assignment 2. Relevance. Performance Evaluation. Retrieval System Evaluation. Evaluate an IR system Retrieval System Evaluation W. Frisch Institute of Government, European Studies and Comparative Social Science University Vienna Assignment 1 How did you select the search engines? How did you find the

More information

Diversification of Query Interpretations and Search Results

Diversification of Query Interpretations and Search Results Diversification of Query Interpretations and Search Results Advanced Methods of IR Elena Demidova Materials used in the slides: Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova,

More information

Representative & Informative Query Selection for Learning to Rank using Submodular Functions

Representative & Informative Query Selection for Learning to Rank using Submodular Functions Representative & Informative Query Selection for Learning to Rank using Submodular Functions Rishabh Mehrotra Dept of Computer Science University College London, UK r.mehrotra@cs.ucl.ac.uk Emine Yilmaz

More information

Experiments with ClueWeb09: Relevance Feedback and Web Tracks

Experiments with ClueWeb09: Relevance Feedback and Web Tracks Experiments with ClueWeb09: Relevance Feedback and Web Tracks Mark D. Smucker 1, Charles L. A. Clarke 2, and Gordon V. Cormack 2 1 Department of Management Sciences, University of Waterloo 2 David R. Cheriton

More information

Self Introduction. Presentation Outline. College of Information 3/31/2016. Multilingual Information Access to Digital Collections

Self Introduction. Presentation Outline. College of Information 3/31/2016. Multilingual Information Access to Digital Collections College of Information Multilingual Information Access to Digital Collections Jiangping Chen Http://coolt.lis.unt.edu/ Jiangping.chen@unt.edu April 20, 2016 Self Introduction An Associate Professor at

More information

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking Yi Yang * and Ming-Wei Chang # * Georgia Institute of Technology, Atlanta # Microsoft Research, Redmond Traditional

More information

A Task Level Metric for Measuring Web Search Satisfaction and its Application on Improving Relevance Estimation

A Task Level Metric for Measuring Web Search Satisfaction and its Application on Improving Relevance Estimation A Task Level Metric for Measuring Web Search Satisfaction and its Application on Improving Relevance Estimation Ahmed Hassan Microsoft Research Redmond, WA hassanam@microsoft.com Yang Song Microsoft Research

More information

DCU at FIRE 2013: Cross-Language!ndian News Story Search

DCU at FIRE 2013: Cross-Language!ndian News Story Search DCU at FIRE 2013: Cross-Language!ndian News Story Search Piyush Arora, Jennifer Foster, and Gareth J. F. Jones CNGL Centre for Global Intelligent Content School of Computing, Dublin City University Glasnevin,

More information

Cross lingual Information Retrieval

Cross lingual Information Retrieval Cross lingual Information Retrieval Chapter 1. CLIR and its challenges A large amount of information in the form of text, audio, video and other documents is available on the web. Users should be able

More information

Effective Latent Space Graph-based Re-ranking Model with Global Consistency

Effective Latent Space Graph-based Re-ranking Model with Global Consistency Effective Latent Space Graph-based Re-ranking Model with Global Consistency Feb. 12, 2009 1 Outline Introduction Related work Methodology Graph-based re-ranking model Learning a latent space graph A case

More information

Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology

Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Performance Measures for Multi-Graded Relevance

Performance Measures for Multi-Graded Relevance Performance Measures for Multi-Graded Relevance Christian Scheel, Andreas Lommatzsch, and Sahin Albayrak Technische Universität Berlin, DAI-Labor, Germany {christian.scheel,andreas.lommatzsch,sahin.albayrak}@dai-labor.de

More information

On the Effectiveness of Query Weighting for Adapting Rank Learners to New Unlabelled Collections

On the Effectiveness of Query Weighting for Adapting Rank Learners to New Unlabelled Collections On the Effectiveness of Query Weighting for Adapting Rank Learners to New Unlabelled Collections Pengfei Li RMIT University, Australia li.pengfei@rmit.edu.au Mark Sanderson RMIT University, Australia mark.sanderson@rmit.edu.au

More information

Document Structure Analysis in Associative Patent Retrieval

Document Structure Analysis in Associative Patent Retrieval Document Structure Analysis in Associative Patent Retrieval Atsushi Fujii and Tetsuya Ishikawa Graduate School of Library, Information and Media Studies University of Tsukuba 1-2 Kasuga, Tsukuba, 305-8550,

More information

Classification-Enhanced Ranking

Classification-Enhanced Ranking Classification-Enhanced Ranking Paul N. Bennett Microsoft Research One Microsoft Way, Redmond WA USA paul.n.bennett@microsoft.com Krysta Svore Microsoft Research One Microsoft Way, Redmond WA USA ksvore@microsoft.com

More information

Task3 Patient-Centred Information Retrieval: Team CUNI

Task3 Patient-Centred Information Retrieval: Team CUNI Task3 Patient-Centred Information Retrieval: Team CUNI Shadi Saleh and Pavel Pecina Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics, Czech Republic {saleh,pecina}@ufal.mff.cuni.cz

More information

A Deep Relevance Matching Model for Ad-hoc Retrieval

A Deep Relevance Matching Model for Ad-hoc Retrieval A Deep Relevance Matching Model for Ad-hoc Retrieval Jiafeng Guo 1, Yixing Fan 1, Qingyao Ai 2, W. Bruce Croft 2 1 CAS Key Lab of Web Data Science and Technology, Institute of Computing Technology, Chinese

More information

Search Engines Chapter 8 Evaluating Search Engines Felix Naumann

Search Engines Chapter 8 Evaluating Search Engines Felix Naumann Search Engines Chapter 8 Evaluating Search Engines 9.7.2009 Felix Naumann Evaluation 2 Evaluation is key to building effective and efficient search engines. Drives advancement of search engines When intuition

More information

Ambiguity. Potential for Personalization. Personalization. Example: NDCG values for a query. Computing potential for personalization

Ambiguity. Potential for Personalization. Personalization. Example: NDCG values for a query. Computing potential for personalization Ambiguity Introduction to Information Retrieval CS276 Information Retrieval and Web Search Chris Manning and Pandu Nayak Personalization Unlikely that a short query can unambiguously describe a user s

More information

Multi-resolution image recognition. Jean-Baptiste Boin Roland Angst David Chen Bernd Girod

Multi-resolution image recognition. Jean-Baptiste Boin Roland Angst David Chen Bernd Girod Jean-Baptiste Boin Roland Angst David Chen Bernd Girod 1 Scale distribution Outline Presentation of two different approaches and experiments Analysis of previous results 2 Motivation Typical image retrieval

More information

High Accuracy Retrieval with Multiple Nested Ranker

High Accuracy Retrieval with Multiple Nested Ranker High Accuracy Retrieval with Multiple Nested Ranker Irina Matveeva University of Chicago 5801 S. Ellis Ave Chicago, IL 60637 matveeva@uchicago.edu Chris Burges Microsoft Research One Microsoft Way Redmond,

More information

Learning Ranking Functions with Implicit Feedback

Learning Ranking Functions with Implicit Feedback Learning Ranking Functions with Implicit Feedback CS4780 Machine Learning Fall 2011 Pannaga Shivaswamy Cornell University These slides are built on an earlier set of slides by Prof. Joachims. Current Search

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

TriRank: Review-aware Explainable Recommendation by Modeling Aspects

TriRank: Review-aware Explainable Recommendation by Modeling Aspects TriRank: Review-aware Explainable Recommendation by Modeling Aspects Xiangnan He, Tao Chen, Min-Yen Kan, Xiao Chen National University of Singapore Presented by Xiangnan He CIKM 15, Melbourne, Australia

More information

Authorship Disambiguation and Alias Resolution in Data

Authorship Disambiguation and Alias Resolution in  Data Authorship Disambiguation and Alias Resolution in Email Data Freek Maes Johannes C. Scholtes Department of Knowledge Engineering Maastricht University, P.O. Box 616, 6200 MD Maastricht Abstract Given a

More information

Robust Relevance-Based Language Models

Robust Relevance-Based Language Models Robust Relevance-Based Language Models Xiaoyan Li Department of Computer Science, Mount Holyoke College 50 College Street, South Hadley, MA 01075, USA Email: xli@mtholyoke.edu ABSTRACT We propose a new

More information

The University of Illinois Graduate School of Library and Information Science at TREC 2011

The University of Illinois Graduate School of Library and Information Science at TREC 2011 The University of Illinois Graduate School of Library and Information Science at TREC 2011 Miles Efron, Adam Kehoe, Peter Organisciak, Sunah Suh 501 E. Daniel St., Champaign, IL 61820 1 Introduction The

More information

University of Virginia Department of Computer Science. CS 4501: Information Retrieval Fall 2015

University of Virginia Department of Computer Science. CS 4501: Information Retrieval Fall 2015 University of Virginia Department of Computer Science CS 4501: Information Retrieval Fall 2015 5:00pm-6:15pm, Monday, October 26th Name: ComputingID: This is a closed book and closed notes exam. No electronic

More information

NYU CSCI-GA Fall 2016

NYU CSCI-GA Fall 2016 1 / 45 Information Retrieval: Personalization Fernando Diaz Microsoft Research NYC November 7, 2016 2 / 45 Outline Introduction to Personalization Topic-Specific PageRank News Personalization Deciding

More information

Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval

Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval Xiaodong Liu 12, Jianfeng Gao 1, Xiaodong He 1 Li Deng 1, Kevin Duh 2, Ye-Yi Wang 1 1

More information

Detecting Multilingual and Multi-Regional Query Intent in Web Search

Detecting Multilingual and Multi-Regional Query Intent in Web Search Detecting Multilingual and Multi-Regional Query Intent in Web Search Yi Chang, Ruiqiang Zhang, Srihari Reddy Yahoo! Labs 701 First Avenue Sunnyvale, CA 94089 {yichang,ruiqiang,sriharir}@yahoo-inc.com Yan

More information

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher CS 664 Image Matching and Robust Fitting Daniel Huttenlocher Matching and Fitting Recognition and matching are closely related to fitting problems Parametric fitting can serve as more restricted domain

More information

Learning Lexicon Models from Search Logs for Query Expansion

Learning Lexicon Models from Search Logs for Query Expansion Learning Lexicon Models from Search Logs for Query Expansion Jianfeng Gao Microsoft Research, Redmond Washington 98052, USA jfgao@microsoft.com Xiaodong He Microsoft Research, Redmond Washington 98052,

More information

arxiv: v1 [cs.ir] 2 Feb 2015

arxiv: v1 [cs.ir] 2 Feb 2015 Context Models For Web Search Personalization Maksims N. Volkovs University of Toronto 40 St. George Street Toronto, ON M5S 2E4 mvolkovs@cs.toronto.edu arxiv:502.00527v [cs.ir] 2 Feb 205 ABSTRACT We present

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Federated Search Prof. Chris Clifton 13 November 2017 Federated Search Outline Introduction to federated search Main research problems Resource Representation

More information

Corpus Acquisition from the Interwebs. Christian Buck, University of Edinburgh

Corpus Acquisition from the Interwebs. Christian Buck, University of Edinburgh Corpus Acquisition from the Interwebs Christian Buck, University of Edinburgh There is no data like more data (Bob Mercer, 1985) Mining Bilingual Text "Same text in different languages" Usually: one side

More information

Supervised Reranking for Web Image Search

Supervised Reranking for Web Image Search for Web Image Search Query: Red Wine Current Web Image Search Ranking Ranking Features http://www.telegraph.co.uk/306737/red-wineagainst-radiation.html 2 qd, 2.5.5 0.5 0 Linjun Yang and Alan Hanjalic 2

More information

Information Retrieval

Information Retrieval Information Retrieval Learning to Rank Ilya Markov i.markov@uva.nl University of Amsterdam Ilya Markov i.markov@uva.nl Information Retrieval 1 Course overview Offline Data Acquisition Data Processing Data

More information

Microsoft Research Asia at the Web Track of TREC 2009

Microsoft Research Asia at the Web Track of TREC 2009 Microsoft Research Asia at the Web Track of TREC 2009 Zhicheng Dou, Kun Chen, Ruihua Song, Yunxiao Ma, Shuming Shi, and Ji-Rong Wen Microsoft Research Asia, Xi an Jiongtong University {zhichdou, rsong,

More information

Combining Appearance and Topology for Wide

Combining Appearance and Topology for Wide Combining Appearance and Topology for Wide Baseline Matching Dennis Tell and Stefan Carlsson Presented by: Josh Wills Image Point Correspondences Critical foundation for many vision applications 3-D reconstruction,

More information

Finding parallel texts on the web using cross-language information retrieval

Finding parallel texts on the web using cross-language information retrieval Finding parallel texts on the web using cross-language information retrieval Achim Ruopp University of Washington, Seattle, WA 98195, USA achimr@u.washington.edu Fei Xia University of Washington Seattle,

More information

Indexing. UCSB 290N. Mainly based on slides from the text books of Croft/Metzler/Strohman and Manning/Raghavan/Schutze

Indexing. UCSB 290N. Mainly based on slides from the text books of Croft/Metzler/Strohman and Manning/Raghavan/Schutze Indexing UCSB 290N. Mainly based on slides from the text books of Croft/Metzler/Strohman and Manning/Raghavan/Schutze All slides Addison Wesley, 2008 Table of Content Inverted index with positional information

More information

A Deep Top-K Relevance Matching Model for Ad-hoc Retrieval

A Deep Top-K Relevance Matching Model for Ad-hoc Retrieval A Deep Top-K Relevance Matching Model for Ad-hoc Retrieval Zhou Yang, Qingfeng Lan, Jiafeng Guo, Yixing Fan, Xiaofei Zhu, Yanyan Lan, Yue Wang, and Xueqi Cheng School of Computer Science and Engineering,

More information

Beyond PageRank: Machine Learning for Static Ranking

Beyond PageRank: Machine Learning for Static Ranking Beyond PageRank: Machine Learning for Static Ranking Matthew Richardson 1, Amit Prakash 1 Eric Brill 2 1 Microsoft Research 2 MSN World Wide Web Conference, 2006 Outline 1 2 3 4 5 6 Types of Ranking Dynamic

More information

Apache Solr Learning to Rank FTW!

Apache Solr Learning to Rank FTW! Apache Solr Learning to Rank FTW! Berlin Buzzwords 2017 June 12, 2017 Diego Ceccarelli Software Engineer, News Search dceccarelli4@bloomberg.net Michael Nilsson Software Engineer, Unified Search mnilsson23@bloomberg.net

More information

Research Article. August 2017

Research Article. August 2017 International Journals of Advanced Research in Computer Science and Software Engineering ISSN: 2277-128X (Volume-7, Issue-8) a Research Article August 2017 English-Marathi Cross Language Information Retrieval

More information

Learning to Rank. Kevin Duh June 2018

Learning to Rank. Kevin Duh June 2018 Learning to Rank Kevin Duh kevinduh@cs.jhu.edu June 2018 Slides are online @ h?p://www.cs.jhu.edu/~kevinduh/t/ltr.pdf 1 What is Ranking? UNORDERED SET ORDERED LIST RANKING FUNCTION 2 What is Learning to

More information

Data-Intensive Computing with MapReduce

Data-Intensive Computing with MapReduce Data-Intensive Computing with MapReduce Session 6: Similar Item Detection Jimmy Lin University of Maryland Thursday, February 28, 2013 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Chapter 12 Feature Selection

Chapter 12 Feature Selection Chapter 12 Feature Selection Xiaogang Su Department of Statistics University of Central Florida - 1 - Outline Why Feature Selection? Categorization of Feature Selection Methods Filter Methods Wrapper Methods

More information

Federated Text Search

Federated Text Search CS54701 Federated Text Search Luo Si Department of Computer Science Purdue University Abstract Outline Introduction to federated search Main research problems Resource Representation Resource Selection

More information

Estimating Human Pose in Images. Navraj Singh December 11, 2009

Estimating Human Pose in Images. Navraj Singh December 11, 2009 Estimating Human Pose in Images Navraj Singh December 11, 2009 Introduction This project attempts to improve the performance of an existing method of estimating the pose of humans in still images. Tasks

More information

Self-tuning ongoing terminology extraction retrained on terminology validation decisions

Self-tuning ongoing terminology extraction retrained on terminology validation decisions Self-tuning ongoing terminology extraction retrained on terminology validation decisions Alfredo Maldonado and David Lewis ADAPT Centre, School of Computer Science and Statistics, Trinity College Dublin

More information

CMPSCI 646, Information Retrieval (Fall 2003)

CMPSCI 646, Information Retrieval (Fall 2003) CMPSCI 646, Information Retrieval (Fall 2003) Midterm exam solutions Problem CO (compression) 1. The problem of text classification can be described as follows. Given a set of classes, C = {C i }, where

More information

Microsoft Cambridge at TREC 13: Web and HARD tracks

Microsoft Cambridge at TREC 13: Web and HARD tracks Microsoft Cambridge at TREC 13: Web and HARD tracks Hugo Zaragoza Λ Nick Craswell y Michael Taylor z Suchi Saria x Stephen Robertson 1 Overview All our submissions from the Microsoft Research Cambridge

More information

Experiment Design and Evaluation for Information Retrieval Rishiraj Saha Roy Computer Scientist, Adobe Research Labs India

Experiment Design and Evaluation for Information Retrieval Rishiraj Saha Roy Computer Scientist, Adobe Research Labs India Experiment Design and Evaluation for Information Retrieval Rishiraj Saha Roy Computer Scientist, Adobe Research Labs India rroy@adobe.com 2014 Adobe Systems Incorporated. All Rights Reserved. 1 Introduction

More information

Overview of the NTCIR-13 OpenLiveQ Task

Overview of the NTCIR-13 OpenLiveQ Task Overview of the NTCIR-13 OpenLiveQ Task ABSTRACT Makoto P. Kato Kyoto University mpkato@acm.org Akiomi Nishida Yahoo Japan Corporation anishida@yahoo-corp.jp This is an overview of the NTCIR-13 OpenLiveQ

More information

CROSS LANGUAGE INFORMATION ACCESS IN TELUGU

CROSS LANGUAGE INFORMATION ACCESS IN TELUGU CROSS LANGUAGE INFORMATION ACCESS IN TELUGU by Vasudeva Varma, Aditya Mogadala Mogadala, V. Srikanth Reddy, Ram Bhupal Reddy in Siliconandhrconference (Global Internet forum for Telugu) Report No: IIIT/TR/2011/-1

More information

Information Retrieval

Information Retrieval Information Retrieval WS 2016 / 2017 Lecture 2, Tuesday October 25 th, 2016 (Ranking, Evaluation) Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University

More information

Data Retrieval in Intermittedly Connected Networks

Data Retrieval in Intermittedly Connected Networks Humboldt University Computer Science Department Data Retrieval in Intermittedly Connected Networks Dirk Neukirchen Interplanetary Internet Seminar, 2006 June 22, 2006 Overview Traditional Approaches vs.

More information

Jan Pedersen 22 July 2010

Jan Pedersen 22 July 2010 Jan Pedersen 22 July 2010 Outline Problem Statement Best effort retrieval vs automated reformulation Query Evaluation Architecture Query Understanding Models Data Sources Standard IR Assumptions Queries

More information

Retrieval Evaluation. Hongning Wang

Retrieval Evaluation. Hongning Wang Retrieval Evaluation Hongning Wang CS@UVa What we have learned so far Indexed corpus Crawler Ranking procedure Research attention Doc Analyzer Doc Rep (Index) Query Rep Feedback (Query) Evaluation User

More information

Online Expansion of Rare Queries for Sponsored Search

Online Expansion of Rare Queries for Sponsored Search Online Expansion of Rare Queries for Sponsored Search Peter Ciccolo, Evgeniy Gabrilovich, Vanja Josifovski, Don Metzler, Lance Riedel, Jeff Yuan Yahoo! Research 1 Sponsored Search 2 Sponsored Search in

More information

HITS and Misses: Combining BM25 with HITS for Expert Search

HITS and Misses: Combining BM25 with HITS for Expert Search HITS and Misses: Combining BM25 with HITS for Expert Search Johannes Leveling and Gareth J. F. Jones School of Computing and Centre for Next Generation Localisation (CNGL) Dublin City University Dublin

More information

Developed as part of a research contract from EPA Region 9 Partnered with Dr. Paul English, CA DPH EHIB

Developed as part of a research contract from EPA Region 9 Partnered with Dr. Paul English, CA DPH EHIB Air quality hazards defined by CalEPA/ CARB with recommendations for health protective buffer zones to separate these hazards from sensitive populations Developed as part of a research contract from EPA

More information

Simultaneous Multilingual Search for Translingual Information Retrieval

Simultaneous Multilingual Search for Translingual Information Retrieval Simultaneous Multilingual Search for Translingual Information Retrieval Kristen Parton 1 kristen@cs.columbia.edu Kathleen R. McKeown 1 kathy@cs.columbia.edu James Allan 2 allan@cs.umass.edu Enrique Henestroza

More information

with BLENDER: Enabling Local Search a Hybrid Differential Privacy Model

with BLENDER: Enabling Local Search a Hybrid Differential Privacy Model BLENDER: Enabling Local Search with a Hybrid Differential Privacy Model Brendan Avent 1, Aleksandra Korolova 1, David Zeber 2, Torgeir Hovden 2, Benjamin Livshits 3 University of Southern California 1

More information

Estimating Embedding Vectors for Queries

Estimating Embedding Vectors for Queries Estimating Embedding Vectors for Queries Hamed Zamani Center for Intelligent Information Retrieval College of Information and Computer Sciences University of Massachusetts Amherst Amherst, MA 01003 zamani@cs.umass.edu

More information

CS54701: Information Retrieval

CS54701: Information Retrieval CS54701: Information Retrieval Federated Search 10 March 2016 Prof. Chris Clifton Outline Federated Search Introduction to federated search Main research problems Resource Representation Resource Selection

More information