陳懷恩博士助理教授兼所長國立宜蘭大學資訊工程研究所 TEL: # 255

Size: px
Start display at page:

Download "陳懷恩博士助理教授兼所長國立宜蘭大學資訊工程研究所 TEL: # 255"

Transcription

1 Introduction ti to VoIP 陳懷恩博士助理教授兼所長國立宜蘭大學資訊工程研究所 TEL: # 55

2 Outline Introduction VoIP Call Tpyes VoIP Equipments Speech and Codecs Transport Protocols Real-time Transport Protocol

3 What is VoIP? Transport voice traffic using the Internet Protocol (IP) One of the greatest challenges to VoIP is voice quality. One of the keys to acceptable voice quality is bandwidth. Control and prioritize the access Internet: best-effort transfer VoIP!= Internet telephony The next generation Telcos Access and bandwidth are better managed. 3

4 Carrier Grade VoIP Carrier grade Extremely high availability % reliability (high reliability) Fully redundant, d Self-healing li AT&T carries about 3 million voice calls a day (high capacity). Highly scalable Short call setup time, high speech quality No perceptible echo, noticeable delay and annoying noises on the line Carrier grade and VoIP mutually exclusive A serious alternative ti for voice communications with enhanced features 4

5 Traffic Types: Data and Voice Data traffic Asynchronous - can be delayed Extremely error sensitive Voice traffic Synchronous -stringent ti tdl delay requirements More tolerant for errors Note that IP is not designed dfor voice delivery. VoIP requirements Meet all the requirements for traditional telephony Offer new and attractive capabilities at a lower cost 5

6 Why VoIP? Why carry voice? Internet supports instant access to anything However, voice services provide more revenues. Voice is big business. Why use IP for voice? Traditional telephony carriers use circuit switching for carrying voice traffic. Circuit-switching is not suitable for multimedia communications. IP: lower equipment cost, low operating expense, integration of voice and data applications, potentially lower bandwidth requirements, the widespread availability of IP 6

7 VoIP Call Types Computer Internet Voice Gateway Phone Line Computer Internet Voice Gateway Voice Gateway Phone Line Computer Internet Phone Line 7

8 The VoIP Equipments () Telephone hardwares of the network Pingtel xpressa CISCO796 snom 8

9 The VoIP Equipments () USB Phone, Mike of earphone, to need, then install the network telephone software (on computers) MSN Messenger 9

10 The VoIP Equipments (3) Home Voice Gateway (telephone) Source of the photo: ARTDIO Company

11 The VoIP Equipments (4) Call Server (a) PSTN Gateway (b) (a) Vontel Server (b) CISCO Gateway

12 Lower Bandwidth Requirements PSTN Human speech frequency < 4K Hz The Nyquist Theorem: *4k samples per second G.7-64 kbps = 8K * 8 bits Sophisticated coders Save more bandwidth by silence-detection Compression 3kbps, 6kbps, 8kbps, 6.3kbps, 5.3kbps GSM 3kbps Traditional telephony never changes. VoIP two ends of the call negotiate the coding scheme

13 VoIP Challenges VoIP must offer the same reliability and voice quality as PSTN % and Toll quality Mean Opinion Score (MOS) 5 (Excellent), 4 (Good), 3 (Fair), (Poor), (Bad) International Telecommunication Union Telecommunications Standardization Sector (ITU-T) T) P.8 Toll quality means a MOS of 4. or better. 3

14 Speech Quality (/3) Must be as good as PSTN Delay Coding/Decoding + Buffering Time + Tx. Time G.4: the round-trip time 3 ms Echo High Delay ==> Echo is Critical speak listen 4

15 Speech Quality (/3) Jitter Delay variation Due to different routes or queuing times Use of jitter buffer (possible solution) Jitter buffers add delay speak speak listen listen constant t delay variance = variable delay variance <> 5

16 Speech Quality (3/3) Packet Loss Traditional retransmission cannot meet the real-time requirements Call Setup Time Address Translation (DNS Query) Directory Access (Query Database) ENUM or LDAP 6

17 Managing g Access and Prioritizing Traffic A single network for a wide range of applications Resource management: call is admitted if sufficient resources are available Prioritization: different types of traffic are handled in different ways If a network becomes heavily loaded, traffic should feel the effects before synchronous traffic (such as voice). QoS has required huge efforts 7

18 Speech-coding coding Techniques In general, coding techniques are such that speech quality degrades as bandwidth reduces. The relationship is not linear. 8

19 Network Reliability and Scalability % reliability Today s VoIP solutions are ok. Redundancy and load sharing Scalable easy to start on a small scale and then expand as traffic demand increases Distributed architecture 9

20 Components of VoIP Coding & Decoding of Analog Voice Analog-to-Digital and Digital-to-Analogto conversions Compression Signaling Call setup & tear down Resource & coding negotiation Transport of Bearer Traffic Voice packet transmission Routing Support of quality of service Numbering Phone number, IP address

21 VoIP Protocols H.33: ITU-T T standard, latest version v4 Peer-to-peer protocol that supports terminals communicating over packet based networks SIP: IETF standard, RFC 36 Peer-to-peer protocol for initiation, modification termination of communication sessions between users MGCP: ITU-T T and IETF collaboration, RFC 3435 Master/slave protocol for media gateway controller to control media gateway

22 VoIP Protocol Stacks

23 The IP suite and the OSI stack TCP UDP Reliable, error-free, in-sequence delivery No sequencing, no retransmission 3

24 IP and TCP Internet Protocol (IP) A packet-based protocol Routing on a packet-by-packet base Packets transfer with no guarantees May not receive in order May be lost or severely delayed Transmission Control Protocol (TCP) Retransmission Assemble the packets in order Congestion control Useful for file-transfers and User Datagram Protocol (UDP) No retransmission, flow control and sequence number Useful for real-time transmission 4

25 IP RFC 79 Amendments: RFCs 95, 99, and 9 Requirements for Internet hosts: RFCs, 3 Requirements for IP routers: RFC 8 IP datagram Data packet with an IP header Best-effortprotocol effort No guarantee that a given packet will be delivered 5

26 IP Header [/] Version 4 Header Length Type of Service Total Length Identification, Flags, and Fragment Offset TTL A datagram can be split into fragments Identify data fragments Flags a datagram can be fragmented or not Indicate the last fragment A number of hops (not a number of seconds) 6

27 IP Header [/] Protocol The higher-layer protocol TCP (6); UDP (7) Source and Destination IP Addresses Version Header Type of Service Total Length Length Identification Flags Fragment Offset Time to Live Protocol Header Checksum 8 9 Source IP Address Destination IP Address Options Data 7

28 TCP Transmission Control Protocol In sequence, without omissions and errors End-to-end confirmation, packet retransmission,flow control, congestion control RFC 793 Break up a data stream in segments Attach a TCP header Sent down the stack to IP At the destination, checks the header for errors Send back an ack The source retransmits if no ack is received within a given period. 8

29 The TCP Header [/5] The TCP Header [/5] Source Port Destination Port Acknowledge Number Sequence Number Ch k Data Offset Reserved U R G A C K P S H R S T S Y N F I N U tp i t Window Options Checksum Urgent Point Padding Data 9

30 The TCP Header [/5] TCP Port Numbers Identifying a specific instance of a given application A unique port number for a particular session Well-known port numbers IANA, -3 3, telnet; 5, SMTP Many clients and a server TCP/IP Source address and port number + Destination address and port number A socket address (or a transport address) 3

31 The TCP Header [3/5] Sequence and acknowledge numbers Identify individual segments Actually count data octets transmitted A given segment with a SN of and contains 5 octets of data The ack number will be 5 The SN of the next segment is 5 Other header fields Data offset: header length (in 3-bit words) URG: if urgent data is included, use urgent pointer field 3

32 The TCP Header [4/5] ACK:, an ACK PSH: for the push function RST: reset; an error and abort a session SYN: Synchronize; the initial messages FIN: Finish; close a session Window The amount of buffer space available for receiving data Checksum 3

33 The TCP Header [5/5] Urgent Pointer An offset to the first segment after the urgent data Indicates the length of the urgent data Critical information to be sent to the user application ASAP 33

34 TCP Connections An example Client Server After receiving,, 3 ACK 4 Closing a connection SYN FIN ACK, FIN Seq = Window size MSS ACK SYN Seq = 4 ACK = Window size MSS Seq = ACK = 4 34

35 UDP User Datagram Protocol Pass individual pieces of data from an application to IP No ACK, inherently unreliable Applications A quick, on-shot transmission of data, request/response DNS If no response, the AP retransmits the request The AP includes a request identifier The source port number is optional Checksum Source Port Destination Port Length Checksum 35

36 Voice over UDP, not TCP Speech Small packets, 4 ms Occasional packet loss is not a catastrophe Delay-sensitive TCP: connection set-up, ack, retransmit delays 5 % packet loss is acceptable if evenly spaced Resource management and reservation techniques A managed IP network In-sequence delivery Mostly yes UDP was not designed for voice traffic 36

37 The Real-Time Transport Protocol RTP: A Transport Protocol for Real-Time Applications RFC 355 (Obsoletes RFC 889) RTP Real-Time Transport Protocol RTCP RTP Control Protocol UDP Packets may be lost or out-of-sequence RTP over UDP A sequence number A time stamp for synchronized play-out Does not solve the problems; simply provides additional information 37

38 RTCP A companion protocol Exchange messages between session users # of flost packets, dl delay and dinter-arrival i ljitter Quality feedback RTCP is implicitly open when an RTP session is open RTP/RTCP uses UDP port n and n+ (e.g., 5/5) 38

39 RTP Payload Formats [/] RTP carries the actual digitally encoded voice RTP header + a payload of voice/video samples UDP and IP headers are attached Many voice- and video-coding standards A payload type identifier in the RTP header Specified in RFC 355 New coding schemes have become available See Table and Table for examples A sender has no idea what coding schemes a receiver could handle. 39

40 RTP Payload Formats [/] Separate signaling gsystems Capability negotiation during the call setup SIP and SDP A dynamic payload type may be used Support new coding scheme in the future The encoding name is also significant. Unambiguously refer to a particular payload specification Should be registered with the IANA RED, Redundant payload type (refer to RFC98) To cope with packet loss Primary Voice samples + previous samples Two samples may use different encoding schemes 4

41 Payload Types for Audio Encoding Table. Example of payload types of audio encoding Payload Type Name Media Type Clock Rate (Hz) Channel PCMU Audio 8 G76-3 Audio 8 3 GSM Audio 8 4 G73 Audio 8 8 PCMA Audio 8 8 G79 Audio 8 4

42 Payload Types for Video Encoding Table. Example of payload types of video encoding Payload Type Name Media Type Clock Rate (Hz) 5 CelB Video 9 6 JPEG Video 9 3 H6 Audio 9 3 MPV Audio 9 33 MPT Video/Audio 9 34 H63 Video 9 Dyn H Video 9 4

43 RTP Header Format RTP Header RTP Header Extension 43

44 The RTP Header [/4] Version (V) Padding (P) The padding octets at the end of the payload The payload needs to align with 3-bit boundary The last octet of the payload contains a count of the padding octets. Extension (X), contains a header extension 44

45 The RTP Header [/4] CSRC Count (CC) The number of contributing source identifiers Marker (M) Support silence suppression The first packet of a talkspurt, after a silence period Payload Type (PT) In general, a single RTP packet will contain media coded according to only one payload format. RED is an exception. Sequence number A random number generated by the sender at the beginning of a session Incremented by one for each RTP packet 45

46 The RTP Header [3/4] Timestamp 3-bit The instant at which the first sample The receiver Synchronized play-out Calculate the jitter The clock freq depends on the encoding E.g., 8Hz Support silence suppression The initial timestamp is a random number chosen by the sending application. 46

47 The RTP Header [4/4] Synchronization Source (SSRC) 3-bit identifier The entity setting the sequence number and timestamp Chosen randomly, independent of the network address Meant to be globally unique within a session May be a sender or a mixer Contributing Source (CSRC) An SSRC value for a contributor Used to identify the original sources of media behind the mixer -5 CSRC entries 47

48 Mixers and Translators Mixers Enable multiple media streams from different sources to be combined into a single stream If the capacity or bandwidth of a participant is limited An audio conference The SSRC is the mixer More than one CSRC values Translators Manage communications between entities that does not support the same coding scheme The SSRC is the participant, not the translator. 48

49 The RTP Control Protocol [/3] RTCP A companion control protocol of RTP Periodic exchange of control information For quality-related feedback A third party can also monitor session quality and detect network problems. Using RTCP and IP multicast Five types of RTCP packets Sender Report: transmission and reception statistics Receiver Report: reception statistics 49

50 The RTP Control Protocol [/3] Source Description (SDES) One or more descriptions related to a particular session participant Must contain a canonical name (CNAME) Separate from SSRC which might change When both audio and video streams were being transmitted, the two streams would have different SSRCs the same CNAME for synchronized play-out BYE APP The end of a participation in a session For application-specific functions 5

51 The RTP Control Protocol [3/3] Two or more RTCP packets will be combined SRs and RRs should be sent as often as possible to allow better statistical resolution. New between media sources and the received media. receivers in a session must receive CNAME very quickly to allow a correlation Every RTCP packet must contain a report packet (SR/RR) and an SDES packet Even if no data to report An example RTP compound packet 5

52 RTCP Sender Report Sender Report Header Info Sender Info Receiver Report Blocks Option Profile-specific ifi extension 5

53 Header Info Resemble to an RTP packet Version Padding bit Padding octets? RC, report count The number of reception report blocks 5-bit If more than 3 reports, an RR is added PT, payload type () 53

54 Sender Info SSRC of sender NTP Timestamp Network Time Protocol Timestamp The time elapsed in seconds since :, //9 (GMT) 64-bit 3 MSB: the number of seconds 3 LSB: the fraction of a seconds ( ps) RTP Timestamp Corresponding to the NTP timestamp The same as used for RTP timestamps For better synchronization Sender s packet count Cumulative within a session Sender s octet count Cumulative within a session 54

55 RR Blocks [/] SSRC_ n The source identifier of the session participant to which the data in this RR block pertains. Fraction lost Fraction of packets lost since the last report issued by this participant By examining the sequence numbers in the RTP header Cumulative number of packets lost Since the beginning of the RTP session Extended highest sequence number received The sequence number of the last RTP packet received 6 lsb, the last sequence number 6 msb, the number of sequence number cycles 55

56 RR Blocks [/] Interarrival jitter An estimate of the variance in RTP packet arrival Last SR Timestamp (LSR) Used to check if the last SR has been received Delay Since Last SR (DLSR) The duration in units of /65,536 seconds 56

57 RTCP Receiver Report Receiver Report Issued by a participant who receives RTP packets but does not send, or has not yet sent Is almost identical to an SR PT = No sender information 57

58 RTCP Source Description Packet Provides identification and information regarding g session participants Must exist in every RTCP compound packet Header V, P, SC, PT=, Length Zero or more chunks of information An SSRC or CSRC value One or more identifiers and pieces of information A unique CNAME address, phone number, name 58

59 RTCP BYE Packet Indicate one or more media sources are no longer active Application-Defined RTCP Packet For application-specific data For non-standardized application 59

60 Calculating Round-Trip Time Use SRs and RRs E.g. Report A: A, T B, T A B Report B: B, T3 A, T4 RTT = T4-T3+T-TT3+T T RTT = T4-(T3-T)-T Report B LSR = T DLSR = T3-T T A T T T3 T4 6

61 Calculation Jitter The mean deviation of the difference in packet spacing at the receiver S i = the RTP timestamp for packet i R i = the time of arrival D(i,j) = (R j -S j ) - (R i - S i ) The Jitter is calculated continuously J(i) = J(i-) + ( D(i-,i) i) - J(i-))/6 6

62 Timing of RTCP Packets RTCP provides useful feedback Regarding the quality of an RTP session Delay, jitter, packet loss Be sent as often as possible Consume the bandwidth Should be fixed at 5% An algorithm, RFC 889 Senders are collectively allowed at least 5% of the control traffic bandwidth. (CNAME) The interval > 5 seconds.5.5 times the calculated interval A dynamic estimate the avg. RTCP packet size 6

Transporting Voice by Using IP

Transporting Voice by Using IP Transporting Voice by Using IP Voice over UDP, not TCP Speech Small packets, 10 40 ms Occasional packet loss is not a catastrophe Delay-sensitive TCP: connection set-up, ack, retransmit delays 5 % packet

More information

Transporting Voice by Using IP

Transporting Voice by Using IP Transporting Voice by Using IP National Chi Nan University Quincy Wu Email: solomon@ipv6.club.tw 1 Outline Introduction Voice over IP RTP & SIP Conclusion 2 Digital Circuit Technology Developed by telephone

More information

Ai-Chun Pang, Office Number: 417. Homework x 3 30% One mid-term exam (5/14) 40% One term project (proposal: 5/7) 30%

Ai-Chun Pang, Office Number: 417. Homework x 3 30% One mid-term exam (5/14) 40% One term project (proposal: 5/7) 30% IP Telephony Instructor Ai-Chun Pang, acpang@csie.ntu.edu.tw Office Number: 417 Textbook Carrier Grade Voice over IP, D. Collins, McGraw-Hill, Second Edition, 2003. Requirements Homework x 3 30% One mid-term

More information

RTP. Prof. C. Noronha RTP. Real-Time Transport Protocol RFC 1889

RTP. Prof. C. Noronha RTP. Real-Time Transport Protocol RFC 1889 RTP Real-Time Transport Protocol RFC 1889 1 What is RTP? Primary objective: stream continuous media over a best-effort packet-switched network in an interoperable way. Protocol requirements: Payload Type

More information

Multimedia in the Internet

Multimedia in the Internet Protocols for multimedia in the Internet Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ > 4 4 3 < 2 Applications and protocol stack DNS Telnet

More information

in the Internet Andrea Bianco Telecommunication Network Group Application taxonomy

in the Internet Andrea Bianco Telecommunication Network Group  Application taxonomy Multimedia traffic support in the Internet Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network Management and QoS Provisioning - 1 Application

More information

Transport Protocols. ISO Defined Types of Network Service: rate and acceptable rate of signaled failures.

Transport Protocols. ISO Defined Types of Network Service: rate and acceptable rate of signaled failures. Transport Protocols! Type A: ISO Defined Types of Network Service: Network connection with acceptable residual error rate and acceptable rate of signaled failures. - Reliable, sequencing network service

More information

CS519: Computer Networks. Lecture 9: May 03, 2004 Media over Internet

CS519: Computer Networks. Lecture 9: May 03, 2004 Media over Internet : Computer Networks Lecture 9: May 03, 2004 Media over Internet Media over the Internet Media = Voice and Video Key characteristic of media: Realtime Which we ve chosen to define in terms of playback,

More information

RTP: A Transport Protocol for Real-Time Applications

RTP: A Transport Protocol for Real-Time Applications RTP: A Transport Protocol for Real-Time Applications Provides end-to-end delivery services for data with real-time characteristics, such as interactive audio and video. Those services include payload type

More information

RTP/RTCP protocols. Introduction: What are RTP and RTCP?

RTP/RTCP protocols. Introduction: What are RTP and RTCP? RTP/RTCP protocols Introduction: What are RTP and RTCP? The spread of computers, added to the availability of cheap audio/video computer hardware, and the availability of higher connection speeds have

More information

Provide a generic transport capabilities for real-time multimedia applications Supports both conversational and streaming applications

Provide a generic transport capabilities for real-time multimedia applications Supports both conversational and streaming applications Contents: Real-time Transport Protocol (RTP) Purpose Protocol Stack RTP Header Real-time Transport Control Protocol (RTCP) Voice over IP (VoIP) Motivation H.323 SIP VoIP Performance Tests Build-out Delay

More information

OSI Transport Layer. objectives

OSI Transport Layer. objectives LECTURE 5 OSI Transport Layer objectives 1. Roles of the Transport Layer 1. segmentation of data 2. error detection 3. Multiplexing of upper layer application using port numbers 2. The TCP protocol Communicating

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 16 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at

More information

Real-time Services BUPT/QMUL

Real-time Services BUPT/QMUL Real-time Services BUPT/QMUL 2017-05-27 Agenda Real-time services over Internet Real-time transport protocols RTP (Real-time Transport Protocol) RTCP (RTP Control Protocol) Multimedia signaling protocols

More information

13. Internet Applications 최양희서울대학교컴퓨터공학부

13. Internet Applications 최양희서울대학교컴퓨터공학부 13. Internet Applications 최양희서울대학교컴퓨터공학부 Internet Applications Telnet File Transfer (FTP) E-mail (SMTP) Web (HTTP) Internet Telephony (SIP/SDP) Presence Multimedia (Audio/Video Broadcasting, AoD/VoD) Network

More information

Real-time Services BUPT/QMUL

Real-time Services BUPT/QMUL Real-time Services BUPT/QMUL 2015-06-02 Agenda Real-time services over Internet Real-time transport protocols RTP (Real-time Transport Protocol) RTCP (RTP Control Protocol) Multimedia signaling protocols

More information

Overview. Slide. Special Module on Media Processing and Communication

Overview. Slide. Special Module on Media Processing and Communication Overview Review of last class Protocol stack for multimedia services Real-time transport protocol (RTP) RTP control protocol (RTCP) Real-time streaming protocol (RTSP) SIP Special Module on Media Processing

More information

Multimedia Protocols. Foreleser: Carsten Griwodz Mai INF-3190: Multimedia Protocols

Multimedia Protocols. Foreleser: Carsten Griwodz Mai INF-3190: Multimedia Protocols Multimedia Protocols Foreleser: Carsten Griwodz Email: griff@ifi.uio.no 11. Mai 2006 1 INF-3190: Multimedia Protocols Media! Medium: "Thing in the middle! here: means to distribute and present information!

More information

CCNA Exploration Network Fundamentals. Chapter 04 OSI Transport Layer

CCNA Exploration Network Fundamentals. Chapter 04 OSI Transport Layer CCNA Exploration Network Fundamentals Chapter 04 OSI Transport Layer Updated: 05/05/2008 1 4.1 Roles of the Transport Layer 2 4.1 Roles of the Transport Layer The OSI Transport layer accept data from the

More information

Real Time Protocols. Overview. Introduction. Tarik Cicic University of Oslo December IETF-suite of real-time protocols data transport:

Real Time Protocols. Overview. Introduction. Tarik Cicic University of Oslo December IETF-suite of real-time protocols data transport: Real Time Protocols Tarik Cicic University of Oslo December 2001 Overview IETF-suite of real-time protocols data transport: Real-time Transport Protocol (RTP) connection establishment and control: Real

More information

Transport protocols Introduction

Transport protocols Introduction Transport protocols 12.1 Introduction All protocol suites have one or more transport protocols to mask the corresponding application protocols from the service provided by the different types of network

More information

Outline. Multimedia is different Real Time Protocol (RTP) Session Description Protocol (SDP) Session Initiation Protocol (SIP)

Outline. Multimedia is different Real Time Protocol (RTP) Session Description Protocol (SDP) Session Initiation Protocol (SIP) Outline Multimedia is different Real Time Protocol (RTP) Session Description Protocol (SDP) Session Initiation Protocol (SIP) Elastic vs. Inelastic Workloads Some applications adapt to network performance

More information

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao EEC-484/584 Computer Networks Lecture 16 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review Services provided by transport layer

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

RTP Profile for TCP Friendly Rate Control draft-ietf-avt-tfrc-profile-03.txt

RTP Profile for TCP Friendly Rate Control draft-ietf-avt-tfrc-profile-03.txt RTP Profile for TCP Friendly Rate Control draft-ietf-avt-tfrc-profile-03.txt Ladan Gharai (ladan@isi.edu).usc Information Sciences Institute November 11, 2004 61 IETF Washington DC Overview The RTP Profile

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert

A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert data into a proper analog signal for playback. The variations

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.2 Kaan Bür, Jens Andersson Transport Layer Protocols Special Topic: Quality of Service (QoS) [ed.4 ch.24.1+5-6] [ed.5 ch.30.1-2]

More information

Lecture 14: Multimedia Communications

Lecture 14: Multimedia Communications Lecture 14: Multimedia Communications Prof. Shervin Shirmohammadi SITE, University of Ottawa Fall 2005 CEG 4183 14-1 Multimedia Characteristics Bandwidth Media has natural bitrate, not very flexible. Packet

More information

4 rd class Department of Network College of IT- University of Babylon

4 rd class Department of Network College of IT- University of Babylon 1. INTRODUCTION We can divide audio and video services into three broad categories: streaming stored audio/video, streaming live audio/video, and interactive audio/video. Streaming means a user can listen

More information

Transport Protocols. Raj Jain. Washington University in St. Louis

Transport Protocols. Raj Jain. Washington University in St. Louis Transport Protocols Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 16-1 Overview q TCP q Key features

More information

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print,

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print, ANNEX B - Communications Protocol Overheads The OSI Model is a conceptual model that standardizes the functions of a telecommunication or computing system without regard of their underlying internal structure

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

Voice in Packets: RTP, RTCP, Header Compression, Playout Algorithms, Terminal Requirements and Implementations

Voice in Packets: RTP, RTCP, Header Compression, Playout Algorithms, Terminal Requirements and Implementations Voice in Packets: RTP, RTCP, Header Compression, Playout Algorithms, Terminal Requirements and Implementations Jani Lakkakorpi Nokia Research Center P.O. Box 407 FIN-00045 NOKIA GROUP Finland jani.lakkakorpi@nokia.com

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

CSCD 433/533 Advanced Networks Fall Lecture 14 RTSP and Transport Protocols/ RTP

CSCD 433/533 Advanced Networks Fall Lecture 14 RTSP and Transport Protocols/ RTP CSCD 433/533 Advanced Networks Fall 2012 Lecture 14 RTSP and Transport Protocols/ RTP 1 Topics Multimedia Player RTSP Review RTP Real Time Protocol Requirements for RTP RTP Details Applications that use

More information

Internet Streaming Media. Reji Mathew NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2007

Internet Streaming Media. Reji Mathew NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2007 Internet Streaming Media Reji Mathew NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2007 Multimedia Streaming UDP preferred for streaming System Overview Protocol stack Protocols RTP + RTCP SDP RTSP SIP

More information

Internet Streaming Media. Reji Mathew NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2006

Internet Streaming Media. Reji Mathew NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2006 Internet Streaming Media Reji Mathew NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2006 Multimedia Streaming UDP preferred for streaming System Overview Protocol stack Protocols RTP + RTCP SDP RTSP SIP

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

CHAPTER-2 IP CONCEPTS

CHAPTER-2 IP CONCEPTS CHAPTER-2 IP CONCEPTS Page: 1 IP Concepts IP is a very important protocol in modern internetworking; you can't really comprehend modern networking without a good understanding of IP. Unfortunately, IP

More information

Multimedia Applications. Classification of Applications. Transport and Network Layer

Multimedia Applications. Classification of Applications. Transport and Network Layer Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Protocols Quality of Service and Resource Management

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Outline Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 RFC? Transport layer introduction UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 The Transport Layer Transport layer

More information

6. The Transport Layer and protocols

6. The Transport Layer and protocols 6. The Transport Layer and protocols 1 Dr.Z.Sun Outline Transport layer services Transmission Control Protocol Connection set-up and tear-down Ports and Well-know-ports Flow control and Congestion control

More information

AIMD (additive-increase, multiplicative-decrease),

AIMD (additive-increase, multiplicative-decrease), AW001-PerkinsIX 5/14/03 2:01 PM Page 397 INDEX A ACK (acknowledgement) Use with RTP retransmission, 277 279 Use with TCP 292 294 ACM (Association for Computing Machinery), 26 Active content, security of,

More information

ECE4110 Internetwork Programming. Introduction and Overview

ECE4110 Internetwork Programming. Introduction and Overview ECE4110 Internetwork Programming Introduction and Overview 1 EXAMPLE GENERAL NETWORK ALGORITHM Listen to wire Are signals detected Detect a preamble Yes Read Destination Address No data carrying or noise?

More information

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6. Transport Layer 6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6.1 Internet Transport Layer Architecture The

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 Transport Layer Role and Services Transport layer is responsible for overall end-to-end transfer of application data 2 Transport Layer Role

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

Digital Asset Management 5. Streaming multimedia

Digital Asset Management 5. Streaming multimedia Digital Asset Management 5. Streaming multimedia 2015-10-29 Keys of Streaming Media Algorithms (**) Standards (*****) Complete End-to-End systems (***) Research Frontiers(*) Streaming... Progressive streaming

More information

Lecture 3: The Transport Layer: UDP and TCP

Lecture 3: The Transport Layer: UDP and TCP Lecture 3: The Transport Layer: UDP and TCP Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4395 3-1 The Transport Layer Provides efficient and robust end-to-end

More information

Introduction to Networked Multimedia An Introduction to RTP p. 3 A Brief History of Audio/Video Networking p. 4 Early Packet Voice and Video

Introduction to Networked Multimedia An Introduction to RTP p. 3 A Brief History of Audio/Video Networking p. 4 Early Packet Voice and Video Preface p. xi Acknowledgments p. xvii Introduction to Networked Multimedia An Introduction to RTP p. 3 A Brief History of Audio/Video Networking p. 4 Early Packet Voice and Video Experiments p. 4 Audio

More information

Real-Time Transport Protocol (RTP)

Real-Time Transport Protocol (RTP) Real-Time Transport Protocol (RTP) 1 2 RTP protocol goals mixers and translators control: awareness, QOS feedback media adaptation 3 RTP the big picture application media encapsulation RTP RTCP data UDP

More information

Lecture 6: Internet Streaming Media

Lecture 6: Internet Streaming Media Lecture 6: Internet Streaming Media A/Prof. Jian Zhang NICTA & CSE UNSW Dr. Reji Mathew EE&T UNSW COMP9519 Multimedia Systems S2 2010 jzhang@cse.unsw.edu.au Background So now you can code video (and audio)

More information

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol)

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) Transport Layer -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) 1 Transport Services The transport layer has the duty to set up logical connections between two applications running on remote

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 8: SIP and H323 Litterature: 2004 Image Coding Group, Linköpings Universitet Lecture 8: SIP and H323 Goals: After this lecture you should Understand the basics of SIP and it's architecture Understand

More information

Multimedia networking: outline

Multimedia networking: outline Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications: RTP, SIP 7.5 network support

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

Internet Streaming Media

Internet Streaming Media Multimedia Streaming Internet Streaming Media Reji Mathew NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2006 preferred for streaming System Overview Protocol stack Protocols + SDP SIP Encoder Side Issues

More information

Congestion Manager. Nick Feamster Computer Networks. M.I.T. Laboratory for Computer Science. October 24, 2001

Congestion Manager. Nick Feamster Computer Networks. M.I.T. Laboratory for Computer Science. October 24, 2001 Congestion Manager Nick Feamster M.I.T. Laboratory for Computer Science 6.829 Computer Networks October 24, 2001 Outline Motivation (problem CM solves?) Sharing info on concurrent flows Enable application

More information

RTP: A Transport Protocol for Real-Time Applications

RTP: A Transport Protocol for Real-Time Applications Internet Engineering Task Force INTERNET-DRAFT draft-ietf-avt-rtp-07.ps Audio-Video Transport WG Schulzrinne/Casner/Frederick/Jacobson GMD/ISI/Xerox/LBL March 21, 1995 Expires: 9/1/95 RTP: A Transport

More information

CCNA 1 Chapter 7 v5.0 Exam Answers 2013

CCNA 1 Chapter 7 v5.0 Exam Answers 2013 CCNA 1 Chapter 7 v5.0 Exam Answers 2013 1 A PC is downloading a large file from a server. The TCP window is 1000 bytes. The server is sending the file using 100-byte segments. How many segments will the

More information

Multimedia! 23/03/18. Part 3: Lecture 3! Content and multimedia! Internet traffic!

Multimedia! 23/03/18. Part 3: Lecture 3! Content and multimedia! Internet traffic! Part 3: Lecture 3 Content and multimedia Internet traffic Multimedia How can multimedia be transmitted? Interactive/real-time Streaming 1 Voice over IP Interactive multimedia Voice and multimedia sessions

More information

Part 3: Lecture 3! Content and multimedia!

Part 3: Lecture 3! Content and multimedia! Part 3: Lecture 3! Content and multimedia! Internet traffic! Multimedia! How can multimedia be transmitted?! Interactive/real-time! Streaming! Interactive multimedia! Voice over IP! Voice and multimedia

More information

Multimedia Networking

Multimedia Networking CMPT765/408 08-1 Multimedia Networking 1 Overview Multimedia Networking The note is mainly based on Chapter 7, Computer Networking, A Top-Down Approach Featuring the Internet (4th edition), by J.F. Kurose

More information

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015 Paper solution Subject: Computer Networks (TE Computer- 2012 pattern) Marks : 30 Date: 5/2/2015 Q1 a) What is difference between persistent and non persistent HTTP? Also Explain HTTP message format. [6]

More information

VoIP. ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts

VoIP. ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts VoIP ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts VoIP System Gatekeeper: A gatekeeper is useful for handling VoIP call connections includes managing terminals, gateways and MCU's (multipoint

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

TEL: # 340

TEL: # 340 Softswitch and Media Gateway (MGCP/MEGACO/SS7 over IP) 陳懷恩博士助理教授兼計算機中心資訊網路組組長國立宜蘭大學資工所 Email: wechen@niu.edu.tw TEL: 03-9357400 # 340 Outline Soft-switch Architecture MGCP (Media Gateway Control Protocol)

More information

Introduction to TCP/IP networking

Introduction to TCP/IP networking Introduction to TCP/IP networking TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute TCP : Transmission Control Protocol HTTP, FTP, ssh What is an internet? A set

More information

On the Scalability of RTCP Based Network Tomography for IPTV Services. Ali C. Begen Colin Perkins Joerg Ott

On the Scalability of RTCP Based Network Tomography for IPTV Services. Ali C. Begen Colin Perkins Joerg Ott On the Scalability of RTCP Based Network Tomography for IPTV Services Ali C. Begen Colin Perkins Joerg Ott Content Distribution over IP Receivers Content Distributor Network A Transit Provider A Transit

More information

Voice over IP (VoIP)

Voice over IP (VoIP) Voice over IP (VoIP) David Wang, Ph.D. UT Arlington 1 Purposes of this Lecture To present an overview of Voice over IP To use VoIP as an example To review what we have learned so far To use what we have

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT Transport Protocols UDP User Datagram Protocol TCP Transport Control Protocol and many others UDP One of the core transport protocols Used

More information

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections Application / Transport Interface Application requests service from transport layer Transport Layer Application Layer Prepare Transport service requirements Data for transport Local endpoint node address

More information

CCNA R&S: Introduction to Networks. Chapter 7: The Transport Layer

CCNA R&S: Introduction to Networks. Chapter 7: The Transport Layer CCNA R&S: Introduction to Networks Chapter 7: The Transport Layer Frank Schneemann 7.0.1.1 Introduction 7.0.1.2 Class Activity - We Need to Talk Game 7.1.1.1 Role of the Transport Layer The primary responsibilities

More information

QUIZ: Longest Matching Prefix

QUIZ: Longest Matching Prefix QUIZ: Longest Matching Prefix A router has the following routing table: 10.50.42.0 /24 Send out on interface Z 10.50.20.0 /24 Send out on interface A 10.50.24.0 /22 Send out on interface B 10.50.20.0 /22

More information

ABSTRACT. that it avoids the tolls charged by ordinary telephone service

ABSTRACT. that it avoids the tolls charged by ordinary telephone service ABSTRACT VoIP (voice over IP - that is, voice delivered using the Internet Protocol) is a term used in IP telephony for a set of facilities for managing the delivery of voice information using the Internet

More information

Outline. QoS routing in ad-hoc networks. Real-time traffic support. Classification of QoS approaches. QoS design choices

Outline. QoS routing in ad-hoc networks. Real-time traffic support. Classification of QoS approaches. QoS design choices Outline QoS routing in ad-hoc networks QoS in ad-hoc networks Classifiction of QoS approaches Instantiation in IEEE 802.11 The MAC protocol (recap) DCF, PCF and QoS support IEEE 802.11e: EDCF, HCF Streaming

More information

4.0.1 CHAPTER INTRODUCTION

4.0.1 CHAPTER INTRODUCTION 4.0.1 CHAPTER INTRODUCTION Data networks and the Internet support the human network by supplying seamless, reliable communication between people - both locally and around the globe. On a single device,

More information

IP Telephony. Course scope - lecture scope

IP Telephony. Course scope - lecture scope IP Telephony Overview of IP Telephony Media processing, RTP, RTCP Quality of Service Raimo Kantola/k2001 Telecommunications Switching Technology I 18-1 Course scope - lecture scope H.323 or SIP IP SIP

More information

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data ELEX 4550 : Wide Area Networks 2015 Winter Session UDP and TCP is lecture describes the two most common transport-layer protocols used by IP networks: the User Datagram Protocol (UDP) and the Transmission

More information

Medical Sensor Application Framework Based on IMS/SIP Platform

Medical Sensor Application Framework Based on IMS/SIP Platform Medical Sensor Application Framework Based on IMS/SIP Platform I. Markota, I. Ćubić Research & Development Centre, Ericsson Nikola Tesla d.d. Poljička cesta 39, 21000 Split, Croatia Phone: +38521 305 656,

More information

Chapter 7. The Transport Layer

Chapter 7. The Transport Layer Chapter 7 The Transport Layer 1 2 3 4 5 6 7 8 9 10 11 Addressing TSAPs, NSAPs and transport connections. 12 For rarely used processes, the initial connection protocol is used. A special process server,

More information

INSE 7110 Winter 2009 Value Added Services Engineering in Next Generation Networks Week #2. Roch H. Glitho- Ericsson/Concordia University

INSE 7110 Winter 2009 Value Added Services Engineering in Next Generation Networks Week #2. Roch H. Glitho- Ericsson/Concordia University INSE 7110 Winter 2009 Value Added Services Engineering in Next Generation Networks Week #2 1 Outline 1. Basics 2. Media Handling 3. Quality of Service (QoS) 2 Basics - Definitions - History - Standards.

More information

Advanced Communication Networks

Advanced Communication Networks Advanced Communication Networks Advanced Transport Issues Prof. Ana Aguiar University of Porto, FEUP 2010-2011 Contents Congestion in Best-effort Networks TCP Congestion Control Congestion Avoidance Mechanisms

More information

ITS323: Introduction to Data Communications

ITS323: Introduction to Data Communications ITS323: Introduction to Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 23 May 2012 ITS323Y12S1L13, Steve/Courses/2012/s1/its323/lectures/transport.tex,

More information

Introduction to Networking. Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

Introduction to Networking. Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Introduction to Networking Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Distributed File Systems Operating Systems In Depth XXVII 2 Copyright 2017 Thomas W.

More information

Voice in Packets: RTP, RTCP, Header Compression, Playout Algorithms, Terminal Requirements and Implementations

Voice in Packets: RTP, RTCP, Header Compression, Playout Algorithms, Terminal Requirements and Implementations Voice in Packets: RTP, RTCP, Header Compression, Playout Algorithms, Terminal Requirements and Implementations Jani Lakkakorpi Nokia Research Center P.O. Box 407 FIN-00045 NOKIA GROUP Finland jani.lakkakorpi@nokia.com

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Transport Layer Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) TCP/IP Model 2 Transport Layer Problem solved:

More information

Summary of last time " " "

Summary of last time   Summary of last time " " " Part 1: Lecture 3 Beyond TCP TCP congestion control Slow start Congestion avoidance. TCP options Window scale SACKS Colloquia: Multipath TCP Further improvements on congestion

More information

Transport Protocols and TCP

Transport Protocols and TCP Transport Protocols and TCP Functions Connection establishment and termination Breaking message into packets Error recovery ARQ Flow control Multiplexing, de-multiplexing Transport service is end to end

More information

Introduction to VoIP. Cisco Networking Academy Program Cisco Systems, Inc. All rights reserved. Cisco Public. IP Telephony

Introduction to VoIP. Cisco Networking Academy Program Cisco Systems, Inc. All rights reserved. Cisco Public. IP Telephony Introduction to VoIP Cisco Networking Academy Program 1 Requirements of Voice in an IP Internetwork 2 IP Internetwork IP is connectionless. IP provides multiple paths from source to destination. 3 Packet

More information

Internet Streaming Media

Internet Streaming Media Internet Streaming Media Reji Mathew NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2008 Multimedia Streaming preferred for streaming System Overview Protocol stack Protocols + SDP S Encoder Side Issues

More information

CSCI-GA Operating Systems. Networking. Hubertus Franke

CSCI-GA Operating Systems. Networking. Hubertus Franke CSCI-GA.2250-001 Operating Systems Networking Hubertus Franke frankeh@cs.nyu.edu Source: Ganesh Sittampalam NYU TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute

More information

Multimedia Networking

Multimedia Networking Multimedia Networking #2 Multimedia Networking Semester Ganjil 2012 PTIIK Universitas Brawijaya #2 Multimedia Applications 1 Schedule of Class Meeting 1. Introduction 2. Applications of MN 3. Requirements

More information

Connection-oriented (virtual circuit) Reliable Transfer Buffered Transfer Unstructured Stream Full Duplex Point-to-point Connection End-to-end service

Connection-oriented (virtual circuit) Reliable Transfer Buffered Transfer Unstructured Stream Full Duplex Point-to-point Connection End-to-end service 최양희서울대학교컴퓨터공학부 Connection-oriented (virtual circuit) Reliable Transfer Buffered Transfer Unstructured Stream Full Duplex Point-to-point Connection End-to-end service 1 2004 Yanghee Choi 2 Addressing: application

More information

Streaming (Multi)media

Streaming (Multi)media Streaming (Multi)media Overview POTS, IN SIP, H.323 Circuit Switched Networks Packet Switched Networks 1 POTS, IN SIP, H.323 Circuit Switched Networks Packet Switched Networks Circuit Switching Connection-oriented

More information

Transport Layer. <protocol, local-addr,local-port,foreign-addr,foreign-port> ϒ Client uses ephemeral ports /10 Joseph Cordina 2005

Transport Layer. <protocol, local-addr,local-port,foreign-addr,foreign-port> ϒ Client uses ephemeral ports /10 Joseph Cordina 2005 Transport Layer For a connection on a host (single IP address), there exist many entry points through which there may be many-to-many connections. These are called ports. A port is a 16-bit number used

More information

Provides port number addressing, so that the correct destination application can receive the packet

Provides port number addressing, so that the correct destination application can receive the packet Why Voice over IP? Traditional TDM (Time-division multiplexing) High recurring maintenance costs Monolithic switch design with proprietary interfaces Uses dedicated, voice-only bandwidth in HFC network

More information

7. TCP 최양희서울대학교컴퓨터공학부

7. TCP 최양희서울대학교컴퓨터공학부 7. TCP 최양희서울대학교컴퓨터공학부 1 TCP Basics Connection-oriented (virtual circuit) Reliable Transfer Buffered Transfer Unstructured Stream Full Duplex Point-to-point Connection End-to-end service 2009 Yanghee Choi

More information