Application Service Models

Size: px
Start display at page:

Download "Application Service Models"

Transcription

1 SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 3 Are these needed by all applications? Guarantee message delivery Guarantee ordered delivery No duplicates Arbitrary size messages How about things like Encryption, Synchronization,... Recall the end-to-end principle; we are getting closer to the ends What are common end-to-end services of interest? Ideally: transport protocol worries about the endto-end service provided to the application; it does not care about the communication path Application Service Models End-to-End (Transport) Protocols IP and the network layer provide host-to-host connectivity across a scalable heterogeneous network IP provides only best-effort connectivity; it can: Drop Messages Reorder messages Duplicate messages Delay messages a long time Limit size of messages How do these features compare with the requirements of applications? SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 1 Flow Control and Congestion Control End-to-end protocols Transport Protocols are often also the place where we provide 1. Flow control prevent a sender from overflowing its receiver 2. Congestion control prevent senders collectively from overflowing network is this an end-to-end service? 3. Fairness and QoS Next layer up from the network layer Its services (in order of increasing difficulty!): 1. Provides process to process connectivity (not just host to host) 2. Provides better service models to applications 3. Sometimes, we use this layer to manage congestion 4....or even attempt to provide fairness and Quality of Service SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 4 SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 2

2 Discussion Why is end-to-end operation different from link-level communication? At the link layer (layer 2) ends on the link communicate with each other End-to-end, 2 ends of the connection communicate with each other Direct connection vs. a path over a switched network; we will revisit this relationship a couple of more times SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 5 Transport Protocols User Datagram Protocol (UDP) Basic transport: only provides process to process access to IP Many other protocols built on top of it Transmission Control Protocol () Reliable bytestream; many bells and whistles Others, including: Realtime Transmission Protocol (RTP/R) Remote Procedure Call (RPC) Stream Control Transmission Protocol (SCTP) Mutlicast Transport Protocols MFTP, PGM, etc.. Point UDP and are not the only transport protocols SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 6 UDP User Datagram Protocol Demultiplexing Application Application Application process process process Ports The simplest end-to-end protocol is to extend IP to recognize multiple processes per host UDP provides a simple demultiplexing key to differentiate between processes no other functionality is supported e.g., when a message arrives, if queues are full it is dropped Why is this interesting? What should be used as a demultiplex key How about process id? Queues Packets demultiplexed UDP Packets arrive Port Numbers are used as a demultiplex key A Port is a logical mailbox which is associated with a process How does a process know the key for a process it wants to communicate with? Well known port numbers for most servers (e.g., http server at port 80; defined in RFC 1700) Otherwise, by out-of-band agreement Try to tie this in with socket programming SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 7 SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 8

3 IP Revisited Version HLen TOS Length Ident Flags Offset TTL Protocol Checksum SourceAddr DestinationAddr Pad (variable) Options (variable) Data How does the packet get to UDP in the first place?? Protocol numbers also defined in RFC 1700 SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 9 SrcPort UDP Checksum Data DstPort Length UDP checksum is optional; when used, it checksums the whole message body (including UDP header) Psuedoheader from IP source address destination address zero protocol UDP length Recall that IP checksum was on the IP header only Idea: protection against misrouted datagrams SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 10 Transmission Control Protocol () A reliable connection-oriented service model Reliable: everything gets there exactly one time connection-oriented: in-order delivery of a stream of bytes Full duplex Most widely used and most carefully tuned transport protocol on the internet Like UDP supports multiple processes per host (also using port numbers) implements both flow-control and congestion control (will discuss in detail later) SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 11 Overview of Operation Application process Send buffer Write bytes Segment Segment Segment Transmit segments Application process Connection establishment is needed Receive buffer Read bytes Sending process writes some bytes (any number) breaks into segments and sends via IP Receiving process reads some bytes (any number) How big is the segment? When does send the segments? How to implement Reliability and in-order delivery? SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 12

4 Overview (cont d) SrcPort DstPort SequenceNum Common choice for Maximum Segment Size (MSS): maximum size that will not cause IP to fragment locally What is this equal to? When to send a segment? 1. When there is enough data to send an MSS 2. If the application demands an immediate send 3. Set a timer when you send a segment; send again when it fires Why three different ways? Packet boundaries are not visible to a process Reliability? Need some form of ARQ (isnt it supported at link layer?) In-order delivery? Dont allow a receive until all preceeding data has arrived HdrLen 0 Flags Checksum Acknowledgment Options (variable) Data AdvertisedWindow UrgPtr Source port and Destination port identify processes With source and destination IPs, they provide a unique connection identifier runs a sliding window algorithm Acknowledgements used to ack received segments Sequence number is the number of the first byte in the segment Advertised window is the size of the window at the receiver (flow control) Checksum is identical to UDP SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 13 SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 14 Connection Establishment Passive participant (server) Active participant (client) SYN, SequenceNum = x Acknowledgment = x + 1 SYN +, SequenceNum = y,, Acknowledgment = y + 1 The sequence number is the number of the byte received last + 1 Initially randomly picked Note Duplex operation SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 15 SYN_RCVD Close/FIN FIN_WAIT_1 FIN_WAIT_2 State Diagram Passive open CLOSED LISTEN ESTABLISHED CLOSING TIME_WAIT Close SYN/SYN + Send/SYN SYN/SYN + Close/FIN FIN/ + FIN/ FIN/ SYN + / FIN/ Close Timeout after two segment lifetimes Active open/syn SYN_SENT CLOSE_WAIT LAST_ Close/FIN CLOSED Normal operation occurs within the established state Why timewait state? Track connection establishment and teardown SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 16

5 Established Operation Data (SequenceNum) Receiver Sender Acknowledgment + AdvertisedWindow Strategy Sliding window ARQ Use s and Sequence numbers sets a flag bit to say that the field is valid Flow control using advertised window (more soon) Congestion control (more later) SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 17 Sliding Window Operation in LastByteAcked Sending application LastByteWritten (a) LastByteSent Receiving application LastByteRead NextByteExpected (b) LastByteRcvd s sliding window is a hybrid of Selective repeat and Go-Back-N (accepts out of order segments, but cumulative ) Sender window size obtained by explicit feedback; used for flow control Advertised window is: (MaxRcvBuffer - (LastByteRcvd - LastByteRead)) Effective Send Window = Advertised Window - (Last Byte Sent - Last Byte d) SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 18 Problems/Performance Tuning Aside: Gigabit Networks and Wraparound Problems Zero window advertisement Sender probes with 1-byte packet Silly Window Syndrome Small openings in advertised window cause tiny packets to be sent inefficient Solution Sender side: Nagle s algorithm, wait before you send under some conditions Solution Receiver side: delay acks to give window chance to open can have bad side effects Problem: Gigabit networks and field wraparound Problem: 32-bit sequence number can wraparound fast on Gigabit networks assumes a packet cannot live more than Maximum Segment Life (MSL = 120s) Problem: valid packets with same sequence number alive at the same time Not a big problem currently; tend to be constrained by flow control first Problem: 16-bit advertised window field only enough to express 64-Kb window Delay bandwidth product (pipe volume) of Megabytes or even gigabytes possible Cannot fill the pipe without exceeding the advertised window Forced to operate at a low throughput SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 19 SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 20

6 Solution: Long Fat Pipe Extension Uses options in header Add a timestamp to the packet; destination copies back onto helps identify different incarnations of the same sequence number Negotiate a scaling factor for the advertised window size Helps with the 16-bit advertised window limitation how? Is there a drawback? Details in RFC 1122 SUNY-BINGHAMTON CS428/528 SPRING 2013 LEC. #21 21

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [NETWORKING] Frequently asked questions from the previous class surveys

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [NETWORKING] Frequently asked questions from the previous class surveys CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [NETWORKING] The Receiver's Buffer Small it may be But throttle the mightiest sender It can Not just the how much But also the when Or if at all Shrideep Pallickara

More information

Reliable Byte-Stream (TCP)

Reliable Byte-Stream (TCP) Reliable Byte-Stream () Outline Connection Establishment/Termination Sliding Window Revisited Flow Control Adaptive Timeout Simple Demultiplexer (UDP) Header format Note 16 bit port number (so only 64K

More information

TCP Overview. Connection-oriented Byte-stream

TCP Overview. Connection-oriented Byte-stream TCP Overview Connection-oriented Byte-stream app writes bytes TCP sends segments app reads bytes Full duplex Flow control: keep sender from overrunning receiver Congestion control: keep sender from overrunning

More information

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 5 - Part 2

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 5 - Part 2 Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion Chapter 5 - Part 2 End to End Protocols Eng. Haneen El-Masry May, 2014 Transport Layer

More information

Some slides courtesy David Wetherall. Communications Software. Lecture 4: Connections and Flow Control. CSE 123b. Spring 2003.

Some slides courtesy David Wetherall. Communications Software. Lecture 4: Connections and Flow Control. CSE 123b. Spring 2003. CSE 123b Communications Software Spring 2003 Lecture 4: Connections and Flow Control Stefan Savage Some slides courtesy David Wetherall Administrativa Computer accounts have been setup You can use the

More information

Internet transport protocols

Internet transport protocols Internet transport protocols 188lecture7.ppt Pirkko Kuusela 1 Problem IP can be used to connect together heterogenous networks IP network offers only best effort packet delivery (with no guarantees) Applications

More information

Connections. Topics. Focus. Presentation Session. Application. Data Link. Transport. Physical. Network

Connections. Topics. Focus. Presentation Session. Application. Data Link. Transport. Physical. Network Connections Focus How do we connect processes? This is the transport layer Topics Naming processes Connection setup / teardown Flow control Application Presentation Session Transport Network Data Link

More information

Fundamentals of Computer Networks ECE 478/578. Transport Layer. End- to- End Protocols 4/16/13. Spring Application. Application.

Fundamentals of Computer Networks ECE 478/578. Transport Layer. End- to- End Protocols 4/16/13. Spring Application. Application. Fundamentals of Computer Networks ECE 478/578 Spring 2013 End- to- End Protocols Source node Application Presentation Session transport Network Data link Physical Packets Frames Bits Transport Layer Intermediate

More information

Problem. Chapter Outline. Chapter Goal. End-to-end Protocols. End-to-end Protocols. Chapter 5. End-to-End Protocols

Problem. Chapter Outline. Chapter Goal. End-to-end Protocols. End-to-end Protocols. Chapter 5. End-to-End Protocols Computer Networks: A Systems Approach, 5e Larry L. Peterson and Bruce S. Davie End-to-End Protocols Problem How to turn this host-to-host packet delivery service into a process-to-process communication

More information

Internet Protocols Fall Outline

Internet Protocols Fall Outline Internet Protocols Fall 2004 Lecture 12 TCP Andreas Terzis Outline TCP Connection Management Sliding Window ACK Strategy Nagle s algorithm Timeout estimation Flow Control CS 449/Fall 04 2 1 TCP Connection

More information

CSE/EE 461 Lecture 12 TCP. A brief Internet history...

CSE/EE 461 Lecture 12 TCP. A brief Internet history... CSE/EE 461 Lecture 12 TCP Tom Anderson tom@cs.washington.edu Peterson, Chapter 5.2, 6 A brief Internet history... 1991 WWW/HTTP 1969 ARPANET created 1972 TELNET RFC 318 1973 FTP RFC 454 1977 MAIL RFC 733

More information

Last Class. CSE 123b Communications Software. Today. Naming Processes/Services. Transmission Control Protocol (TCP) Picking Port Numbers.

Last Class. CSE 123b Communications Software. Today. Naming Processes/Services. Transmission Control Protocol (TCP) Picking Port Numbers. CSE 123b Communications Software Spring 2002 Lecture 4: Connections and Flow Control Stefan Savage Last Class We talked about how to implement a reliable channel in the transport layer Approaches ARQ (Automatic

More information

End-to-End Protocols. End-to-End Protocols

End-to-End Protocols. End-to-End Protocols End-to-End Protocols UDP (User Datagram Protocol) (Transport Control Protocol) Connection Establishment/Termination Sliding Window Revisit Flow Control Adaptive Retransmission End-to-End Protocols Limitations

More information

CSCI-1680 Transport Layer I Rodrigo Fonseca

CSCI-1680 Transport Layer I Rodrigo Fonseca CSCI-1680 Transport Layer I Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Today Transport Layer UDP TCP Intro Connection Establishment From Lec 2: OSI Reference

More information

TCP Adaptive Retransmission Algorithm - Original TCP. TCP Adaptive Retransmission Algorithm Jacobson

TCP Adaptive Retransmission Algorithm - Original TCP. TCP Adaptive Retransmission Algorithm Jacobson TCP Adaptive Retransmission Algorithm - Original TCP Theory Estimate RTT Multiply by 2 to allow for variations Practice Use exponential moving average (A = 0.1 to 0.2) Estimate = (A) * measurement + (1-

More information

COMPUTER NETWORKS CS CS 55201

COMPUTER NETWORKS CS CS 55201 COMPUTER NETWORKS CS 45201 CS 55201 CHAPTER 5 End-to-End protocols Paul A. Farrell and H. Peyravi Department of Computer Science Kent State University Kent, Ohio 44242 farrell@mcs.kent.edu http://www.cs.kent.edu/

More information

COMPUTER NETWORKS CS CS 55201

COMPUTER NETWORKS CS CS 55201 Contents COMPUTER NETWORKS CS 45201 CS 55201 End-to-End (Transport) Protocols Simple Demultiplexer (UDP) CHAPTER 5 End-to-End protocols Paul A. Farrell and H. Peyravi Department of Computer Science Kent

More information

CSE/EE 461 Lecture 14. Connections. Last Time. This Time. We began on the Transport layer. Focus How do we send information reliably?

CSE/EE 461 Lecture 14. Connections. Last Time. This Time. We began on the Transport layer. Focus How do we send information reliably? CSE/EE 461 Lecture 14 Connections Last Time We began on the Transport layer Focus How do we send information reliably? Topics ARQ and sliding windows Application Presentation Session Transport Network

More information

CSCI-1680 Transport Layer I Rodrigo Fonseca

CSCI-1680 Transport Layer I Rodrigo Fonseca CSCI-1680 Transport Layer I Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Today Transport Layer UDP TCP Intro Connection Establishment Transport Layer "#$ -##$

More information

EE 122: Transport Protocols. Kevin Lai October 16, 2002

EE 122: Transport Protocols. Kevin Lai October 16, 2002 EE 122: Transport Protocols Kevin Lai October 16, 2002 Motivation IP provides a weak, but efficient service model (best-effort) - packets can be delayed, dropped, reordered, duplicated - packets have limited

More information

EE 122: Transport Protocols: UDP and TCP

EE 122: Transport Protocols: UDP and TCP EE 122: Transport Protocols: and provides a weak, but efficient service model (best-effort) - Packets can be delayed, dropped, reordered, duplicated - Packets have limited size (why?) packets are addressed

More information

End-to-End Protocols: UDP and TCP. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

End-to-End Protocols: UDP and TCP. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 End-to-End Protocols: UDP and TCP Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 11/14/2016 CSCI 445 Fall 2016 1 Acknowledgements Some pictures used

More information

CSE/EE 461 Lecture 13 Connections and Fragmentation. TCP Connection Management

CSE/EE 461 Lecture 13 Connections and Fragmentation. TCP Connection Management CSE/EE 461 Lecture 13 Connections and Fragmentation Tom Anderson tom@cs.washington.edu Peterson, Chapter 5.2 TCP Connection Management Setup assymetric 3-way handshake Transfer sliding window; data and

More information

CSE 461 Module 11. Connections

CSE 461 Module 11. Connections CSE 461 Module 11 Connections This Time More on the Transport Layer Focus How do we connect processes? Topics Naming processes Connection setup / teardown Flow control Application Presentation Session

More information

Chapter 5 End-to-End Protocols

Chapter 5 End-to-End Protocols Chapter 5 End-to-End Protocols Transport layer turns the host-to-host packet delivery service of the underlying network into a process-to-process communication channel Common properties that application

More information

CS419: Computer Networks. Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581)

CS419: Computer Networks. Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581) : Computer Networks Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581) TCP as seen from above the socket The TCP socket interface consists of: Commands to start

More information

Outline Computer Networking. Functionality Split. Transport Protocols

Outline Computer Networking. Functionality Split. Transport Protocols Outline 15-441 15 441 Computer Networking 15-641 Lecture 10: Transport Protocols Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15 441 F17 Transport introduction TCP connection establishment

More information

Introduc)on to Computer Networks

Introduc)on to Computer Networks Introduc)on to Computer Networks COSC 4377 Lecture 7 Spring 2012 February 8, 2012 Announcements HW3 due today Start working on HW4 HW5 posted In- class student presenta)ons No TA office hours this week

More information

Page 1. Goals for Today" Placing Network Functionality" Basic Observation" CS162 Operating Systems and Systems Programming Lecture 15

Page 1. Goals for Today Placing Network Functionality Basic Observation CS162 Operating Systems and Systems Programming Lecture 15 Goals for Today" CS162 Operating Systems and Systems Programming Lecture 15 Finish e2e argument & fate sharing! Transport: TCP/UDP! Reliability! Flow control! Reliability, Transport Protocols" March 16,

More information

Introduc)on to Computer Networks

Introduc)on to Computer Networks Introduc)on to Computer Networks COSC 4377 Lecture 8 Spring 2012 February 13, 2012 Announcements HW4 due this week Start working on HW5 In- class student presenta)ons TA office hours this week TR 1030a

More information

Transport Layer Marcos Vieira

Transport Layer Marcos Vieira Transport Layer 2014 Marcos Vieira Transport Layer Transport protocols sit on top of network layer and provide Application-level multiplexing ( ports ) Error detection, reliability, etc. UDP User Datagram

More information

11/24/2009. Fundamentals of Computer Networks ECE 478/578. Flow Control in TCP

11/24/2009. Fundamentals of Computer Networks ECE 478/578. Flow Control in TCP Fundamentals of Computer Networks ECE 478/578 Lecture #21: TCP Window Mechanism Instructor: Loukas Lazos Dept of Electrical and Computer Engineering University of Arizona Sliding Window in TCP Goals of

More information

CSE/EE 461. Sliding Windows and ARQ. Last Time. This Time. We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF)

CSE/EE 461. Sliding Windows and ARQ. Last Time. This Time. We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF) CSE/EE 46 Sliding Windows and ARQ Last Time We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF) It was all about routing: how to provide end-to-end delivery of packets. Application

More information

Transport Protocols. CSCI 363 Computer Networks Department of Computer Science

Transport Protocols. CSCI 363 Computer Networks Department of Computer Science Transport Protocols CSCI 363 Computer Networks Department of Computer Science Expected Properties Guaranteed message delivery Message order preservation No duplication of messages Support for arbitrarily

More information

End-to-End Protocols. Transport Protocols. User Datagram Protocol (UDP) Application Layer Expectations

End-to-End Protocols. Transport Protocols. User Datagram Protocol (UDP) Application Layer Expectations # # # & *, + & %$ & Transport Protocols End-to-End Protocols Convert host-to-host packet delivery service into a process-to-process communication channel Demultiplexing: Multiple applications can share

More information

CSE 461 Connections. David Wetherall

CSE 461 Connections. David Wetherall CSE 461 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes TCP / UDP Connection setup / teardown

More information

CSEP 561 Connections. David Wetherall

CSEP 561 Connections. David Wetherall CSEP 561 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes TCP / UDP Connection setup / teardown

More information

UNIT V. Computer Networks [10MCA32] 1

UNIT V. Computer Networks [10MCA32] 1 Computer Networks [10MCA32] 1 UNIT V 1. Explain the format of UDP header and UDP message queue. The User Datagram Protocol (UDP) is a end-to-end transport protocol. The issue in UDP is to identify the

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

CSEP 561 Connections. David Wetherall

CSEP 561 Connections. David Wetherall CSEP 561 Connections David Wetherall djw@cs.washington.edu Connections Focus How do we (reliably) connect processes? This is the transport layer Topics Naming processes Connection setup / teardown Sliding

More information

CSE 461 The Transport Layer

CSE 461 The Transport Layer CSE 461 The Transport Layer The Transport Layer Focus How do we (reliably) connect processes? This is the transport layer Topics Naming end points UDP: unreliable transport TCP: reliable transport Connection

More information

xkcd.com End To End Protocols End to End Protocols This section is about Process to Process communications.

xkcd.com End To End Protocols End to End Protocols This section is about Process to Process communications. xkcd.com 1 2 COS 460 & 540 End to End Protocols 3 This section is about Process to Process communications. or the how applications can talk to each other. 5- (UDP-TCP).key - November 9, 2017 Requirements

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Transport Layer Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) TCP/IP Model 2 Transport Layer Problem solved:

More information

CS 356: Introduction to Computer Networks. Lecture 16: Transmission Control Protocol (TCP) Chap. 5.2, 6.3. Xiaowei Yang

CS 356: Introduction to Computer Networks. Lecture 16: Transmission Control Protocol (TCP) Chap. 5.2, 6.3. Xiaowei Yang CS 356: Introduction to Computer Networks Lecture 16: Transmission Control Protocol (TCP) Chap. 5.2, 6.3 Xiaowei Yang xwy@cs.duke.edu Overview TCP Connection management Flow control When to transmit a

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Outline Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 RFC? Transport layer introduction UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 The Transport Layer Transport layer

More information

Flow Control, and Congestion Control

Flow Control, and Congestion Control TCP Sliding Windows, Flow Control, and Congestion Control Lecture material taken from Computer Networks A Systems Approach, Fourth Ed.,Peterson and Davie, Morgan Kaufmann, 2007. Computer Networks TCP Sliding

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY 23.2 The transport

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

CSCI-1680 Transport Layer II Data over TCP Rodrigo Fonseca

CSCI-1680 Transport Layer II Data over TCP Rodrigo Fonseca CSCI-1680 Transport Layer II Data over TCP Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Last Class CLOSED Passive open Close Close LISTEN Introduction to TCP

More information

TCP/IP Networking. Part 4: Network and Transport Layer Protocols

TCP/IP Networking. Part 4: Network and Transport Layer Protocols TCP/IP Networking Part 4: Network and Transport Layer Protocols Orientation Application Application protocol Application TCP TCP protocol TCP IP IP protocol IP IP protocol IP IP protocol IP Network Access

More information

Transport Protocols CS 640 1

Transport Protocols CS 640 1 Transport Protocols CS 640 1 Reliability CS 640 2 Sliding Window Revisited TCP s variant of the sliding window algorithm, which serves several purposes: (1) it guarantees the reliable delivery of data,

More information

TCP & UDP. Transport Layer. Transport. Network. Functions. End-to-end Reliable Byte Stream. Unreliable End-to-end. C.K. Kim

TCP & UDP. Transport Layer. Transport. Network. Functions. End-to-end Reliable Byte Stream. Unreliable End-to-end. C.K. Kim & UDP C.K. Kim Transport Layer Functions Transport End-to-end Reliable Byte Stream - Error control -Flow control - Congestion control Connection Management Multiplexing/Demultiplexing Network Unreliable

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Recall Transport layer provides

More information

TCP. TCP: Overview. TCP Segment Structure. Maximum Segment Size (MSS) Computer Networks 10/19/2009. CSC 257/457 - Fall

TCP. TCP: Overview. TCP Segment Structure. Maximum Segment Size (MSS) Computer Networks 10/19/2009. CSC 257/457 - Fall TCP Kai Shen 10/19/2009 CSC 257/457 - Fall 2009 1 TCP: Overview connection-oriented: handshaking (exchange of control msgs) to initialize sender, receiver state before data exchange pipelined: multiple

More information

Computer and Network Security

Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2009 Lecture 8 Announcements Plan for Today: Networks: TCP Firewalls Midterm 1: One week from Today! 2/17/2009 In class, short answer, multiple choice,

More information

Transport Layer. Gursharan Singh Tatla. Upendra Sharma. 1

Transport Layer. Gursharan Singh Tatla.   Upendra Sharma. 1 Transport Layer Gursharan Singh Tatla mailme@gursharansingh.in Upendra Sharma 1 Introduction The transport layer is the fourth layer from the bottom in the OSI reference model. It is responsible for message

More information

CSE 461 Module 10. Introduction to the Transport Layer

CSE 461 Module 10. Introduction to the Transport Layer CSE 461 Module 10 Introduction to the Transport Layer Last Time We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF, BGP) It was all about routing: how to provide end-to-end delivery

More information

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data ELEX 4550 : Wide Area Networks 2015 Winter Session UDP and TCP is lecture describes the two most common transport-layer protocols used by IP networks: the User Datagram Protocol (UDP) and the Transmission

More information

COMPUTER NETWORKS UNIT IV UDP TCP Adaptive Flow Control Adaptive Retransmission - Congestion control Congestion avoidance QoS USER DATAGRAM PROTOCOL (UDP) It is host to host(process to process) communication

More information

Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery

Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery 1 TCP Data Stream Consists of bytes Delivered using a virtual connection between sockets Each socket has the port number and IP address

More information

CS457 Transport Protocols. CS 457 Fall 2014

CS457 Transport Protocols. CS 457 Fall 2014 CS457 Transport Protocols CS 457 Fall 2014 Topics Principles underlying transport-layer services Demultiplexing Detecting corruption Reliable delivery Flow control Transport-layer protocols User Datagram

More information

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 18 th class; 7 th Oct 2011 Instructor: Sridhar Iyer IIT Bombay Reliable Transport We have already designed a reliable communication protocol for an analogy

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

TCP: Transmission Control Protocol UDP: User Datagram Protocol TCP - 1

TCP: Transmission Control Protocol UDP: User Datagram Protocol   TCP - 1 TCP/IP Family of Protocols (cont.) TCP: Transmission Control Protocol UDP: User Datagram Protocol www.comnets.uni-bremen.de TCP - 1 Layer 4 Addressing: Port Numbers To talk to another port, a sender needs

More information

TCP. Sliding Windows, Flow Control, and Congestion Control. Networks : TCP Sliding Windows 1

TCP. Sliding Windows, Flow Control, and Congestion Control. Networks : TCP Sliding Windows 1 TCP Sliding Windows, Flow Control, and Congestion Control Networks : TCP Sliding Windows 1 Lecture material taken from Computer Networks A Systems Approach, Third Ed.,Peterson, L. and Davie, B., Morgan

More information

Multiple unconnected networks

Multiple unconnected networks TCP/IP Life in the Early 1970s Multiple unconnected networks ARPAnet Data-over-cable Packet satellite (Aloha) Packet radio ARPAnet satellite net Differences Across Packet-Switched Networks Addressing Maximum

More information

CS 356: Computer Network Architectures. Lecture 17: End-to-end Protocols and Lab 3 Chapter 5.1, 5.2. Xiaowei Yang

CS 356: Computer Network Architectures. Lecture 17: End-to-end Protocols and Lab 3 Chapter 5.1, 5.2. Xiaowei Yang CS 356: Computer Network Architectures Lecture 17: End-to-end Protocols and Lab 3 Chapter 5.1, 5.2 Xiaowei Yang xwy@cs.duke.edu Transport protocols Before: How to deliver packet from one host to another

More information

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections Application / Transport Interface Application requests service from transport layer Transport Layer Application Layer Prepare Transport service requirements Data for transport Local endpoint node address

More information

Introduction to Networking. Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

Introduction to Networking. Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Introduction to Networking Operating Systems In Depth XXVII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Distributed File Systems Operating Systems In Depth XXVII 2 Copyright 2017 Thomas W.

More information

05 Transmission Control Protocol (TCP)

05 Transmission Control Protocol (TCP) SE 4C03 Winter 2003 05 Transmission Control Protocol (TCP) Instructor: W. M. Farmer Revised: 06 February 2003 1 Interprocess Communication Problem: How can a process on one host access a service provided

More information

Information Network 1 TCP 1/2

Information Network 1 TCP 1/2 Functions provided by the transport layer Information Network 1 TCP 1/2 Youki Kadobayashi NAIST! Communication between processes " designation of process " identification of inter-process channel! Interface

More information

TCP so far Computer Networking Outline. How Was TCP Able to Evolve

TCP so far Computer Networking Outline. How Was TCP Able to Evolve TCP so far 15-441 15-441 Computer Networking 15-641 Lecture 14: TCP Performance & Future Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Reliable byte stream protocol Connection establishments

More information

Chapter 24. Transport-Layer Protocols

Chapter 24. Transport-Layer Protocols Chapter 24. Transport-Layer Protocols 23.1 Introduction 23.2 User Datagram Protocol 23.3 Transmission Control Protocol 23.4 SCTP Computer Networks 24-1 Position of Transport-Layer Protocols UDP is an unreliable

More information

TCP/IP. Chapter 5: Transport Layer TCP/IP Protocols

TCP/IP. Chapter 5: Transport Layer TCP/IP Protocols TCP/IP Chapter 5: Transport Layer TCP/IP Protocols 1 Objectives Understand the key features and functions of the User Datagram Protocol Explain the mechanisms that drive segmentation, reassembly, and retransmission

More information

CSCD 330 Network Programming Winter 2015

CSCD 330 Network Programming Winter 2015 CSCD 330 Network Programming Winter 2015 Lecture 11a Transport Layer Reading: Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Chapter 3 Sections

More information

Lecture 22: TCP & NAT. CSE 123: Computer Networks Alex C. Snoeren

Lecture 22: TCP & NAT. CSE 123: Computer Networks Alex C. Snoeren Lecture 22: TCP & NAT CSE 123: Computer Networks Alex C. Snoeren Lecture 22 Overview TCP Connection Management TCP Slow Start Allow TCP to adjust to links of any speed Fast Retransmit & Recovery Avoid

More information

UNIT IV TRANSPORT LAYER

UNIT IV TRANSPORT LAYER UNIT IV TRANSPORT LAYER UDP - SIMPLE DEMULTIPLEXER (UDP) The simplest transport protocol is one that extends the host-to-host delivery service of the underlying network into a process-to-process communication

More information

9th Slide Set Computer Networks

9th Slide Set Computer Networks Prof. Dr. Christian Baun 9th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/49 9th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT Transport Protocols UDP User Datagram Protocol TCP Transport Control Protocol and many others UDP One of the core transport protocols Used

More information

6.033 Computer System Engineering

6.033 Computer System Engineering MIT OpenCourseWare http://ocw.mit.edu 6.033 Computer System Engineering Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. L2: end to end layer

More information

UNIT IV TRANSPORT LAYER

UNIT IV TRANSPORT LAYER Transport Layer UNIT IV TRANSPORT LAYER Congestion Control and Quality of Service Ref: Data Communication & Networking, 4 th edition, Forouzan IV-1 DATA TRAFFIC The main focus of congestion control and

More information

Transport Protocols. Raj Jain. Washington University in St. Louis

Transport Protocols. Raj Jain. Washington University in St. Louis Transport Protocols Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 16-1 Overview q TCP q Key features

More information

CS 43: Computer Networks. 18: Transmission Control Protocol October 12-29, 2018

CS 43: Computer Networks. 18: Transmission Control Protocol October 12-29, 2018 CS 43: Computer Networks 18: Transmission Control Protocol October 12-29, 2018 Reading Quiz Lecture 18 - Slide 2 Midterm topics Abstraction, Layering, End-to-end design HTTP, DNS, Email, BT, etc. (app

More information

Flow Control, and Congestion Control

Flow Control, and Congestion Control TCP Sliding Windows, Flow Control, and Congestion Control Lecture material taken from Computer Networks A Systems Approach, Fourth Ed.,Peterson and Davie, Morgan Kaufmann, 2007. Advanced Computer Networks

More information

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2. Goals for Todayʼs Lecture. Role of Transport Layer

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2. Goals for Todayʼs Lecture. Role of Transport Layer Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 CS 375: Computer Networks Thomas C. Bressoud 1 Goals for Todayʼs Lecture Principles underlying transport-layer services (De)multiplexing Detecting

More information

User Datagram Protocol (UDP):

User Datagram Protocol (UDP): SFWR 4C03: Computer Networks and Computer Security Feb 2-5 2004 Lecturer: Kartik Krishnan Lectures 13-15 User Datagram Protocol (UDP): UDP is a connectionless transport layer protocol: each output operation

More information

23-3 TCP. Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control 23.22

23-3 TCP. Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control 23.22 23-3 TCP 23.22 TCP is a connection-oriented protocol; it creates a virtual connection between two TCPs to send data. In addition, TCP uses flow and error control mechanisms at the transport level. Topics

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY The transport

More information

Computer Network Programming. The Transport Layer. Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University

Computer Network Programming. The Transport Layer. Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University Computer Network Programming The Transport Layer Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University The Transport Layer The Big Picture Overview of TCP/IP protocols TCP Packet Exchanges

More information

TCP/IP Protocol Suite 1

TCP/IP Protocol Suite 1 TCP/IP Protocol Suite 1 Stream Control Transmission Protocol (SCTP) TCP/IP Protocol Suite 2 OBJECTIVES: To introduce SCTP as a new transport-layer protocol. To discuss SCTP services and compare them with

More information

Lenuta Alboaie Computer Networks

Lenuta Alboaie Computer Networks Transport Level Lenuta Alboaie adria@info.uaic.ro 1 Content Transport Level Preliminary UDP (User Datagram Protocol) TCP (Transmission Control Protocol) TCP versus UDP 2 Transport Level Preliminary They

More information

The Internet. Overview. Network building blocks

The Internet. Overview. Network building blocks The Internet Lecture 24 Based in part on material from Computer Networks: A Systems Approach by Larry Peterson & Bruce Davie CS 638 Web Programming Overview Network building blocks Nodes: PC, special-purpose

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services.

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services. Operating Systems and s Lecture 8: Transport Layer I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it Adrian Perrig Security Group ETH Zürich 2 Where we are in the

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich Operating Systems and Networks Network Lecture 8: Transport Layer Adrian Perrig Network Security Group ETH Zürich I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it

More information

Announcements Computer Networking. Outline. Transport Protocols. Transport introduction. Error recovery & flow control. Mid-semester grades

Announcements Computer Networking. Outline. Transport Protocols. Transport introduction. Error recovery & flow control. Mid-semester grades Announcements 15-441 Computer Networking Lecture 16 Transport Protocols Mid-semester grades Based on project1 + midterm + HW1 + HW2 42.5% of class If you got a D+,D, D- or F! must meet with Dave or me

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Transport Layer TDC463 Winter 2011/12 John Kristoff - DePaul University 1 Why a transport layer? IP gives us end-to-end connectivity doesn't it? Why, or why not, more

More information

UDP, TCP, IP multicast

UDP, TCP, IP multicast UDP, TCP, IP multicast Dan Williams In this lecture UDP (user datagram protocol) Unreliable, packet-based TCP (transmission control protocol) Reliable, connection oriented, stream-based IP multicast Process-to-Process

More information

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol)

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) Transport Layer -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) 1 Transport Services The transport layer has the duty to set up logical connections between two applications running on remote

More information