A Look Back at Security Problems in the TCP/IP Protocol Suite Review

Size: px
Start display at page:

Download "A Look Back at Security Problems in the TCP/IP Protocol Suite Review"

Transcription

1 A Look Back at Security Problems in the TCP/IP Protocol Suite Review Network Security Instructor:Dr. Shishir Nagaraja Submitted By: Jyoti Leeka October 26, Introduction to the topic and the reason for the topic being interesting In this paper the author discusses the paper Security problems in the TCP/IP Protocol Suite which he wrote 15 years ago, in this paper he discussed protocol-level security issues in TCP/IP. In the present paper he discuses where this analysis was correct and where it went wrong. The authors interest in security issues pertaining to protocols grew when he came across the incident when somebody accidentally connected his computer to the backbone and this computer started behaving as the gateway. Discovery of security issues in which an adversary is able to figure out the TCP/IP sequence number also aroused his interest. Other such incidences included a teenager breaking into password files at AT&T using uucp. 2 Questions that the paper asks and how are those questions interesting The paper explores protocol-level security issues in TCP/IP protocol stack. The question is interesting as TCP/IP protocol stack has been most widely employed, hence flaws in it would affect a lot of people, therefore it becomes worthwhile to study flaws in TCP/IP protocol suite and also the ways in which such flaws can be mitigated. 3 How does it answer the questions The paper answers the question by first discussing the problem in which an attacker guesses the TCP sequence number and uses it to launch an attack. Below mentioned is the manner in which TCP handshake between a client, C and a server, S takes place (Reference: A Look Back at Security Problems in the TCP/IP Protocol Suite by Bellovin) : C->S: SYN(ISN C ) S->C: SYN(ISN S ), ACK(ISN C ) C->S: SYN(ISN S ) C->S: data or S->S: data Here, ISN stands for initial sequence number. The attacker launches the attack by guessing the initial sequence number of the server, S and pretending to be the client.this the attacker accomplishes by following the below mentioned steps, here X is the attacker and X succeeds in sending the malicious data to the server (Reference: A Look Back at Security Problems in the TCP/IP Protocol Suite by Bellovin): X->S: SYN(ISN X ), SRC=T 1

2 S->C: SYN(ISN S ), ACK(ISN X ) X->S: ACK(ISN S ), SRC=T X->S: ACK(ISN S ), SRC=T, malicious-data The attacker may ensure that the Client,C does not receive ACK(ISN X ) by flooding the client with requests. This shows that authentication performed on the basis of the IP address of the source is vulnerable to attack. Also it depicts that in order to prevent the attacks, the sequence numbers should not be easily guessable. Since the protocol was not designed for security, hence the flaw is in using TCP sequence numbers for security purposes. In order to prevent the above mentioned attack, the following measures can be adopted: 1. To generate the next sequence number by adding a random number to the current sequence number. Increments of random numbers suffer from disadvantage that the sequence numbers allocated are within a small range, this is according to the central limit theorem. 2. To generate the initial sequence number for the server DES with a simple counter can be used in Electronic Codebook Mode and DES without a counter can be used in output feedback form. The reboot time which is encrypted with a secret key is used as the key for DES. 3. For every connection which is characterized by the IP address and port number of the client and the server, a unique sequence number is created using a hash function. The below mentioned are the attacks which an attacker may target on the routing mechanism: 1. Source Routing: The client may use the source route to get back the reply packets from the server or vice versa. An attacker may exploit this by putting its desired route in the packet. In order to prevent such an attack the following methods can be adopted: (a) One of the methods is the gateways accepting the packets from the local networks and discarding the external packets. This method is difficult to implement in a real life scenario. (b) Verifying the source route by receiving the packets only from trusted gateways. 2. Attacks on the intranet protocol RIP: An attacker may exploit the mechanism of Routing Information Protocol to send false routing information such as sending routing information claiming to be the faulty host, this will effectively route all the faulty hosts packets to the attackers machine. An attacker may also claim that the best route passes through it and when the destinations packets pass through it, he may eavesdrop on the packets. In order to prevent such attacks the following attacks may be adopted: (a) Filtering out the packets with false source and destination addresses at the gateway. (b) If new routes are broad casted to ones own local network, then such routes should not be accepted. 3. Exterior Gateway Protocol: Exterior gateway protocol is used for communicating between core gateways and exterior gateways. The core gateway periodically asks the exterior gateway about the networks it caters to and the same information the exterior gateway asks the core gateway. In order to exploit the weaknesses of EGP an attackers gateway may claim that it has a better route to a faulty gateway, and it may thus capture the packets which were intended for the faulty gateway. In order to prevent such an attack, the core gateways as well as the exterior gateways must be kept on the same network, so that the attacker may claim reachability for a running host or gateway. 4. Internet Control Message Protocol: An attacker may exploit ICMP redirect messages in the same way as it exploited Routing Information Protocol. An attacker may potentially cause a denial of service attack by sending ICMP s Destination Unreachable and Time To Live Exceeded messages as these messages reset the attacked hosts. Also ICMP s false Submnet Mask Reply message is capable of blocking all messages from the attacked machine. In order to prevent such attacks the following measures may be adopted: 2

3 (a) The hosts much check that the ICMP messages contain the expected serial number. (b) In order to thwart the attacks caused by Redirect messages, a host should include a policy of not using redirect messages for making changes to the routing table. (c) To thwart denial of service attacks caused by Subnet Mask messages, a host should accept such messages only when they are anticipated. In order to perform authentication of the source an authentication server may be used. A server which wishes to authenticate a client may contact its authentication server. However an attacker may circumvent this preventive measure by creating fake authentication replies. Also if the client has been compromised then its authentication server will also be compromised. Another case of an attack arises when the client s authentication server is down and the attacker sends fake replies containing the guessed TCP sequence number. In order to prevent this attack the server must use Needham-Schroeder protocol for authenticating the client. Some other protocols which are prone to attack are given below: 1. Finger: Finger protocol breaches the privacy of its users and aids in password guessing attacks by disclosing the names and telephone numbers of its users. One of the ways to prevent this is for the firewalls to block this protocol. 2. Electronic Mail: As mail servers do not provide authentication, hence attackers draw advantage of this to perform spamming and phishing. However where trusted communication is required there digitally signed certificates can be used. 3. Post Office Protocol: Post office protocol is used to fetch mail stored at mail servers. This protocol uses plain passwords for authentication, which is easily prone to attacks. To prevent this one time passwords, here the client and the server share a key and the server asks a random question each time the session begins to which the client gives a unique reply. Another way to prevent the attack is to use SSL encryption. 4. PCMAIL: PCMAIL uses the same attestation mechanism as POP. 5. Domain name system: DNS is used for translating host names to IP addresses. An attacker may launch an attack against DNS by sending the fake sequence number of attacker s machine in the users query, and hence divert the users traffic to its site. Another way which an attacker may adopt is by sending AXFR request for zone transfer, this way an attacker gets to know the configuration of the attacker s organization. An alert sever can recognize this and sends the error code for refused, hence denying the request. An attacker can create fake enteries into the DNS cache by guessing the sequence number of the DNS query and sending the IP address of its machine in response to the query. This is called DNS cache poisoning. This attacker can be preventing by adopting DNSsec. In DNSsec the resolver checks the validity of the responses by verifying their digital signatures. 6. File Transfer Protocol: In File Transfer Protocol, an attacker exploits its plain password mechanism. However, such an attack can be mitigated by using one-time passwords. Since anonymous FTP creates a duplicate of the directory structure, hence to prevent attacks the files in this directory structure must be stored securely to prevent an attack. Since the data connection of FTP is vulnerable to attacks called bounce attacks, in which an attacker leads an FTP server to attack another machine. In order to prevent such attacks cryptography can be used. 7. Simple Network Management Protocol: Since simple network management protocol uses plain passwords hence it is vulnerable to attacks. In order to prevent such attacks cryptography has been used in SNMPv3. 8. Remote Booting: In order to preform remote booting Reverse Address Resolution Protocol with Trivial File Transfer Protocol and BOOTP with Trivial File Transfer Protocol are used. An attacker may pretend to be a fake server and thus it may send false information. In order to prevent this attack the machine performing the remote booting should assign random numbers for its source port. 3

4 Some other attacks which an attacker may resort to are mentioned below: 1. Exploiting weaknesses in the Local Network: Since Ethernet networks in Local Area Networks are prone to spying. Hence strong monitoring and encryption should be employed to prevent such attacks. Also Local Area Networks are susceptible to denial of service attacks, which are caused by sending a huge number of ICMP echo request messages by the way of broadcasting them. Upon receiving ICMP echo request messages the machines reply back with an ICMP echo request message, thus sending a huge amount of traffic to the target host, leading to denial of service attacks called Smurf attack. 2. Trivial File Transfer Protocol: Since anybody can read the files transferred by the way of Trivial File Transfer Protocols, hence proper caution must be taken in selecting the set of devices which can read the file. 3. Reserved Ports: The network administrators should refrain from the idea of using privileged pots for security. Some of the widely employed mechanisms of protection are described below: 1. Authentication: Since relying on source address for authentication makes the hosts vulnerable to attacks, hence proper authentication of the source must be performed by employing Needham-Schroeder algorithm, in this the machines which wish to communicate obtain keys from the server and set up the conversation, at the end of the conversation each machine is confident about the other s identity. 2. Encryption: By employing cryptographic techniques like encryption many of the attacks can be thwarted. By encrypting each packet which is used for encryption called link-level encryption can be achieved. In order to achieve network layer e encryption Blacker from End(BFE) can be employed. In BFE all communications are first validated by the Access Control Center (ACC), which translates the unencrypted IP address, denoted by red to an encrypted IP address, denoted by black. For this purpose BFE obtains the keys from the Key Distribution Center (KDC). However, blacker is no longer used. 3. Trusted Systems: TCP/IP follows the Orange Book and Red Book criteria and hence provide security by labeling all the information present on the computer according to its sensitivity. Also the processes which are called subjects are also labeled similarly. Hence according to this security criteria, a process may access the data, if the process belonging to higher or equivalent level to the data. Similarly in TCP the processes label is given to the processes connection. Hence the receiving process must have the security level which is greater than or equal to the senders process. Also for security different routing tables should created depending on the security level and authentication should be granted based upon the level of security of the hosts. 4 Methodology used to investigate the paper The author investigates this paper by analyzing the statements which he made in the paper Security problems in TCP/IP Protocol Suite, which he wrote 15 years before he wrote this paper. 5 What I learned from the paper I learned from the paper the protocol level problems in TCP/IP protocol stack, the way in which an attacker may exploit them and the methods by which such attacks can be prevented. 6 How the paper relates to previous work The paper relates to the authors previous work Security problems in TCP/IP Protocol Suite and in this paper he analysis the predictions where he was correct and where he made a mistake. 4

5 7 Strengths of the paper I like the manner in which the author has written the paper, as first he gives what he thought 15 years ago and then he gives the analysis of the points at which he was right and where he was wrong. 8 Weaknesses of the paper The author mentions in the paper that one-time passwords are a secure alternative to simple passwords. For this he gives the statement that In one-time passwords the communicating machines share a secret key, which is irretrievably stored in the device. But I find that a major weakness of this would be it will make it difficult for a person to retrieve his/her from a different machine, thus reducing the flexibility which a user may access s. 9 Results In this paper the author states that following results: 1. IP source addresses should not be relied upon for authentication. 2. The sequence numbers used in the protocols should be chosen randomly. 3. The hosts should not loosely give away one processes information to some other process. 4. The routing information should be verifiable and must be stored securely. 5

A Survey of BGP Security Review

A Survey of BGP Security Review A Survey of BGP Security Review Network Security Instructor:Dr. Shishir Nagaraja Submitted By: Jyoti Leeka November 16, 2011 1 Introduction to the topic and the reason for the topic being interesting Border

More information

A Security Evaluation of DNSSEC with NSEC Review

A Security Evaluation of DNSSEC with NSEC Review A Security Evaluation of DNSSEC with NSEC Review Network Security Instructor:Dr. Shishir Nagaraja Submitted By: Jyoti Leeka November 16, 2011 1 Introduction to the topic and the reason for the topic being

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 18: Network Attacks Department of Computer Science and Engineering University at Buffalo 1 Lecture Overview Network attacks denial-of-service (DoS) attacks SYN

More information

Secure Frame Communication in Browsers Review

Secure Frame Communication in Browsers Review Secure Frame Communication in Browsers Review Network Security Instructor:Dr. Shishir Nagaraja Submitted By: Jyoti Leeka October 16, 2011 1 Introduction to the topic and the reason for the topic being

More information

CSC 574 Computer and Network Security. TCP/IP Security

CSC 574 Computer and Network Security. TCP/IP Security CSC 574 Computer and Network Security TCP/IP Security Alexandros Kapravelos kapravelos@ncsu.edu (Derived from slides by Will Enck and Micah Sherr) Network Stack, yet again Application Transport Network

More information

Robust Defenses for Cross-Site Request Forgery Review

Robust Defenses for Cross-Site Request Forgery Review Robust Defenses for Cross-Site Request Forgery Review Network Security Instructor:Dr. Shishir Nagaraja Submitted By: Jyoti Leeka October 16, 2011 1 Introduction to the topic and the reason for the topic

More information

CSCI 680: Computer & Network Security

CSCI 680: Computer & Network Security CSCI 680: Computer & Network Security Lecture 15 Prof. Adwait Nadkarni Fall 2017 Derived from slides by William Enck and Micah Sherr 1 Grading Class Participat ion and Quizzes 10% Grade Breakdown Homewo

More information

Outline NET 412 NETWORK SECURITY PROTOCOLS. Reference: Lecture 7: DNS Security 3/28/2016

Outline NET 412 NETWORK SECURITY PROTOCOLS. Reference:  Lecture 7: DNS Security 3/28/2016 Networks and Communication Department NET 412 NETWORK SECURITY PROTOCOLS Lecture 7: DNS Security 2 Outline Part I: DNS Overview of DNS DNS Components DNS Transactions Attack on DNS Part II: DNS Security

More information

ELEC5616 COMPUTER & NETWORK SECURITY

ELEC5616 COMPUTER & NETWORK SECURITY ELEC5616 COMPUTER & NETWORK SECURITY Lecture 17: Network Protocols I IP The Internet Protocol (IP) is a stateless protocol that is used to send packets from one machine to another using 32- bit addresses

More information

CSE Computer Security

CSE Computer Security CSE 543 - Computer Security Lecture 19 - Network Security November 6, 2007 URL: http://www.cse.psu.edu/~tjaeger/cse543-f07/ 1 Big picture Abstract Introduction Results Summary Background Problem Description/Finalized

More information

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link.

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link. Internet Layers Application Application Transport Transport Network Network Network Network Link Link Link Link Ethernet Fiber Optics Physical Layer Wi-Fi ARP requests and responses IP: 192.168.1.1 MAC:

More information

NETWORK SECURITY. Ch. 3: Network Attacks

NETWORK SECURITY. Ch. 3: Network Attacks NETWORK SECURITY Ch. 3: Network Attacks Contents 3.1 Network Vulnerabilities 3.1.1 Media-Based 3.1.2 Network Device 3.2 Categories of Attacks 3.3 Methods of Network Attacks 03 NETWORK ATTACKS 2 3.1 Network

More information

Int ernet w orking. Internet Security. Literature: Forouzan: TCP/IP Protocol Suite : Ch 28

Int ernet w orking. Internet Security. Literature: Forouzan: TCP/IP Protocol Suite : Ch 28 Int ernet w orking Internet Security Literature: Forouzan: TCP/IP Protocol Suite : Ch 28 Internet Security Internet security is difficult Internet protocols were not originally designed for security The

More information

DNS Security. *http://compsec101.antibozo.net/pa pers/dnssec/dnssec.html. IT352 Network Security Najwa AlGhamdi

DNS Security. *http://compsec101.antibozo.net/pa pers/dnssec/dnssec.html. IT352 Network Security Najwa AlGhamdi DNS Security *http://compsec101.antibozo.net/pa pers/dnssec/dnssec.html 1 IT352 Network Security Najwa AlGhamdi Introduction The DNS provides a mechanism that resolves Internet host names into IP addresses

More information

Network Security. Tadayoshi Kohno

Network Security. Tadayoshi Kohno CSE 484 (Winter 2011) Network Security Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials...

More information

Network Security. Thierry Sans

Network Security. Thierry Sans Network Security Thierry Sans HTTP SMTP DNS BGP The Protocol Stack Application TCP UDP Transport IPv4 IPv6 ICMP Network ARP Link Ethernet WiFi The attacker is capable of confidentiality integrity availability

More information

Flashback.. Internet design goals. Security Part One: Attacks and Countermeasures. Why did they leave it out? Security Vulnerabilities

Flashback.. Internet design goals. Security Part One: Attacks and Countermeasures. Why did they leave it out? Security Vulnerabilities Flashback.. Internet design goals Security Part One: Attacks and Countermeasures 15-441 With slides from: Debabrata Dash,Nick Feamster, Vyas Sekar 15-411: F08 security 1 1. Interconnection 2. Failure resilience

More information

DNS Security. Ch 1: The Importance of DNS Security. Updated

DNS Security. Ch 1: The Importance of DNS Security. Updated DNS Security Ch 1: The Importance of DNS Security Updated 8-21-17 DNS is Essential Without DNS, no one can use domain names like ccsf.edu Almost every Internet communication begins with a DNS resolution

More information

0/41. Alice Who? Authentication Protocols. Andreas Zeller/Stephan Neuhaus. Lehrstuhl Softwaretechnik Universität des Saarlandes, Saarbrücken

0/41. Alice Who? Authentication Protocols. Andreas Zeller/Stephan Neuhaus. Lehrstuhl Softwaretechnik Universität des Saarlandes, Saarbrücken 0/41 Alice Who? Authentication Protocols Andreas Zeller/Stephan Neuhaus Lehrstuhl Softwaretechnik Universität des Saarlandes, Saarbrücken The Menu 1/41 Simple Authentication Protocols The Menu 1/41 Simple

More information

Introduction to Network. Topics

Introduction to Network. Topics Introduction to Network Security Chapter 7 Transport Layer Protocols 1 TCP Layer Topics Responsible for reliable end-to-end transfer of application data. TCP vulnerabilities UDP UDP vulnerabilities DNS

More information

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12 TCP/IP Networking Training Details Training Time : 9 Hours Capacity : 12 Prerequisites : There are no prerequisites for this course. About Training About Training TCP/IP is the globally accepted group

More information

Our Narrow Focus Computer Networking Security Vulnerabilities. IP-level vulnerabilities

Our Narrow Focus Computer Networking Security Vulnerabilities. IP-level vulnerabilities Our Narrow Focus 15-441 15-441 Computer Networking 15-641 Lecture 22 Security: DOS Peter Steenkiste Fall 2014 www.cs.cmu.edu/~prs/15-441-f14 Yes: Creating a secure channel for communication (Part I) Protecting

More information

AN TOÀN LỚP 4: TCP/IP ATTACKS NGUYEN HONG SON PTITHCM

AN TOÀN LỚP 4: TCP/IP ATTACKS NGUYEN HONG SON PTITHCM 1 AN TOÀN LỚP 4: TCP/IP ATTACKS NGUYEN HONG SON PTITHCM 2 Introduction (1/2) TCP provides a full duplex reliable stream connection between two end points A connection is uniquely defined by the quadruple

More information

TCP Overview Revisited Computer Networking. Queuing Disciplines. Packet Drop Dimensions. Typical Internet Queuing. FIFO + Drop-tail Problems

TCP Overview Revisited Computer Networking. Queuing Disciplines. Packet Drop Dimensions. Typical Internet Queuing. FIFO + Drop-tail Problems TCP Overview Revisited TCP modern loss recovery 15-441 Computer Networking Other Transport Issues, Attacks and Security Threats, Firewalls TCP options TCP interactions TCP modeling Workload changes TCP

More information

Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle. Network Security. Chapter 8

Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle. Network Security. Chapter 8 Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 8 System Vulnerabilities and Denial of Service Attacks System Vulnerabilities and

More information

Network Security. Evil ICMP, Careless TCP & Boring Security Analyses. Mohamed Sabt Univ Rennes, CNRS, IRISA Thursday, October 4th, 2018

Network Security. Evil ICMP, Careless TCP & Boring Security Analyses. Mohamed Sabt Univ Rennes, CNRS, IRISA Thursday, October 4th, 2018 Network Security Evil ICMP, Careless TCP & Boring Security Analyses Mohamed Sabt Univ Rennes, CNRS, IRISA Thursday, October 4th, 2018 Part I Internet Control Message Protocol (ICMP) Why ICMP No method

More information

Authentication Handshakes

Authentication Handshakes AIT 682: Network and Systems Security Topic 6.2 Authentication Protocols Instructor: Dr. Kun Sun Authentication Handshakes Secure communication almost always includes an initial authentication handshake.

More information

Configuring attack detection and prevention 1

Configuring attack detection and prevention 1 Contents Configuring attack detection and prevention 1 Overview 1 Attacks that the device can prevent 1 Single-packet attacks 1 Scanning attacks 2 Flood attacks 3 TCP fragment attack 4 Login DoS attack

More information

Attack Class: Address Spoofing

Attack Class: Address Spoofing ttack Class: ddress Spoofing L. Todd Heberlein, Matt ishop Department of Computer Science University of California Davis, C 95616 bstract We present an analysis of a class of attacks we call address spoofing.

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 3.3: Security Handshake Pitfalls CSC 474/574 Dr. Peng Ning 1 Authentication Handshakes Secure communication almost always includes an initial authentication

More information

Configuring attack detection and prevention 1

Configuring attack detection and prevention 1 Contents Configuring attack detection and prevention 1 Overview 1 Attacks that the device can prevent 1 Single-packet attacks 1 Scanning attacks 2 Flood attacks 3 TCP fragment attack 4 Login DoS attack

More information

Threat Modeling. Bart De Win Secure Application Development Course, Credits to

Threat Modeling. Bart De Win Secure Application Development Course, Credits to Threat Modeling Bart De Win bart.dewin@ascure.com Secure Application Development Course, 2009 Credits to Frank Piessens (KUL) for the slides 2 1 Overview Introduction Key Concepts Threats, Vulnerabilities,

More information

Internetwork Expert s CCNA Security Bootcamp. Common Security Threats

Internetwork Expert s CCNA Security Bootcamp. Common Security Threats Internetwork Expert s CCNA Security Bootcamp Common Security Threats http:// Today s s Network Security Challenge The goal of the network is to provide high availability and easy access to data to meet

More information

(2½ hours) Total Marks: 75

(2½ hours) Total Marks: 75 (2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Makesuitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written together.

More information

A Framework for Optimizing IP over Ethernet Naming System

A Framework for Optimizing IP over Ethernet Naming System www.ijcsi.org 72 A Framework for Optimizing IP over Ethernet Naming System Waleed Kh. Alzubaidi 1, Dr. Longzheng Cai 2 and Shaymaa A. Alyawer 3 1 Information Technology Department University of Tun Abdul

More information

DDoS Testing with XM-2G. Step by Step Guide

DDoS Testing with XM-2G. Step by Step Guide DDoS Testing with XM-G Step by Step Guide DDoS DEFINED Distributed Denial of Service (DDoS) Multiple compromised systems usually infected with a Trojan are used to target a single system causing a Denial

More information

R (2) Implementation of following spoofing assignments using C++ multi-core Programming a) IP Spoofing b) Web spoofing.

R (2) Implementation of following spoofing assignments using C++ multi-core Programming a) IP Spoofing b) Web spoofing. R (2) N (5) Oral (3) Total (10) Dated Sign Experiment No: 1 Problem Definition: Implementation of following spoofing assignments using C++ multi-core Programming a) IP Spoofing b) Web spoofing. 1.1 Prerequisite:

More information

Computer Forensics: Investigating Network Intrusions and Cybercrime, 2nd Edition. Chapter 2 Investigating Network Traffic

Computer Forensics: Investigating Network Intrusions and Cybercrime, 2nd Edition. Chapter 2 Investigating Network Traffic Computer Forensics: Investigating Network Intrusions and Cybercrime, 2nd Edition Chapter 2 Investigating Network Traffic Objectives After completing this chapter, you should be able to: Understand network

More information

Configuring IP Services

Configuring IP Services This module describes how to configure optional IP services. For a complete description of the IP services commands in this chapter, refer to the Cisco IOS IP Application Services Command Reference. To

More information

Network Security - ISA 656 IPsec IPsec Key Management (IKE)

Network Security - ISA 656 IPsec IPsec Key Management (IKE) Network Security - ISA 656 IPsec IPsec (IKE) Angelos Stavrou September 28, 2008 What is IPsec, and Why? What is IPsec, and Why? History IPsec Structure Packet Layout Header (AH) AH Layout Encapsulating

More information

Network Security. Network Vulnerabilities

Network Security. Network Vulnerabilities Network Security Network Vulnerabilities 1 Attacks and the OSI Stack Stack layer Services Protocols Application; Presentation; Session Transport DNS SMTP TCP Network Routers IP Logic Physical Switches

More information

CSc 466/566. Computer Security. 18 : Network Security Introduction

CSc 466/566. Computer Security. 18 : Network Security Introduction 1/81 CSc 466/566 Computer Security 18 : Network Security Introduction Version: 2012/05/03 13:57:28 Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2012 Christian Collberg

More information

Security Handshake Pitfalls

Security Handshake Pitfalls Hello Challenge R f(k, R f(k, R Problems: 1. Authentication is not mutual only authenticates Anyone can send the challenge R. f(k, R Problems: 1. Authentication is not mutual only authenticates Anyone

More information

Denial of Service and Distributed Denial of Service Attacks

Denial of Service and Distributed Denial of Service Attacks Denial of Service and Distributed Denial of Service Attacks Objectives: 1. To understand denial of service and distributed denial of service. 2. To take a glance about DoS techniques. Distributed denial

More information

OFF-PATH ATTACKS AGAINST PUBLIC KEY INFRASTRUCTURES. Markus Brandt, Tianxiang Dai, Elias Heftrig, Amit Klein, Haya Shulman, Michael Waidner

OFF-PATH ATTACKS AGAINST PUBLIC KEY INFRASTRUCTURES. Markus Brandt, Tianxiang Dai, Elias Heftrig, Amit Klein, Haya Shulman, Michael Waidner OFF-PATH ATTACKS AGAINST PUBLIC KEY INFRASTRUCTURES Markus Brandt, Tianxiang Dai, Elias Heftrig, Amit Klein, Haya Shulman, Michael Waidner 1 AGENDA Objectives Attacking Impact Mitigation Summary 2 AGENDA

More information

NETWORK INTRUSION. Information Security in Systems & Networks Public Development Program. Sanjay Goel University at Albany, SUNY Fall 2006

NETWORK INTRUSION. Information Security in Systems & Networks Public Development Program. Sanjay Goel University at Albany, SUNY Fall 2006 NETWORK INTRUSION Information Security in Systems & Networks Public Development Program Sanjay Goel University at Albany, SUNY Fall 2006 1 Learning Objectives Students should be able to: Recognize different

More information

Issues. Separation of. Distributed system security. Security services. Security policies. Security mechanism

Issues. Separation of. Distributed system security. Security services. Security policies. Security mechanism Module 9 - Security Issues Separation of Security policies Precise definition of which entities in the system can take what actions Security mechanism Means of enforcing that policy Distributed system

More information

CIS 6930/4930 Computer and Network Security. Topic 6.2 Authentication Protocols

CIS 6930/4930 Computer and Network Security. Topic 6.2 Authentication Protocols CIS 6930/4930 Computer and Network Security Topic 6.2 Authentication Protocols 1 Authentication Handshakes Secure communication almost always includes an initial authentication handshake. Authenticate

More information

Computer Security and Privacy

Computer Security and Privacy CSE P 590 / CSE M 590 (Spring 2010) Computer Security and Privacy Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for

More information

HP High-End Firewalls

HP High-End Firewalls HP High-End Firewalls Attack Protection Configuration Guide Part number: 5998-2650 Software version: F1000-A-EI&F1000-S-EI: R3721 F5000: F3210 F1000-E: F3171 Firewall module: F3171 Document version: 6PW101-20120719

More information

Routing Security DDoS and Route Hijacks. Merike Kaeo CEO, Double Shot Security

Routing Security DDoS and Route Hijacks. Merike Kaeo CEO, Double Shot Security Routing Security DDoS and Route Hijacks Merike Kaeo CEO, Double Shot Security merike@doubleshotsecurity.com DISCUSSION POINTS Understanding The Growing Complexity DDoS Attack Trends Packet Filters and

More information

Network Security CHAPTER 31. Solutions to Review Questions and Exercises. Review Questions

Network Security CHAPTER 31. Solutions to Review Questions and Exercises. Review Questions CHAPTER 3 Network Security Solutions to Review Questions and Exercises Review Questions. A nonce is a large random number that is used only once to help distinguish a fresh authentication request from

More information

Systems and Network Security (NETW-1002)

Systems and Network Security (NETW-1002) Systems and Network Security (NETW-1002) Dr. Mohamed Abdelwahab Saleh IET-Networks, GUC Spring 2017 Course Outline Basic concepts of security: Attacks, security properties, protection mechanisms. Basic

More information

DOMAIN NAME SECURITY EXTENSIONS

DOMAIN NAME SECURITY EXTENSIONS DOMAIN NAME SECURITY EXTENSIONS The aim of this paper is to provide information with regards to the current status of Domain Name System (DNS) and its evolution into Domain Name System Security Extensions

More information

Configuring IP Services

Configuring IP Services CHAPTER 8 Configuring IP Services This chapter describes how to configure optional IP services supported by the Cisco Optical Networking System (ONS) 15304. For a complete description of the commands in

More information

Computer Forensics: Investigating Network Intrusions and Cyber Crime, 2nd Edition. Chapter 3 Investigating Web Attacks

Computer Forensics: Investigating Network Intrusions and Cyber Crime, 2nd Edition. Chapter 3 Investigating Web Attacks Computer Forensics: Investigating Network Intrusions and Cyber Crime, 2nd Edition Chapter 3 Investigating Web Attacks Objectives After completing this chapter, you should be able to: Recognize the indications

More information

ACCURATE STUDY GUIDES, HIGH PASSING RATE! Question & Answer. Dump Step. provides update free of charge in one year!

ACCURATE STUDY GUIDES, HIGH PASSING RATE! Question & Answer. Dump Step. provides update free of charge in one year! DUMP STEP Question & Answer ACCURATE STUDY GUIDES, HIGH PASSING RATE! Dump Step provides update free of charge in one year! http://www.dumpstep.com Exam : MK0-201 Title : CPTS - Certified Pen Testing Specialist

More information

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Layer 4: UDP, TCP, and others based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Concepts application set transport set High-level, "Application Set" protocols deal only with how handled

More information

Our Narrow Focus Computer Networking Security Vulnerabilities. Outline Part II

Our Narrow Focus Computer Networking Security Vulnerabilities. Outline Part II Our Narrow Focus 15-441 15-441 Computer Networking 15-641 Lecture 22 Security: DOS Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Yes: Creating a secure channel for communication (Part I) Protecting

More information

Arvind Krishnamurthy Fall A source node s wants to send a packet to a destination node d through a network that might have Byzantine nodes

Arvind Krishnamurthy Fall A source node s wants to send a packet to a destination node d through a network that might have Byzantine nodes Security Arvind Krishnamurthy Fall 2003 Secure Routing Problem statement: A source node s wants to send a packet to a destination node d through a network that might have Byzantine nodes Primary requirement:

More information

firewalls perimeter firewall systems firewalls security gateways secure Internet gateways

firewalls perimeter firewall systems firewalls security gateways secure Internet gateways Firewalls 1 Overview In old days, brick walls (called firewalls ) built between buildings to prevent fire spreading from building to another Today, when private network (i.e., intranet) connected to public

More information

CSE 3461/5461: Introduction to Computer Networking and Internet Technologies. Network Security. Presentation L

CSE 3461/5461: Introduction to Computer Networking and Internet Technologies. Network Security. Presentation L CS 3461/5461: Introduction to Computer Networking and Internet Technologies Network Security Study: 21.1 21.5 Kannan Srinivasan 11-27-2012 Security Attacks, Services and Mechanisms Security Attack: Any

More information

CS 155 Final Exam. CS 155: Spring 2005 June 2005

CS 155 Final Exam. CS 155: Spring 2005 June 2005 CS 155: Spring 2005 June 2005 CS 155 Final Exam This exam is open books and open notes, but you may not use a laptop. You have 2 hours. Make sure you print your name legibly and sign the honor code below.

More information

Lecture 33. Firewalls. Firewall Locations in the Network. Castle and Moat Analogy. Firewall Types. Firewall: Illustration. Security April 15, 2005

Lecture 33. Firewalls. Firewall Locations in the Network. Castle and Moat Analogy. Firewall Types. Firewall: Illustration. Security April 15, 2005 Firewalls Lecture 33 Security April 15, 2005 Idea: separate local network from the Internet Trusted hosts and networks Intranet Firewall DMZ Router Demilitarized Zone: publicly accessible servers and networks

More information

VoIP Security Threat Analysis

VoIP Security Threat Analysis 2005/8/2 VoIP Security Threat Analysis Saverio Niccolini, Jürgen Quittek, Marcus Brunner, Martin Stiemerling (NEC, Network Laboratories, Heidelberg) Introduction Security attacks taxonomy Denial of Service

More information

Security With slides from: Debabrata Dash, Nick Feamster, Vyas Sekar, and others

Security With slides from: Debabrata Dash, Nick Feamster, Vyas Sekar, and others Security 15-441 With slides from: Debabrata Dash, Nick Feamster, Vyas Sekar, and others Our Narrow Focus Yes: Protecting network resources and limiting connectivity (Part I) Creating a secure channel for

More information

Application Note. Providing Secure Remote Access to Industrial Control Systems Using McAfee Firewall Enterprise (Sidewinder )

Application Note. Providing Secure Remote Access to Industrial Control Systems Using McAfee Firewall Enterprise (Sidewinder ) Application Note Providing Secure Remote Access to Industrial Control Systems Using McAfee Firewall Enterprise (Sidewinder ) This document describes how to configure McAfee Firewall Enterprise to provide

More information

CS Paul Krzyzanowski

CS Paul Krzyzanowski The Internet Packet switching: store-and-forward routing across multiple physical networks... across multiple organizations Computer Security 11. Network Security ISP Paul Krzyzanowski Rutgers University

More information

Securing ARP and DHCP for mitigating link layer attacks

Securing ARP and DHCP for mitigating link layer attacks Sādhanā Vol. 42, No. 12, December 2017, pp. 2041 2053 https://doi.org/10.1007/s12046-017-0749-y Ó Indian Academy of Sciences Securing ARP and DHCP for mitigating link layer attacks OSAMA S YOUNES 1,2 1

More information

Closed book. Closed notes. No electronic device.

Closed book. Closed notes. No electronic device. 414-S17 (Shankar) Exam 3 PRACTICE PROBLEMS Page 1/6 Closed book. Closed notes. No electronic device. 1. Anonymity Sender k-anonymity Receiver k-anonymity Authoritative nameserver Autonomous system BGP

More information

Computer Science 3CN3 and Software Engineering 4C03 Final Exam Answer Key

Computer Science 3CN3 and Software Engineering 4C03 Final Exam Answer Key Computer Science 3CN3 and Software Engineering 4C03 Final Exam Answer Key DAY CLASS Dr. William M. Farmer DURATION OF EXAMINATION: 2 Hours MCMASTER UNIVERSITY FINAL EXAMINATION April 2008 THIS EXAMINATION

More information

Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade Review

Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade Review Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade Review Network Security Instructor:Dr. Shishir Nagaraja Submitted By: Jyoti Leeka September 24, 2011. 1 Introduction to the topic

More information

Computer Network Routing Challenges Associated to Tackle Resolution Protocol

Computer Network Routing Challenges Associated to Tackle Resolution Protocol Computer Network Routing Challenges Associated to Tackle Resolution Protocol Manju Bala IP College for Women, Department of Computer Science manjugpm@gmail.com Charvi Vats Dept. Of Comp. SC., IP College

More information

Network and Internet Vulnerabilities

Network and Internet Vulnerabilities Network and Internet Vulnerabilities Computer Security Lecture 10 Mike Just 1 School of Informatics University of Edinburgh 15th February 2010 1 Based on original lecture notes by David Aspinall Internet

More information

AutoSecure. Finding Feature Information. Last Updated: January 18, 2012

AutoSecure. Finding Feature Information. Last Updated: January 18, 2012 AutoSecure Last Updated: January 18, 2012 The AutoSecure feature secures a router by using a single CLI command to disable common IP services that can be exploited for network attacks, enable IP services

More information

20-CS Cyber Defense Overview Fall, Network Basics

20-CS Cyber Defense Overview Fall, Network Basics 20-CS-5155 6055 Cyber Defense Overview Fall, 2017 Network Basics Who Are The Attackers? Hackers: do it for fun or to alert a sysadmin Criminals: do it for monetary gain Malicious insiders: ignores perimeter

More information

Network Security and Cryptography. 2 September Marking Scheme

Network Security and Cryptography. 2 September Marking Scheme Network Security and Cryptography 2 September 2015 Marking Scheme This marking scheme has been prepared as a guide only to markers. This is not a set of model answers, or the exclusive answers to the questions,

More information

this security is provided by the administrative authority (AA) of a network, on behalf of itself, its customers, and its legal authorities

this security is provided by the administrative authority (AA) of a network, on behalf of itself, its customers, and its legal authorities INFRASTRUCTURE SECURITY this security is provided by the administrative authority (AA) of a network, on behalf of itself, its customers, and its legal authorities Goals * prevent or mitigate resource attacks

More information

Best Practice - Protect Against TCP SYN Flooding Attacks with TCP Accept Policies

Best Practice - Protect Against TCP SYN Flooding Attacks with TCP Accept Policies Best Practice - Protect Against TCP SYN Flooding Attacks with TCP Accept Policies In order to establish a TCP connection, the TCP three-way handshake must be completed. You can use different accept policies

More information

Table of Contents. 1 Intrusion Detection Statistics 1-1 Overview 1-1 Displaying Intrusion Detection Statistics 1-1

Table of Contents. 1 Intrusion Detection Statistics 1-1 Overview 1-1 Displaying Intrusion Detection Statistics 1-1 Table of Contents 1 Intrusion Detection Statistics 1-1 Overview 1-1 Displaying Intrusion Detection Statistics 1-1 i 1 Intrusion Detection Statistics Overview Intrusion detection is an important network

More information

Sirindhorn International Institute of Technology Thammasat University

Sirindhorn International Institute of Technology Thammasat University Name.............................. ID............... Section...... Seat No...... Sirindhorn International Institute of Technology Thammasat University Course Title: IT Security Instructor: Steven Gordon

More information

DNS Security DNSSEC. *http://compsec101.antibo zo.net/papers/dnssec/dnss ec.html. IT352 Network Security Najwa AlGhamdi

DNS Security DNSSEC. *http://compsec101.antibo zo.net/papers/dnssec/dnss ec.html. IT352 Network Security Najwa AlGhamdi DNS Security DNSSEC *http://compsec101.antibo zo.net/papers/dnssec/dnss ec.html 1 IT352 Network Security Najwa AlGhamdi Introduction DNSSEC is a security extensions to the DNS protocol in response to the

More information

Features of a proxy server: - Nowadays, by using TCP/IP within local area networks, the relaying role that the proxy

Features of a proxy server: - Nowadays, by using TCP/IP within local area networks, the relaying role that the proxy Que: -Proxy server Introduction: Proxy simply means acting on someone other s behalf. A Proxy acts on behalf of the client or user to provide access to a network service, and it shields each side from

More information

CS 356 Lab #1: Basic LAN Setup & Packet capture/analysis using Ethereal

CS 356 Lab #1: Basic LAN Setup & Packet capture/analysis using Ethereal CS 356 Lab #1: Basic LAN Setup & Packet capture/analysis using Ethereal Tasks: Time: 2:00 hrs (Task 1-6 should take 45 min; the rest of the time is for Ethereal) 1 - Verify that TCP/IP is installed on

More information

Strongly Anonymous Communications in Mobile Ad Hoc Networks

Strongly Anonymous Communications in Mobile Ad Hoc Networks Strongly Anonymous Communications in Mobile Ad Hoc Networks Y.Dong 1, V.O.K.Li 1, S.M.Yiu 2 and C.K.Hui 2 Dept. of Electrical and Electronic Engineering, the University of Hong Kong 1 Dept. of Computer

More information

Configuring the CSS for Device Management

Configuring the CSS for Device Management CHAPTER 2 Configuring the CSS for Device Management Before you can use the WebNS Device Management user interface software, you need to perform the tasks described in the following sections: WebNS Device

More information

Computer Networks ICS 651. IP Routing RIP OSPF BGP MPLS Internet Control Message Protocol IP Path MTU Discovery

Computer Networks ICS 651. IP Routing RIP OSPF BGP MPLS Internet Control Message Protocol IP Path MTU Discovery Computer Networks ICS 651 IP Routing RIP OSPF BGP MPLS Internet Control Message Protocol IP Path MTU Discovery Routing Information Protocol DV modified with split horizon and poisoned reverse distance

More information

Threat Pragmatics. Target 6/19/ June 2018 PacNOG 22, Honiara, Solomon Islands Supported by:

Threat Pragmatics. Target 6/19/ June 2018 PacNOG 22, Honiara, Solomon Islands Supported by: Threat Pragmatics 25-29 June 2018 PacNOG 22, Honiara, Solomon Islands Supported by: Issue Date: Revision: 1 Target Many sorts of targets: Network infrastructure Network services Application services User

More information

A Study on Intrusion Detection Techniques in a TCP/IP Environment

A Study on Intrusion Detection Techniques in a TCP/IP Environment A Study on Intrusion Detection Techniques in a TCP/IP Environment C. A. Voglis and S. A. Paschos Department of Computer Science University of Ioannina GREECE Abstract: The TCP/IP protocol suite is the

More information

CIS 5373 Systems Security

CIS 5373 Systems Security CIS 5373 Systems Security Topic 4.1: Network Security Basics Endadul Hoque Slide Acknowledgment Contents are based on slides from Cristina Nita-Rotaru (Northeastern) 2 Network Security INTRODUCTION 3 What

More information

Using ICMP to Troubleshoot TCP/IP Networks

Using ICMP to Troubleshoot TCP/IP Networks Laura Chappell Using ICMP to Troubleshoot TCP/IP Networks Illustration: Norman Felchle Editor s Note: This article is based on Laura Chappell s upcoming book TCP/IP Analysis and Troubleshooting, which

More information

CYBER ATTACKS EXPLAINED: WIRELESS ATTACKS

CYBER ATTACKS EXPLAINED: WIRELESS ATTACKS CYBER ATTACKS EXPLAINED: WIRELESS ATTACKS Wireless networks are everywhere, from the home to corporate data centres. They make our lives easier by avoiding bulky cables and related problems. But with these

More information

INFS 766 Internet Security Protocols. Lecture 1 Firewalls. Prof. Ravi Sandhu INTERNET INSECURITY

INFS 766 Internet Security Protocols. Lecture 1 Firewalls. Prof. Ravi Sandhu INTERNET INSECURITY INFS 766 Internet Security Protocols Lecture 1 Firewalls Prof. Ravi Sandhu INTERNET INSECURITY Internet insecurity spreads at Internet speed Morris worm of 1987 Password sniffing attacks in 1994 IP spoofing

More information

CS670: Network security

CS670: Network security Cristina Nita-Rotaru CS670: Network security ARP, TCP 1: Background on network protocols OSI/ISO Model Application Presentation Session Transport Network Data Link Physical Layer Application Presentation

More information

Lecture 6: Worms, Viruses and DoS attacks. II. Relationships between Biological diseases and Computers Viruses/Worms

Lecture 6: Worms, Viruses and DoS attacks. II. Relationships between Biological diseases and Computers Viruses/Worms CS 4740/6740 Network Security Feb. 09, 2011 Lecturer: Ravi Sundaram I. Worms and Viruses Lecture 6: Worms, Viruses and DoS attacks 1. Worms They are self-spreading They enter mostly thru some security

More information

How to Configure Mobile VPN for Forcepoint NGFW TECHNICAL DOCUMENT

How to Configure Mobile VPN for Forcepoint NGFW TECHNICAL DOCUMENT How to Configure Mobile VPN for Forcepoint NGFW TECHNICAL DOCUMENT Table of Contents TABLE OF CONTENTS 1 BACKGROUND 2 WINDOWS SERVER CONFIGURATION STEPS 2 CONFIGURING USER AUTHENTICATION 3 ACTIVE DIRECTORY

More information

Overview. SSL Cryptography Overview CHAPTER 1

Overview. SSL Cryptography Overview CHAPTER 1 CHAPTER 1 Secure Sockets Layer (SSL) is an application-level protocol that provides encryption technology for the Internet. SSL ensures the secure transmission of data between a client and a server through

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 7. Network Security Network Attacks Cryptographic Technologies Message Integrity and Authentication Key Distribution Firewalls Transport Layer

More information

Network security session 9-2 Router Security. Network II

Network security session 9-2 Router Security. Network II Network security session 9-2 Router Security Network II Router security First line of defense of the network Compromise of a router can lead to many issues: Denial of network services Degrading of network

More information

Configuring NAT for IP Address Conservation

Configuring NAT for IP Address Conservation This module describes how to configure Network Address Translation (NAT) for IP address conservation and how to configure inside and outside source addresses. This module also provides information about

More information