The Problem: Finding Paths Spring 2011 Lecture #19. Forwarding. Shortest Path Routing

Size: px
Start display at page:

Download "The Problem: Finding Paths Spring 2011 Lecture #19. Forwarding. Shortest Path Routing"

Transcription

1 The Problem: Finding Paths Spring 20 Lecture # addressing, forwarding, routing liveness, advertisements, integration distance-vector routing routing loops, counting to infinity 6.02 Spring 20 Lecture, Slide #1 Link costs ddressing (how to name nodes?) Unique identifier for global addressing Link name for neighbors Forwarding (how does a switch process a packet?) Routing (building and updating data structures to ensure that forwarding works) Functions of the network layer 6.02 Spring 20 Lecture, Slide #2 Forwarding Shortest Path Routing Switch 1 ore function is conceptually simple lookup(dst_addr) in routing table returns route (i.e., outgoing link) for packet enqueue(packet, link_queue) send(packet) along outgoing link nd do some bookkeeping before enqueue ecrement hop limit (TTL); if 0, discard packet Recalculate checksum (in IP, header checksum) ach node wants to find the path with minimum total cost to other nodes We use the term shortest path even though we re interested in min cost (and not min #hops) Several possible distributed approaches Vector protocols, esp. distance vector (V) Link-state protocols (LS) (ssume all costs 0) 6.02 Spring 20 Lecture, Slide # Spring 20 Lecture, Slide #

2 node Routing Table Structure 1 estination Link (next-hop) ost ROUT 18 Self Spring 20 Lecture, Slide # istributed Routing: ommon Plan etermining live neighbors ommon to both V and LS protocols HLLO protocol (periodic) Send HLLO packet to each neighbor to let them know who s at the end of their outgoing links Use received HLLO packets to build a list of neighbors containing an information tuple for each link: (timestamp, neighbor addr, link) Repeat periodically. on t hear anything for a while link is down, so remove from neighbor list. dvertisement step (periodic) Send some information to all neighbors Used to determine connectivity & costs to reachable nodes Integration step ompute routing table using info from advertisements ealing with stale data 6.02 Spring 20 Lecture, Slide #6 istance-vector Routing V advertisement Send info from routing table entries: (dest, cost) Initially just (self,0) V integration step [ellman-ford] For each (dest,cost) entry in neighbor s advertisement ccount for cost to reach neighbor: (dest,my_cost) my_cost = cost_in_advertisement + link_cost re we currently sending packets for dest to this neighbor? See if link matches what we have in routing table If so, update cost in routing table to be my_cost Otherwise, is my_cost smaller than existing route? If so, neighbor is offering a better deal Use it update routing table so that packets for dest are sent to this neighbor V xample: round 1 { : (None,0) Node : update routes to, Node : update routes to,, Node : update routes to,,, Node : update routes to,, Node : update routes to, { : (None,0) 1 { : (None,0) { : (None,0) { : (None,0) Subscript indicates node that gave better route 6.02 Spring 20 Lecture, Slide # 6.02 Spring 20 Lecture, Slide #8

3 V xample: round 2 { : (None,0), : (,), : (,) Node : update routes to,, Node : update routes to, Node : no updates Node : update routes to Node : update routes to, { : (,), : (None,0), : (,), : (,) 1 { : (,), : (,), : (None,0), : (,1), : (,) { : (,), : (,1), : (None,0), : (,) { : (,), : (,), : (None,0) Node : no updates Node : no updates Node : no updates Node : no updates Node : no updates V xample: round 3 { : (None,0), : (,18), : (,), : (,22), : (,12) { : (,18), : (None,0), : (,), : (,), : (,16) 1 { : (,), : (,), : (None,0), : (,1), : (,) { : (,22), : (,), : (,1), : (None,0), : (,) { : (,12), : (,16), : (,), : (,), : (None,0) 6.02 Spring 20 Lecture, Slide # Spring 20 Lecture, Slide #10 V xample: reak a Link { : (None,0), : (,18), : (,), : (,22), : (,12) When link breaks: eliminate routes that use that link. { : (,18), : (None,0), : (,), : (,), : (,16) 1 { : (,), : (,), : (None,0), : (,1), : (,) { : (,22), : (,), : (,1), : (None,0), : (,) { : (,12), : (,16), : (,), : (,), : (None,0) V xample: round { : (None,0), : (,18), : (,), : (,22), : (,12) Node : update cost to Node : update routes to,, Node : update routes to Node : no updates Node : update routes to { : (None, ), { : (,22), : (None,0), : (,), : (None, ), : (,1), : (,), : (None,0), : (None, ) : (,) 1 { : (,), : (None, ), : (None,0), : (,1), : (,) { : (,12), : (,16), : (,), : (,), : (None,0) 6.02 Spring 20 Lecture, Slide # 6.02 Spring 20 Lecture, Slide #12

4 Update cost V xample: round { : (None,0), : (, ), : (,), : (,22), : (,12) Node : update route to Node : no updates Node : no updates Node : no updates Node : no updates { : (,), : (None,0), : (,), : (,), : (,1) 1 { : (,), : (,), : (None,0), : (,1), : (,) { : (,22), : (,), : (,1), : (None,0), : (,) { : (,12), : (,1), : (,), : (,), : (None,0) Node : no updates Node : no updates Node : no updates Node : no updates Node : no updates V xample: final state { : (None,0), : (,), : (,), : (,22), : (,12) { : (,), : (None,0), : (,), : (,), : (,1) 1 { : (,), : (,), : (None,0), : (,1), : (,) { : (,22), : (,), : (,1), : (None,0), : (,) { : (,12), : (,1), : (,), : (,), : (None,0) 6.02 Spring 20 Lecture, Slide # 6.02 Spring 20 Lecture, Slide #1 orrectness & Performance Optimal substructure property fundamental to correctness of both ellman-ford and ijkstra s shortest path algorithms Suppose shortest path from X to Y goes through Z. Then, the sub-path from X to Z must be a shortest path. Proof of ellman-ford via induction on number of walks on shortest (min-cost) paths asy when all costs > 0 and synchronous model (see notes) Harder with distributed async model (not in 6.02) How long does it take for distance-vector routing protocol to converge? Time proportional to largest number of hops considering all the min-cost paths Partitioning the Network { : (None,0), : (,), : (None, ), : (None, ), : (None, ) Node : delete routes to,, Node : delete routes to,, Node : update routes to, Node : update routes to, Node : update route to, cost to { : (,), { : (,22), : (None,0), : (None, ), : (None, ), : (,1), : (None, ), : (None,0), : (None, ) : (,) 1 { : (None, ), : (,), : (None,0), : (,1), : (,) { : (,12), : (,1), : (,), : (,), : (None,0) 6.02 Spring 20 Lecture, Slide # Spring 20 Lecture, Slide #16

5 V xample: round 6 { : (None,0), : (,) Node : no updates Node : no updates Node : update costs to, Node : update route to, cost to Node : update routes to, { : (,), : (None,0) 6.02 Spring 20 Lecture, Slide #1 1 { : (,1), : (,22), : (None,0), : (,1), : (,) { : (,2), : (,30), : (,1), : (None,0), : (,) { : (,3), : (None, ), : (,), : (,), : (None,0) Nodes,, and each update their costs in response to earlier updates by neighbors. osts spiral upwards towards " remove route when cost reaches self.infinity ounting to Infinity { : (None,0), : (,) { : (,), : (None,0) 6.02 Spring 20 Lecture, Slide #18 1 { : (,0), : (None, ), : (None,0), : (,1), : (,) { : (,38), : (None, ), : (,1), : (None,0), : (,) { : (,22), : (,2), : (,), : (,), : (None,0) { : (None,0), : (,) Suppose sends a packet to : forwards to forwards to repeat rop packet when TTL is decremented to 0 Routing Loop { : (,), : (None,0) 6.02 Spring 20 Lecture, Slide # 1 { : (,0), : (None, ), : (None,0), : (,1), : (,) { : (,38), : (None, ), : (,1), : (None,0), : (,) { : (,22), : (,2), : (,), : (,), : (None,0) ventually all the unreachable nodes are removed from routing table and all routing loops are resolved. ventual Final State { : (None,0), : (,) { : (,), : (None,0) 6.02 Spring 20 Lecture, Slide #20 1 { : (None,0), : (,1), : (,) { : (,1), : (None,0), : (,) { : (,), : (,), : (None,0)

4/25/12. The Problem: Distributed Methods for Finding Paths in Networks Spring 2012 Lecture #20. Forwarding. Shortest Path Routing

4/25/12. The Problem: Distributed Methods for Finding Paths in Networks Spring 2012 Lecture #20. Forwarding. Shortest Path Routing //1 The Problem: istributed Methods for Finding Paths in Networks L 1.0 Spring 01 Lecture #0 addressing, forwarding, routing liveness, advertisements, integration distance-vector routing link-state routing

More information

Distance-Vector Routing: Distributed B-F (cont.)

Distance-Vector Routing: Distributed B-F (cont.) istance-vector Routing: istributed - (cont.) xample [ istributed ellman-ord lgorithm ] ssume each node i maintains an entry (R(i,x), L(i,x)), where R(i,x) is the next node along the current shortest path

More information

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats What is Routing? Routing implements the core function of a network: : Shortest Path Routing Ion Stoica Ts: Junda Liu, K Moon, avid Zats http://inst.eecs.berkeley.edu/~ee/fa9 (Materials with thanks to Vern

More information

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives Routers & Routing -44: omputer Networking High-speed router architecture Intro to routing protocols ssigned reading [McK9] Fast Switched ackplane for a Gigabit Switched Router Know RIP/OSPF L-4 Intra-omain

More information

DSDV: Proactive. Distance Vector (Basic idea) Distance Vector. Distance Vector Algorithm: Tables 12/13/2016

DSDV: Proactive. Distance Vector (Basic idea) Distance Vector. Distance Vector Algorithm: Tables 12/13/2016 estination Sequenced istance Vector (SV) Routing [Perkins94] SV: Proactive SV is a proactive protocol means it maintains up-to-date routing information for all available nodes in the network. No extra

More information

CS 43: Computer Networks. 23: Routing Algorithms November 14, 2018

CS 43: Computer Networks. 23: Routing Algorithms November 14, 2018 S 3: omputer Networks 3: Routing lgorithms November, 08 Last class NT: Network ddress Translators: NT is mostly bad, but in some cases, it s a necessary evil. IPv6: Simpler, faster, better Tunneling: IPv6

More information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE! 1. Link state flooding topology information finding the shortest paths (Dijkstra)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE! 1. Link state flooding topology information finding the shortest paths (Dijkstra) ontents ÉOL POLYTHNIQU ÉÉRL LUSNN! 1. Link state flooding topology information finding the shortest paths (ijkstra)! 2. Hierarchical routing with areas! 3. OSP Link State Routing database modelling neighbor

More information

Review: Routing in Packet Networks Shortest Path Algorithms: Dijkstra s & Bellman-Ford. Routing: Issues

Review: Routing in Packet Networks Shortest Path Algorithms: Dijkstra s & Bellman-Ford. Routing: Issues Review: Routing in Packet Networks Shortest Path lgorithms: ijkstra s & ellman-ford Routing: Issues How are routing tables determined? Who determines table entries? What info used in determining table

More information

Previous Lecture. Link Layer & Network Layer. Link Layer. This Lecture. Framing. Sending bits. Chapter 7.C and 7.D

Previous Lecture. Link Layer & Network Layer. Link Layer. This Lecture. Framing. Sending bits. Chapter 7.C and 7.D hapter 7. and 7. Previous Lecture Layer & Network Layer The network is organized into layers Prof. ina Katabi Some slides are from lectures by Nick Mckeown, Ion Stoica, Frans Kaashoek, Hari alakrishnan,

More information

IP Forwarding Computer Networking. Graph Model. Routes from Node A. Lecture 11: Intra-Domain Routing

IP Forwarding Computer Networking. Graph Model. Routes from Node A. Lecture 11: Intra-Domain Routing IP Forwarding 5-44 omputer Networking Lecture : Intra-omain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) The Story So Far IP addresses are structured to reflect Internet

More information

Let s focus on clarifying questions. More Routing. Logic Refresher. Warning. Short Summary of Course. 10 Years from Now.

Let s focus on clarifying questions. More Routing. Logic Refresher. Warning. Short Summary of Course. 10 Years from Now. Let s focus on clarifying questions I love the degree of interaction in this year s class More Routing all Scott Shenker http://inst.eecs.berkeley.edu/~ee/ Materials with thanks to Jennifer Rexford, Ion

More information

WAN Technology and Routing

WAN Technology and Routing PS 60 - Network Programming WN Technology and Routing Michele Weigle epartment of omputer Science lemson University mweigle@cs.clemson.edu March, 00 http://www.cs.clemson.edu/~mweigle/courses/cpsc60 WN

More information

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing IP orwarding - omputer Networking Lecture : Intra-omain Routing RIP (Routing Information Protocol) & OSP (Open Shortest Path irst) The Story So ar IP addresses are structure to reflect Internet structure

More information

CSE/EE 461 Distance Vector Routing

CSE/EE 461 Distance Vector Routing S/ 46 istance Vector Routing Last Time Introduction to the Network layer Internetworks atagram and virtual circuit services Internet Protocol (IP) packet format The Network layer Provides end-to-end data

More information

EE 122: Intra-domain routing

EE 122: Intra-domain routing EE : Intra-domain routing Ion Stoica September 0, 00 (* this presentation is based on the on-line slides of J. Kurose & K. Rose) Internet Routing Internet organized as a two level hierarchy First level

More information

More on Network Routing and Internet Protocol

More on Network Routing and Internet Protocol omputer Networks //03 More on Network Routing and Internet Protocol Kai Shen Network Routing Link state routing: ijkstra s algorithm efficient approach to calculate least cost routes all routers need complete

More information

Advanced Computer Networks

Advanced Computer Networks istance Vector dvanced omputer Networks Internal routing - distance vector protocols Prof. ndrzej uda duda@imag.fr ontents Principles of internal routing istance vector (ellman-ford) principles case of

More information

Third Generation Routers

Third Generation Routers IP orwarding 5-5- omputer Networking 5- Lecture : Routing Peter Steenkiste all www.cs.cmu.edu/~prs/5-- The Story So ar IP addresses are structured to reflect Internet structure IP packet headers carry

More information

Distance Vector Routing

Distance Vector Routing ÉOL POLYTHNIQU FÉÉRL LUSNN istance Vector Routing Jean Yves Le oudec 20 ontents. Routing in General 2. istance vector: theory 3. istance vector: practice (RIP) 4. Software efined Networking (SN) Textbook

More information

Discussion 8: Link State Routing. CSE 123: Computer Networks Marti Motoyama & Chris Kanich

Discussion 8: Link State Routing. CSE 123: Computer Networks Marti Motoyama & Chris Kanich iscussion 8: Link State Routing S : omputer Networks Marti Motoyama & hris Kanich Schedule Project Questions: mail hris, post to moodle, or attend his OH Homework Questions? Link State iscussion S iscussion

More information

Routing. Effect of Routing in Flow Control. Relevant Graph Terms. Effect of Routing Path on Flow Control. Effect of Routing Path on Flow Control

Routing. Effect of Routing in Flow Control. Relevant Graph Terms. Effect of Routing Path on Flow Control. Effect of Routing Path on Flow Control Routing Third Topic of the course Read chapter of the text Read chapter of the reference Main functions of routing system Selection of routes between the origin/source-destination pairs nsure that the

More information

ECE 158A: Lecture 5. Fall 2015

ECE 158A: Lecture 5. Fall 2015 8: Lecture Fall 0 Routing ()! Location-ased ddressing Recall from Lecture that routers maintain routing tables to forward packets based on their IP addresses To allow scalability, IP addresses are assigned

More information

Destination Sequenced Distance. [Perkins94] CSE 6811 : Lecture 6

Destination Sequenced Distance. [Perkins94] CSE 6811 : Lecture 6 estination Sequenced istance Vector (SV) Routing [Perkins94] SE 6811 : Lecture 6 SV: Proactive SV is a proactive protocol means it maintains up to date routing information for all available nodes in the

More information

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic?

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic? Routing 9: Intro to Routing lgorithms Last Modified: // :: PM : Netork Layer a- IP Routing each router is supposed to send each IP datagram one step closer to its Ho do they do that? Static Routing Hierarchical

More information

TCP/IP Networking. Part 3: Forwarding and Routing

TCP/IP Networking. Part 3: Forwarding and Routing TP/IP Networking Part 3: Forwarding and Routing Routing of IP Packets There are two parts to routing IP packets:. How to pass a packet from an input interface to the output interface of a router ( IP forwarding

More information

Internet: Best Effort. L11: Protocols and Network layer. Protocol. End hosts implement everything else

Internet: Best Effort. L11: Protocols and Network layer. Protocol. End hosts implement everything else L: Protocols and Network layer Frans Kaashoek 6.0 Spring 0 http://web.mit.edu/6.0 Some slides are from lectures by Nick Mckeown, Ion Stoica,ina Katabi, Hari alakrishnan, Sam Madden, and Robert Morris Internet:

More information

Routing, Routers, Switching Fabrics

Routing, Routers, Switching Fabrics Routing, Routers, Switching Fabrics Outline Link state routing Link weights Router Design / Switching Fabrics CS 640 1 Link State Routing Summary One of the oldest algorithm for routing Finds SP by developing

More information

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to.

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to. Netork Layer (part ) y the end of this lecture, you should be able to. xplain the operation of distance vector routing algorithm xplain shortest path routing algorithm escribe the major points of RIP and

More information

6.033 Computer System Engineering

6.033 Computer System Engineering MIT OpenCourseWare http://ocw.mit.edu 6.033 Computer System Engineering Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. L11: Link and Network

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications OMP /9: omputer Networks and pplications Week 9 Network Layer: Routing Reading Guide: hapter 4: Sections 4.5 Network Layer nnouncements v Labs Lab 4 ongestion ontrol Lab 5 Simple Router (start up for ssignment,

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis TOM 50: Networking Theory & undamentals Lecture pril 6, 2003 Prof. Yannis. Korilis 2 Topics Routing in ata Network Graph Representation of a Network Undirected Graphs Spanning Trees and Minimum Weight

More information

06/02/ Local & Metropolitan Area Networks. Overview. Routing algorithm ACOE322. Lecture 6 Routing

06/02/ Local & Metropolitan Area Networks. Overview. Routing algorithm ACOE322. Lecture 6 Routing Local & Metropolitan rea Networks OE3 Lecture 6 Routing r. L. hristofi Overview The main function of the network layer is routing packets from the source to the destination machine. The only exception

More information

Distance vector and RIP

Distance vector and RIP DD2490 p4 2008 Distance vector and RIP Olof Hagsand KTHNOC/NADA Literature RIP lab RFC 245: RIPv2. Sections 1 2 contains some introduction that can be useful to understand the context in which RIP is specified..1.4

More information

Routing Protocols and the IP Layer

Routing Protocols and the IP Layer Routing Protocols and the IP Layer CS244A Review Session 2/0/08 Ben Nham Derived from slides by: Paul Tarjan Martin Casado Ari Greenberg Functions of a router Forwarding Determine the correct egress port

More information

Routing. Routing. Overview. Overview. Routing vs. Forwarding. Why Routing

Routing. Routing. Overview. Overview. Routing vs. Forwarding. Why Routing Routing Dr. Arjan Durresi Department of Computer Science Louisiana State University Overview Routing vs. Forwarding Routing Algorithms, Distance Vector, Link State Dijkstra s Algorithm ARPAnet Routing

More information

CEN445 Network Protocols and Algorithms. Chapter 2. Routing Algorithms. Dr. Ridha Ouni

CEN445 Network Protocols and Algorithms. Chapter 2. Routing Algorithms. Dr. Ridha Ouni 3/4/04 EN44 Network Protocols and lgorithms hapter Routing lgorithms Dr. Ridha Ouni Department of omputer Engineering ollege of omputer and Information Sciences King Saud University References Some slides

More information

Lecture 19: Network Layer Routing in the Internet

Lecture 19: Network Layer Routing in the Internet Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F

More information

COMP 631: NETWORKED & DISTRIBUTED SYSTEMS 9/6/16 COMP 631: NETWORKED & DISTRIBUTED SYSTEMS. Internet Routing. Jasleen Kaur.

COMP 631: NETWORKED & DISTRIBUTED SYSTEMS 9/6/16 COMP 631: NETWORKED & DISTRIBUTED SYSTEMS. Internet Routing. Jasleen Kaur. OMP 3: NETWORKE & ISTRIUTE SSTEMS // OMP 3: NETWORKE & ISTRIUTE SSTEMS Internet Routing Jasleen Kaur Fall 0 Forwarding vs. Routing: Local vs. istributed oth datagram and virtual-circuit based networks

More information

Intra-domain Routing

Intra-domain Routing Intra-domain Routing Outline Introduction to Routing Distance Vector Algorithm CS 640 1 Goal Build router forwarding tables in an internetwork using intra-domain routing protocols High level approach Distributed

More information

Routing in a network

Routing in a network Routing in a network Focus is small to medium size networks, not yet the Internet Overview Then Distance vector algorithm (RIP) Link state algorithm (OSPF) Talk about routing more generally E.g., cost

More information

Network Routing - II Failures, Recovery, and Change

Network Routing - II Failures, Recovery, and Change MIT 6.02 DRAFT Lecture Notes Spring 2009 (Last update: April 27, 2009) Comments, questions or bug reports? Please contact Hari Balakrishnan (hari@mit.edu) or 6.02-staff@mit.edu LECTURE 21 Network Routing

More information

Initialization: Loop until all nodes in N

Initialization: Loop until all nodes in N Routing Routing lgorithm classification Routing protocol Goal: determine good path (sequence of routers) thru netork from source to dest. Graph abstraction for routing s: graph nodes are routers graph

More information

Routing Algorithms. CS158a Chris Pollett Apr 4, 2007.

Routing Algorithms. CS158a Chris Pollett Apr 4, 2007. Routing Algorithms CS158a Chris Pollett Apr 4, 2007. Outline Routing Algorithms Adaptive/non-adaptive algorithms The Optimality Principle Shortest Path Routing Flooding Distance Vector Routing Routing

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

CS4450. Computer Networks: Architecture and Protocols. Lecture 11 Rou+ng: Deep Dive. Spring 2018 Rachit Agarwal

CS4450. Computer Networks: Architecture and Protocols. Lecture 11 Rou+ng: Deep Dive. Spring 2018 Rachit Agarwal CS4450 Computer Networks: Architecture and Protocols Lecture 11 Rou+ng: Deep Dive Spring 2018 Rachit Agarwal 2 Goals for Today s Lecture Learning about Routing Protocols Link State (Global view) Distance

More information

CS 344/444 Computer Network Fundamentals Midterm Exam Spring /07/2007

CS 344/444 Computer Network Fundamentals Midterm Exam Spring /07/2007 CS 344/444 Computer Network undamentals Midterm Exam Spring 2007 03/07/2007 Question 344 Points 444 Points Score 1 10 10 2 30 30 3 30 20 4 30 20 5 (444 only) - 20 otal: 100 100 Name: Course: CS344 CS444

More information

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016 9/9/6 S 7 Networking and the Internet Fall 06 Shortest-Path Problem Given: network topology with link costs c(x,y): link cost from node x to node y Infinity if x and y are not direct neighbors ompute:

More information

Nomadic Communications. Copyright. Ad-Hoc and WMN. Wireless Mesh Networks. Quest operaèprotettadallalicenza:

Nomadic Communications. Copyright. Ad-Hoc and WMN. Wireless Mesh Networks. Quest operaèprotettadallalicenza: Nomadic ommunications Wireless Mesh Networks Renato Lo igno Loigno@disi.unitn.it - Tel: 2026 Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications opyright Quest operaèprotettadallalicenza:

More information

Lecture 4 Wide Area Networks - Routing

Lecture 4 Wide Area Networks - Routing DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Routing Mei Yang Based on Lecture slides by William Stallings 1 ROUTING IN PACKET SWITCHED NETWORK key design issue for (packet) switched

More information

2/16/2008. Outline Computer Networking Lecture 11 Routing. Sending Link States by Flooding. Link State Protocol Concept

2/16/2008. Outline Computer Networking Lecture 11 Routing. Sending Link States by Flooding. Link State Protocol Concept //8 Outline - omputer Networking Lecture Routing Link tate OP Peter teenkiste epartments of omputer cience and Electrical and omputer Engineering IP Multicast ervice asics - Networking, pring 8 http://www.cs.cmu.edu/~dga/-/8

More information

Routing in Switched Networks

Routing in Switched Networks Routing in Switched Networks Raj Jain Washington University Saint Louis, MO 611 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse47-05/ 15-1 Overview! Routing

More information

Youki Kadobayashi NAIST

Youki Kadobayashi NAIST Information Network 1 Routing (1) Youki Kadobayashi NAIST 1 The Routing Problem! How do I get from source to destination?! Which path is best? In terms of:! Number of hops! Delay! Bandwidth! Policy constraints!

More information

Chapter 4 Network Layer. Network Layer 4-1

Chapter 4 Network Layer. Network Layer 4-1 Chapter 4 Network Layer Network Layer 4- Chapter 4: Network Layer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Network Layer part II Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it IP datagram format IP protocol version number header length (bytes) type of data max number remaining

More information

Announcements. CS 5565 Network Architecture and Protocols. Ethernet. Ethernet. Ethernet Model. Ideal Multiple Access Protocol

Announcements. CS 5565 Network Architecture and Protocols. Ethernet. Ethernet. Ethernet Model. Ideal Multiple Access Protocol nnouncements CS 5565 Network rchitecture and Protocols Lecture 4 odmar ack Project due in parts: pr 5 and May xtra Credit Opportunities: xpand simulator (and your implementation) to introduce multiple

More information

EE122 MIDTERM EXAM: Scott Shenker, Ion Stoica

EE122 MIDTERM EXAM: Scott Shenker, Ion Stoica EE MITERM EXM: 00-0- Scott Shenker, Ion Stoica Last name Student I First name Login: ee- Please circle the last two letters of your login. a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e

More information

Lecture 13: Weighted Shortest Paths. These slides include material originally prepared by Dr. Ron Cytron and Dr. Steve Cole.

Lecture 13: Weighted Shortest Paths. These slides include material originally prepared by Dr. Ron Cytron and Dr. Steve Cole. Lecture : Weighted Shortest Paths These slides include material originally prepared by r. Ron ytron and r. Steve ole. nnouncements Lab code and post-lab due tonight Lab released tomorrow ijkstra s algorithm

More information

Youki Kadobayashi NAIST

Youki Kadobayashi NAIST Information Network 1 Routing (1) Image: Part of the entire Internet topology based on CAIDA dataset, using NAIST Internet viewer Youki Kadobayashi NAIST 1 The Routing Problem! How do I get from source

More information

C13b: Routing Problem and Algorithms

C13b: Routing Problem and Algorithms CISC 7332X T6 C13b: Routing Problem and Algorithms Hui Chen Department of Computer & Information Science CUNY Brooklyn College 11/20/2018 CUNY Brooklyn College 1 Acknowledgements Some pictures used in

More information

Topology. Youki Kadobayashi NAIST. Outline. Routing system: its function. Gateway Model Revisited. Routing system: its structure

Topology. Youki Kadobayashi NAIST. Outline. Routing system: its function. Gateway Model Revisited. Routing system: its structure Information Network 1 Routing (1) Topology Topology 1: 2a (1): a branch of mathematics concerned with those properties of geometric configurations (as point sets) which are unaltered by elastic deformations

More information

ICMP (Internet Control Message Protocol)

ICMP (Internet Control Message Protocol) Today s Lecture ICMP (Internet Control Message Protocol) Internet Protocols CSC / C 573 I. ICMP Overview II. ICMP rror Reporting III. ICMP Query / Response Messages IV. ICMP Message Processing Fall, 2005

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Lab #9: Link-state Routing Goal: Using a network simulator written

More information

Shortest Path Routing Communications networks as graphs Graph terminology Breadth-first search in a graph Properties of breadth-first search

Shortest Path Routing Communications networks as graphs Graph terminology Breadth-first search in a graph Properties of breadth-first search Shortest Path Routing Communications networks as graphs Graph terminology Breadth-first search in a graph Properties of breadth-first search 6.082 Fall 2006 Shortest Path Routing, Slide 1 Routing in an

More information

Lecture 16: Network Layer Overview, Internet Protocol

Lecture 16: Network Layer Overview, Internet Protocol Lecture 16: Network Layer Overview, Internet Protocol COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Network Routing - I Without Any Failures

Network Routing - I Without Any Failures MIT 6.02 DRAFT Lecture Notes Last update: November 3, 2012 CHAPTER 17 Network Routing - I Without Any Failures This chapter and the next one discuss the key technical ideas in network routing. We start

More information

Distributed Algorithms in Networks EECS 122: Lecture 17

Distributed Algorithms in Networks EECS 122: Lecture 17 istributed lgorithms in Networks EES : Lecture 7 epartment of Electrical Engineering and omputer Sciences University of alifornia erkeley Network Protocols often have unintended effects TP Eample TP connections

More information

CMPE 150: Introduction to Computer Networks

CMPE 150: Introduction to Computer Networks CMPE 50: Introduction to Computer Networks Dr. Chane L. Fullmer chane@cse.ucsc.edu Spring 003 UCSC cmpe50 Homework Assignments Homework assignment #3 Chapter Four Due by May Spring 003 UCSC cmpe50 CMPE

More information

Shortest Paths. Shortest Path. Applications. CSE 680 Prof. Roger Crawfis. Given a weighted directed graph, one common problem is finding the shortest

Shortest Paths. Shortest Path. Applications. CSE 680 Prof. Roger Crawfis. Given a weighted directed graph, one common problem is finding the shortest Shortest Path Introduction to Algorithms Shortest Paths CS 60 Prof. Roger Crawfis Given a weighted directed graph, one common problem is finding the shortest path between two given vertices Recall that

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

0!1. Overlaying mechanism is called tunneling. Overlay Network Nodes. ATM links can be the physical layer for IP

0!1. Overlaying mechanism is called tunneling. Overlay Network Nodes. ATM links can be the physical layer for IP epartment of lectrical ngineering and omputer Sciences University of alifornia erkeley '!$$( network defined over another set of networks The overlay addresses its own nodes Links on one layer are network

More information

Chapter 12. Routing and Routing Protocols 12-1

Chapter 12. Routing and Routing Protocols 12-1 Chapter 12 Routing and Routing Protocols 12-1 Routing in Circuit Switched Network Many connections will need paths through more than one switch Need to find a route Efficiency Resilience Public telephone

More information

Final Overview EECS 122

Final Overview EECS 122 The Network ore Final Overview EES epartment of Electrical Engineering and omputer Sciences University of alifornia erkeley any interconnected subs any different architectures dvertises a service to the

More information

Network Layer: Routing

Network Layer: Routing Network Layer: Routing The Problem A B R 1 R 2 R 4 R 3 Goal: for each destination, compute next hop 1 Lecture 9 2 Basic Assumptions Trivial solution: Flooding Dynamic environment: links and routers unreliable:

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) Internet Control Message Protocol (ICMP) 1 Overview The IP (Internet Protocol) relies on several other protocols to perform necessary control and routing functions: Control functions (ICMP) Multicast signaling

More information

Internet Architecture. Network Layer Overview. Fundamental Network Layer Function. Protocol Layering and Data. Computer Networks 9/23/2009

Internet Architecture. Network Layer Overview. Fundamental Network Layer Function. Protocol Layering and Data. Computer Networks 9/23/2009 omputer Networks 9//9 Network Layer Overview Kai Shen Internet rchitecture ottom-up: : electromagnetic signals on the wire : data transfer between neighboring elements encoding, framing, error correction,

More information

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018 CS 43: Computer Networks 21: The Network Layer & IP November 7, 2018 The Network Layer! Application: the application (e.g., the Web, Email) Transport: end-to-end connections, reliability Network: routing

More information

Distance Vector: Link Cost Changes. Interdomain Routing. Distance Vector: Count to Infinity Problem. Distance Vector: Poisoned Reverse

Distance Vector: Link Cost Changes. Interdomain Routing. Distance Vector: Count to Infinity Problem. Distance Vector: Poisoned Reverse istance Vector: Link ost hanges 7 loop: Interdomain Routing 8 wait (until sees a link cost change to neighbor V 9 or until receives update from neighbor V) 0 if ((, V) changes by d) for alldestinations

More information

AODV Route Requests (RREQ) are forwarded in a manner similar to DSR

AODV Route Requests (RREQ) are forwarded in a manner similar to DSR d oc On-emand istance Vector (OV) R includes source routes in packet headers Resulting large headers can sometimes degrade performance particularly when data contents of a packet are small OV attempts

More information

COM-208: Computer Networks - Homework 6

COM-208: Computer Networks - Homework 6 COM-208: Computer Networks - Homework 6. (P22) Suppose you are interested in detecting the number of hosts behind a NAT. You observe that the IP layer stamps an identification number sequentially on each

More information

CS 457 Networking and the Internet. What is Routing. Forwarding versus Routing 9/27/16. Fall 2016 Indrajit Ray. A famous quotation from RFC 791

CS 457 Networking and the Internet. What is Routing. Forwarding versus Routing 9/27/16. Fall 2016 Indrajit Ray. A famous quotation from RFC 791 CS 457 Networking and the Internet Fall 2016 Indrajit Ray What is Routing A famous quotation from RFC 791 A name indicates what we seek An address indicates where it is A route indicates how we get there

More information

Guide to TCP/IP Fourth Edition. Chapter 6: Neighbor Discovery in IPv6

Guide to TCP/IP Fourth Edition. Chapter 6: Neighbor Discovery in IPv6 Guide to TCP/IP Fourth Edition Chapter 6: Neighbor Discovery in IPv6 Objectives Describe Neighbor Discovery in IPv6 and how it compares to ARP in IPv4 Explain Neighbor Discovery message interaction between

More information

Youki Kadobayashi NAIST

Youki Kadobayashi NAIST Information Network 1 Routing (1) Image: Part of the entire Internet topology based on CAIDA dataset, using NAIST Internet viewer Youki Kadobayashi NAIST 1 The Routing Problem How do I get from source

More information

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 4 The Network Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Lecture 6: Bridging & Switching. Last time. Today. CSE 123: Computer Networks Chris Kanich. How do multiple hosts share a single channel?

Lecture 6: Bridging & Switching. Last time. Today. CSE 123: Computer Networks Chris Kanich. How do multiple hosts share a single channel? Lecture 6: ridging & Switching SE 3: omputer Networks hris Kanich Project countdown: 5 days Last time How do multiple hosts share a single channel? Medium ccess ontrol (M) protocols hannel partitioning

More information

ICMP (Internet Control Message Protocol)

ICMP (Internet Control Message Protocol) ABSTRACT : ICMP stands for internet control message protocol it is a vital protocol of network layer among the seven layers of OSI(open system interconnection). Here we deal with the several situations

More information

Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli

Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli Dipartimento di Informatica Rome University La Sapienza G205: Fundamentals of Computer Engineering

More information

Routing Outline. EECS 122, Lecture 15

Routing Outline. EECS 122, Lecture 15 Fall & Walrand Lecture 5 Outline EECS, Lecture 5 Kevin Fall kfall@cs.berkeley.edu Jean Walrand wlr@eecs.berkeley.edu Definition/Key Questions Distance Vector Link State Comparison Variations EECS - Fall

More information

CS 344/444 Computer Network Fundamentals Midterm Exam Spring /07/2007

CS 344/444 Computer Network Fundamentals Midterm Exam Spring /07/2007 CS 344/444 Computer Network Fundamentals Midterm Exam Spring 2007 03/07/2007 Question 344 Points 444 Points Score 1 10 10 2 30 30 3 30 20 4 30 20 5 (444 only) 20 otal: 100 100 Name: Course: CS344 CS444

More information

Computer Science 425 Distributed Systems CS 425 / ECE 428. Fall 2013

Computer Science 425 Distributed Systems CS 425 / ECE 428. Fall 2013 Computer Science 425 Distributed Systems CS 425 / ECE 428 Fall 2013 Indranil Gupta (Indy) October 10, 2013 Lecture 14 Networking Reading: Chapter 3 (relevant parts) 2013, I. Gupta, K. Nahrtstedt, S. Mitra,

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

6.02 Fall 2014! Lecture #21. Failures in routing Routing loops Counting to infinity

6.02 Fall 2014! Lecture #21. Failures in routing Routing loops Counting to infinity 6.02 Fall 2014! Lecture #21 Failures in routing Routing loops Counting to infinity Unanswered questions (about packet-switched networks) How do nodes determine routes to every other node? Nodes determine

More information

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013 CS 5 Network Programming Languages Control Plane http://www.flickr.com/photos/rofi/0979/ Nate Foster Cornell University Spring 0 Based on lecture notes by Jennifer Rexford and Michael Freedman Announcements

More information

Page 1 EEC173B/ECS152C. Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols

Page 1 EEC173B/ECS152C. Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols 173/S152 Proactive Protocols MNT Unicast Routing Proactive Protocols OLSR SV ybrid Protocols Most of the schemes discussed so far are reactive Proactive schemes based on distance vector and link state

More information

Distance Vector Routing

Distance Vector Routing ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Routing in General Distance Vector Routing Jean Yves Le Boudec Fall 22 Contents. Routing in General 2. Distance vector: theory. Distance vector: practice 4. Dynamic

More information

LECTURE 9. Ad hoc Networks and Routing

LECTURE 9. Ad hoc Networks and Routing 1 LECTURE 9 Ad hoc Networks and Routing Ad hoc Networks 2 Ad Hoc Networks consist of peer to peer communicating nodes (possibly mobile) no infrastructure. Topology of the network changes dynamically links

More information

Routing Protocols. The routers in an internet are responsible for receiving and. forwarding IP datagrams through the interconnected set of

Routing Protocols. The routers in an internet are responsible for receiving and. forwarding IP datagrams through the interconnected set of Routing Protocols MITA DUTTA The routers in an internet are responsible for receiving and forwarding IP datagrams through the interconnected set of sub-networks from source to destination. Routing protocols

More information

Dynamic Source Routing (DSR) [Johnson96] CSE 6811 : Lecture 5

Dynamic Source Routing (DSR) [Johnson96] CSE 6811 : Lecture 5 ynamic Source Routing (SR) [Johnson96] S 6811 : Lecture 5 d Hoc Wireless Routing ifferent from routing in the wired world esirable properties of a wireless routing protocol istributed operation Loop freedom

More information

Lecture 19. Broadcast routing

Lecture 19. Broadcast routing Lecture 9 Broadcast routing Slide Broadcast Routing Route a packet from a source to all nodes in the network Possible solutions: Flooding: Each node sends packet on all outgoing links Discard packets received

More information