e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text

Size: px
Start display at page:

Download "e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text"

Transcription

1 e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text 1. Interrupt An interrupt is the occurrence of a condition--an event -- that cause a temporary suspension of a program while the event is serviced by another program (Interrupt Service Routine ISR or Interrupt Handler). Figure 1. Interrupt Service Routine Figure.1 shows ISR. In which first part of the figure shows main program is interrupted. The next part shows main program is paused and ISR is providing service to interrupt and when it finishes main program is restored. 1.1 Interrupt Vs Polling Interrupt - is an external or internal event that interrupts the microcontroller to inform it that a device needs its service. Serving a device can be done in two ways- 1) Interrupt 2) Polling Interrupt: Here, a device needs service, and the device notifies the microcontroller by sending it an interrupt signal. After receiving an interrupt signal, the microcontroller stops whatever it is doing and serves the device. Program associated with the interrupt is called the interrupt service routine (ISR) or interrupt handler. Polling: In this, the microcontroller continuously monitors the status of the given devices. When the conditions are met, (that is, if the device needs some service) it performs the

2 service. Next, it moves on to monitor the next device. It continues in this fashion until everyone is serviced. Interrupt is preferred over polling for the following reasons: Polling is not efficient, because it wastes much of the microcontroller s time by checking devices that do not need service. Interrupt can serve many devices; and each device can get the service of microcontroller based on priority. In polling there is no priority, only on round robin basis they can get the attention of the microcontroller. In interrupt, a microcontroller can also ignore a device s request for service, this is not possible in the polling method. 2. Interrupt Service Routine(ISR): Each interrupt has an interrupt service routine (ISR), or interrupt handler. When an interrupt is called, the microcontroller runs the interrupt service routine. Every interrupt has a fixed location in memory that holds the address of the ISR. Figure 2. Interrupt Vector table In the above table, 8051 interrupts are listed. When the reset interrupt is given through 9th pin system is reset. At that time the service starts from 0000 location. The two port pins P3.2 and P3.3 are external hardware interrupts. 2.1 Steps followed when interrupt occurs The group of memory locations that hold the addresses of ISRs is called an interrupt vector table. 1. Microcontroller completes the instruction it is executing and saves the address of the next instruction (PC) on the stack. 2. Saves the current status of the system internally in stack. 3. System starts executing ISR routine, where as the starting address of that ISR routine is referred from interrupt vector table

3 4. The microcontroller gets the location of the ISR from the interrupt vector table and control is transferred to that location. It starts to execute the interrupt service subroutine until it reaches the last instruction of the subroutine which is RETI (return from interrupt). 5. After executing the RETI instruction, the microcontroller returns to the place where it was interrupted. 6. First, it gets the program counter (PC) address from the stack by popping the top two bytes of the stack into the PC. 7. Restores the system previous program status. 8. Then it starts to execute from that address. 2.2 Six Interrupts in the 8051 Six interrupts are allocated as follows Reset power-up reset- It is nothing but restarting the system. When the reset is pressed the content of the system is stored and again the memory starts from 0000H. Two interrupts are set aside for the timers: One for timer 0 and one for timer 1 Two interrupts are set aside for hardware external interrupts P3.2 and P3.3 are for the external hardware interrupts INT0 (or EX1), and INT1 (or EX2). For any application, interrupts are needed from outside so that the service can be done based on the input given from outside. Serial communication has a single interrupt that belongs to both receive and transfer Interrupt service is ended by noticing return statement (RETI) in ISR routine. There are two returns in instruction set namely RET and RETI. Though it looks similar, there are some differences in them. 2.2 Differences between RET and RETI: RETI performs an additional task of clearing the interrupt-in-service flag. RET instead of RETI as the last instruction of the interrupt service routine, it blocks any new interrupt on that pin after the first interrupt, since the pin status would indicate that the interrupt is still being serviced. RETI instruction clears TF0, TF1, TCON.1, and TCON.3

4 3.1 Example code segment for 8051 Interrupts Figure 3. Interrupts of 8051 The first line of code indicates that the program starts from the origin 0000H. Then LJMP MAIN means Long jump to main program. Next the Interrupt Service Routine starts from 30H memory location. 3.2 Enabling and Disabling an Interrupt Upon reset, all interrupts are disabled (masked) None will be responded to by the microcontroller if they are activated. The interrupts must be enabled by software in order for the microcontroller to respond to them There is a register called IE (interrupt enable) that is responsible for enabling (unmasking) and disabling (masking) the interrupts. In IE register, there are 8 bits. Based on those 8 bits, an interrupt can be enabled/disabled. 3.3 Steps in Enabling an interrupt: Bit D7 of the IE register (EA) must be set to high to allow the rest of register to take effect. The value of EA If EA = 1, interrupts are enabled and will be responded to if their corresponding bits in IE are high If EA = 0, no interrupt will be responded to, even if the associated bit in the IE register is high EA=1 enable all interrupts, EA=0 disable all interrupts

5 Figure 4.Enabling an Interrupt Both the EA pin and the corresponding interrupt pin must be 1 for enabling the particular interrupt. Different methods for enabling interrupts is listed below Method-1 MOV IE,# ;enable serial, ;timer 1, EX0 Method-2 to perform the same task is SETB IE.7 SETB IE.4 SETB IE.3 SETB IE.0 ;EA=1, global enable ;enable serial interrupt ;enable Timer 1 interrupt ;enable EX0 To disable the interrupts Clear command can be used as shown below CLR IE.3 CLR IE.7 ;mask (disable) timer 1 ;interrupt only ;disable all interrupts 3.4 Timer Interrupt For any application which needs timer for a specific purpose and runs for a particular period of time, timer interrupt can be used. The timer interrupt starts and stops the application automatically. The timer flag (TF) is raised when the timer rolls over. Interrupt handles Timer control flag effectively. In polling, System is held up till TF is raised but in Timer Interrupt, System is not locked.

6 In Timer Interrupts, If the timer interrupt in the IE register is enabled, whenever the timer rolls over, TF is raised. The microcontroller is interrupted in whatever it is doing, and jumps to the interrupt vector table to service the ISR. In this way, the microcontroller can do other work until it is notified that the timer has rolled over. Figure 5. Timer Interrupt Initial count starts from TH and TL register. When the TH and TL register gets FF occurs, then TF0 is set to 1 and the interrupt is automatically enabled. overflow if the timer interrupt is enabled, whenever TF=1, the microcontroller is interrupted in whatever it is doing, and jumps to the interrupt vector table to service the ISR In this way, the microcontroller can do other things until it is notified that the timer has rolled over Timer Interrupt Programming Write a program that continuously gets 8-bit data from P0 and sends it to P1 while simultaneously creating a square wave of 200 ms period on pin P2.1. Use Timer 0 to create the square wave. Assume that XTAL = MHz.

7 . The first line of code indicates that the program is started from 0000H. LJMP indicates that the program has to go for long jump to reach the main loop. The next line indicates that the ISR Routine starts from 000BH.This ISR routine generates a square. The main program is written at position 0030H. In order to set the timer mode, timer 0 mode 2 is set. P0 is used as the input port. Here the square wave generation is for 200 ms, hence 100 ms is for on state and 100 ms for off state. For generating the delay of 100 ms, 92 is used as the count. when the port P0 reaches 0FFH overflow occurs, it means the delay of 92 count is over and the timer is set again. Once the data is stored in P0, it is moved to accumulator and then again the data is moved to port P1. Hence the data is continuously transferred from the Port P0 to P1. 4. Summary In this lecture different concept of Interrupts and difference between interrupt and polling methods are discussed. The steps for executing the interrupts in 8051 are also discussed. The assembly code for 8051 Timer Interrupt Programming has been explained.

8 5. References 1. Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, The 8051 Microcontroller and Embedded Systems Using Assembly and C -Second Edition.

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text In this lecture embedded C program for interrupt handling

More information

CHAPTER 11 INTERRUPTS PROGRAMMING

CHAPTER 11 INTERRUPTS PROGRAMMING CHAPTER 11 INTERRUPTS PROGRAMMING Interrupts vs. Polling An interrupt is an external or internal event that interrupts the microcontroller To inform it that a device needs its service A single microcontroller

More information

INTERRUPTS PROGRAMMING

INTERRUPTS PROGRAMMING INTERRUPTS PROGRAMMING The 8051 Microcontroller and Embedded Systems: Using Assembly and C Mazidi, Mazidi and McKinlay Chung-Ping Young 楊中平 Home Automation, Networking, and Entertainment Lab Dept. of Computer

More information

Interrupts. EE4380 Fall 2001 Class 9. Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas

Interrupts. EE4380 Fall 2001 Class 9. Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas 8051 - Interrupts EE4380 Fall 2001 Class 9 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Polling Vs Interrupts Polling: MCU monitors all served devices continuously,

More information

CoE3DJ4 Digital Systems Design. Chapter 6: Interrupts

CoE3DJ4 Digital Systems Design. Chapter 6: Interrupts CoE3DJ4 Digital Systems Design Chapter 6: Interrupts Interrupts An interrupt is the occurrence of an event that causes a temporary suspension of a program while the condition is serviced by another program.

More information

CPEG300 Embedded System Design. Lecture 6 Interrupt System

CPEG300 Embedded System Design. Lecture 6 Interrupt System CPEG300 Embedded System Design Lecture 6 Interrupt System Hamad Bin Khalifa University, Spring 2018 Correction Lecture 3, page 18: Only direct addressing mode is allowed for pushing or popping the stack:

More information

1. Pin diagram of 8051 and ports

1. Pin diagram of 8051 and ports e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Programming parallel ports Module No: CS/ES/9 Quadrant 1 e-text In this lecture pin diagram of 8051 controller will be shown and

More information

8051 Interrupt Organization

8051 Interrupt Organization Interrupt Interrupts of 8051 Introduction 8051 Interrupt organization Processing Interrupts Program Design Using Interrupts Timer Interrupts Serial Port Interrupts External Interrupts Interrupt Timings

More information

Chapter 6 Interrupts. (I. Scott Mackenzie) By: Masud-ul-Hasan

Chapter 6 Interrupts. (I. Scott Mackenzie) By: Masud-ul-Hasan Chapter 6 Interrupts (I. Scott Mackenzie) 1 Interrupts An interrupt is the occurrence of an event that causes a temporary suspension of a program while the condition is serviced by another program. It

More information

Interrupt Programming: Interrupts vs. Polling Method:

Interrupt Programming: Interrupts vs. Polling Method: UNIT 4: INTERRUPT PROGRAMMING & SERIAL COMMUNICATION WITH 8051: Definition of an interrupt, types of interrupts, Timers and Counter programming with interrupts in assembly. 8051 Serial Communication: Data

More information

Microprocessors and Microcontrollers (EE-231)

Microprocessors and Microcontrollers (EE-231) Microprocessors and Microcontrollers (EE-231) Objective Interrupts Programming in C In Proteus On 8051 development board Interrupt An interrupt is an external or internal event that interrupts the microcontroller

More information

Chapter 09. Programming in Assembly

Chapter 09. Programming in Assembly Chapter 09 Programming in Assembly Lesson 05 Programming Examples for Timers Programming TMOD Register 3 Write instructions to run T0 in Mode 0, external count inputs, internal start/stop control ANL TMOD,

More information

8051 I/O and 8051 Interrupts

8051 I/O and 8051 Interrupts 8051 I/O and 8051 Interrupts Class 7 EE4380 Fall 2002 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Agenda 8051 I/O Interfacing Scanned LED displays LCD displays

More information

Chapter 09. Programming in Assembly

Chapter 09. Programming in Assembly Chapter 09 Programming in Assembly Lesson 03 Programming Approach for Main and Interrupt Service Routines in 8051 Program Approach for programming Main Program Instructions 3 Main program initial instructions

More information

8051 Timers. Class 7 EE4380 Fall Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas

8051 Timers. Class 7 EE4380 Fall Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas 8051 Timers Class 7 EE4380 Fall 2002 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Introduction Timers Timing devices - Generate specific time delay Event

More information

CHAPTER TIMER PROGRAMMING

CHAPTER TIMER PROGRAMMING CHAPTER 9 8051 TIMER PROGRAMMING 8051 Timers The 8051 has two timers/counters, they can be used as Timers to generate a time delay Event counters to count events happening outside the microcontroller Both

More information

Department of EIE / Pondicherry Engineering College. Timer/Counters. Department of EIE / Pondicherry Engineering College 1

Department of EIE / Pondicherry Engineering College. Timer/Counters. Department of EIE / Pondicherry Engineering College 1 Timer/Counters Department of EIE / Pondicherry Engineering College 1 The 8051 has two internal sixteen bit hardware Timer/Counters. Each Timer/Counter can be configured in various modes, typically based

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Programming in Assembly Module No: CS/ES/12 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Programming in Assembly Module No: CS/ES/12 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Programming in Assembly Module No: CS/ES/12 Quadrant 1 e-text In this lecture, serial communication control register

More information

Timers and interrupts

Timers and interrupts Timers and interrupts CSCI 255: Introduction to Embedded Systems Keith Vertanen Copyright 2011 Timers Overview Creating fixed pauses Calculate length of events Counts events Generate baud rate for serial

More information

8051 Microcontroller Interrupts

8051 Microcontroller Interrupts 8051 Microcontroller Interrupts There are five interrupt sources for the 8051, which means that they can recognize 5 different events that can interrupt regular program execution. Each interrupt can be

More information

1. LCD (Liquid Crystal Display)interface

1. LCD (Liquid Crystal Display)interface e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: I/O devices Interfacing Module No: CS/ES/16 Quadrant 1 e-text In this lecture, the interfacing of 8051 with an output device and

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

CPEG300 Embedded System Design. Lecture 8 Timer

CPEG300 Embedded System Design. Lecture 8 Timer CPEG300 Embedded System Design Lecture 8 Timer Hamad Bin Khalifa University, Spring 2018 Review 8051 port and port schematic Internal read/write data path Serial communication vs. parallel communication

More information

UNIT THE 8051 INSTRUCTION SET AND PROGRAMMING

UNIT THE 8051 INSTRUCTION SET AND PROGRAMMING UNIT THE 8051 INSTRUCTION SET AND PROGRAMMING Instructions Alphabetical List of Instructions ACALL: Absolute Call ADD, ADDC: Add Accumulator (With Carry) AJMP: Absolute Jump ANL: Bitwise AND CJNE: Compare

More information

~: Simple Programs in 8051 assembly language :~

~: Simple Programs in 8051 assembly language :~ ~: Simple Programs in 8051 assembly language :~ Here some simple programs of 8051 are given to understand the operation of different instructions and to understand the logic behind particular program.

More information

Mod-3: Interrupts,Timer operation,serial communication 1

Mod-3: Interrupts,Timer operation,serial communication 1 Mod-3: Interrupts,Timer operation,serial communication 1 Module-3 Contents: Interrupts - interrupt sources - interrupt handling programming examples. Timers operation different modes waveform generation-

More information

ELEG3923 Microprocessor Ch.9 Timer Programming

ELEG3923 Microprocessor Ch.9 Timer Programming Department of Electrical Engineering University of Arkansas ELEG3923 Microprocessor Ch.9 Timer Programming Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Programming 8051 Timers Counter programming Timer programming

More information

اصول ميکروکامپيوترها استاد درس: دکتر http://ee.iust.ac.ir/rahmati/index.htm rahmati@iust.ac.ir ا درس Email و Website برای تکاليف و... : http://eel.iust.ac.ir/rahmati/ ١ هجدهم فصل ا شنايی با تايمرهای 8051

More information

The 8051 microcontroller has two 16-bit timers/counters called T0 and T1.

The 8051 microcontroller has two 16-bit timers/counters called T0 and T1. Counters and Timers: The 8051 microcontroller has two 16-bit timers/counters called T0 and T1. As their names suggest, timer counts internal clock pulse i.e. machine cycle to provide delay. Counter counts

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text In this lecture the detailed architecture of 8051 controller, register bank,

More information

AGH University of Science and Technology Cracow Department of Electronics

AGH University of Science and Technology Cracow Department of Electronics AGH University of Science and Technology Cracow Department of Electronics Microprocessors laboratory Tutorial 7 Interrupts Author: Paweł Russek http://www.fpga.agh.edu.pl/upt ver. 25/05/16 1/11 1. Introduction

More information

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interfacing External Devices using Embedded C Module No: CS/ES/22

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interfacing External Devices using Embedded C Module No: CS/ES/22 e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interfacing External Devices using Embedded C Module No: CS/ES/22 Quadrant 1 e-text In this lecture interfacing of external devices

More information

Microcontroller & Interfacing

Microcontroller & Interfacing Course Title Course Code Microcontroller & Interfacing EC406 Lecture : 3 Course Credit Practical : 1 Tutorial : 0 Total : 4 Course Objective At the end of the course the students will be able to Understand

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Programming Embedded Systems in C Module No: CS/ES/9 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Programming Embedded Systems in C Module No: CS/ES/9 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Programming Embedded Systems in C Module No: CS/ES/9 Quadrant 1 e-text In this module, we will discuss about the embedded C programming

More information

8051 Memory Organization BY D. BALAKRISHNA, Research Assistant, IIIT-H Chapter 1: Memory Organization There are 2 types of memories available in 8051 microcontroller. Program memory/c code memory (ROM)

More information

8051 Timers and Serial Port

8051 Timers and Serial Port 8051 Timers and Serial Port EE4380 Fall 2001 Class 10 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Timer: Mode 1 Operation (recap) 16 bit counter. Load the

More information

AGH University of Science and Technology Cracow Department of Electronics

AGH University of Science and Technology Cracow Department of Electronics AGH University of Science and Technology Cracow Department of Electronics Microprocessors laboratory Tutorial 7 Interrupts Author: Paweł Russek http://www.fpga.agh.edu.pl/upt ver. 01/07/14 1/12 1. Introduction

More information

2. Write an 8051 program to generate a square wave of 25 khz at pin P2.3 using XTAL = 12 MHz. Solution:

2. Write an 8051 program to generate a square wave of 25 khz at pin P2.3 using XTAL = 12 MHz. Solution: Assignment 2 1. Assume that 5 binary data items are stored in RAM locations starting at 50h, as shown below. Write a program to find the sum of all the numbers. The calculation is in 16-bit format and

More information

Grundlagen Microcontroller Interrupts. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Interrupts. Günther Gridling Bettina Weiss Grundlagen Microcontroller Interrupts Günther Gridling Bettina Weiss 1 Interrupts Lecture Overview Definition Sources ISR Priorities & Nesting 2 Definition Interrupt: reaction to (asynchronous) external

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 Lesson 15 Interrupts Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would learn Interrupts

More information

MCS-51 Serial Port A T 8 9 C 5 2 1

MCS-51 Serial Port A T 8 9 C 5 2 1 MCS-51 Serial Port AT89C52 1 Introduction to Serial Communications Serial vs. Parallel transfer of data Simplex, Duplex and half-duplex modes Synchronous, Asynchronous UART Universal Asynchronous Receiver/Transmitter.

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller 1 Salient Features (1). 8 bit microcontroller originally developed by Intel in 1980. (2). High-performance CMOS Technology. (3). Contains Total 40 pins. (4). Address bus is of 16 bit

More information

8051 Microcontroller memory Organization and its Applications

8051 Microcontroller memory Organization and its Applications 8051 Microcontroller memory Organization and its Applications Memory mapping in 8051 ROM memory map in 8051 family 0000H 4k 0000H 8k 0000H 32k 0FFFH DS5000-32 8051 1FFFH 8752 7FFFH from Atmel Corporation

More information

8085 Interrupts. Lecturer, CSE, AUST

8085 Interrupts. Lecturer, CSE, AUST 8085 Interrupts CSE 307 - Microprocessors Mohd. Moinul Hoque, 1 Interrupts Interrupt is a process where an external device can get the attention of the microprocessor. The process starts from the I/O device

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture Department of Electrical Engineering Lecture 4 The 8051 Architecture 1 In this Lecture Overview General physical & operational features Block diagram Pin assignments Logic symbol Hardware description Pin

More information

EE6502- MICROPROCESSOR AND MICROCONTROLLER

EE6502- MICROPROCESSOR AND MICROCONTROLLER . EE6502- MICROPROCESSOR AND MICROCONTROLLER UNIT III - 8051 MICROCONTROLLER PART - A 1. What is Microcontroller? A device which contains the microprocessor with integrated peripherals like memory, serial

More information

Interrupt is a process where an external device can get the attention of the microprocessor. Interrupts can be classified into two types:

Interrupt is a process where an external device can get the attention of the microprocessor. Interrupts can be classified into two types: 8085 INTERRUPTS 1 INTERRUPTS Interrupt is a process where an external device can get the attention of the microprocessor. The process starts from the I/O device The process is asynchronous. Classification

More information

8051 Overview and Instruction Set

8051 Overview and Instruction Set 8051 Overview and Instruction Set Curtis A. Nelson Engr 355 1 Microprocessors vs. Microcontrollers Microprocessors are single-chip CPUs used in microcomputers Microcontrollers and microprocessors are different

More information

8086 Interrupts and Interrupt Responses:

8086 Interrupts and Interrupt Responses: UNIT-III PART -A INTERRUPTS AND PROGRAMMABLE INTERRUPT CONTROLLERS Contents at a glance: 8086 Interrupts and Interrupt Responses Introduction to DOS and BIOS interrupts 8259A Priority Interrupt Controller

More information

Microcontroller and Embedded Systems:

Microcontroller and Embedded Systems: Microcontroller and Embedded Systems: Branches: 1. Electronics & Telecommunication Engineering 2. Electrical & Electronics Engineering Semester: 6 th Semester / 7 th Semester 1. Explain the differences

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 8, 2016 Controller vs Processor Controller vs Processor Introduction to 8051 Micro-controller In 1981,Intel corporation

More information

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system.

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system. Syllabus: : Introduction to, 8051 Microcontroller Architecture and an example of Microcontroller based stepper motor control system (only Block Diagram approach). (5 Hours) Introduction to A microcontroller

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (I) Lecturer : Dr. Annie Guo Introduction to Interrupts Interrupt system specifications Multiple sources of interrupts Interrupt priorities Interrupts

More information

Timer Counter and Interrupt. Equation (16 bits counter, Mode 1, 16MHz):

Timer Counter and Interrupt. Equation (16 bits counter, Mode 1, 16MHz): Equation (16 bits counter, Mode 1, 16MHz): THxTLx = 65536 - (Tt * 16.777216 e6) where: Tt: Target time x: Timer/Counter (0, 1 and 2) THx: Timer high byte TLx: Timer low byte Used Interrupts: 1 (Address,

More information

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1 Interrupts (I) Lecturer: Sri Notes by Annie Guo Week8 1 Lecture overview Introduction to Interrupts Interrupt system specifications Multiple Sources of Interrupts Interrupt Priorities Interrupts in AVR

More information

Interrupts (II) Lecturer: Sri Parameswaran Notes by: Annie Guo

Interrupts (II) Lecturer: Sri Parameswaran Notes by: Annie Guo Interrupts (II) Lecturer: Sri Parameswaran Notes by: Annie Guo 1 External Interrupts The external interrupts are triggered by the INT7:0 pins. If enabled, the interrupts will trigger even if the INT7:0

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (II) Interrupts in AVR External interrupts Internal interrupts Timers/Counters Lecturer : Dr. Annie Guo S2, 2008 COMP9032 Week7 1 S2, 2008 COMP9032

More information

Interrupt Lab using PicoBlaze

Interrupt Lab using PicoBlaze Interrupt Lab using PicoBlaze - Vikram & Chethan Advisor: Prof. Gandhi Puvvada Introduction An interrupt is a signal to the processor from hardware (or software) indicating an event that needs immediate

More information

Today s Menu. >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory

Today s Menu. >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory Today s Menu Methods >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory Look into my See examples on web-site: ParamPassing*asm and see Methods in Software and

More information

EKT222 Miroprocessor Systems Lab 5

EKT222 Miroprocessor Systems Lab 5 LAB 5: Interrupts Objectives: 1) Ability to define interrupt in 8085 microprocessor 2) Ability to understanding the interrupt structure in the 8085 microprocessor 3) Ability to create programs using the

More information

8051 Serial Communication

8051 Serial Communication 8051 Serial Communication Basics of serial communication Parallel: transfers eight bits of data simultaneously over eight data lines expensive - short distance fast Serial : one bit at a time is transferred

More information

AVR Subroutine Basics

AVR Subroutine Basics 1 P a g e AVR Subroutine Basics READING The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi Chapter 3: Branch, Call, and Time Delay

More information

How to use the PSoC based 16C450 Replacement

How to use the PSoC based 16C450 Replacement How to use the PSoC based 16C450 Replacement Matthew Burns Eric Ponce August 2017 (Updated April 2018) 1 Overview The PSoC based 16C450 Replacement is intended to replace the 16C450 serial communication

More information

Vidyalankar T.E. Sem. V [ETRX] Microprocessors and Microcontrollers I Prelim Question Paper Solution

Vidyalankar T.E. Sem. V [ETRX] Microprocessors and Microcontrollers I Prelim Question Paper Solution 1. (a) 1. (b) T.E. Sem. V [ETRX] Microprocessors and Microcontrollers I Prelim Question Paper Solution Priority modes. 1) Fully Nested Mode : It is a general purpose mode. IR 0 highest priority IR 1 lowest

More information

Department of Electronics and Instrumentation Engineering Question Bank

Department of Electronics and Instrumentation Engineering Question Bank www.examquestionpaper.in Department of Electronics and Instrumentation Engineering Question Bank SUBJECT CODE / NAME: ET7102 / MICROCONTROLLER BASED SYSTEM DESIGN BRANCH : M.E. (C&I) YEAR / SEM : I / I

More information

8051 Microcontroller. Ali Ziya Alkar 1

8051 Microcontroller. Ali Ziya Alkar 1 8051 Microcontroller Ali Ziya Alkar 1 8051 Introduction 8051 is one of the most popular microcontrollers in use today. Many derivative microcontrollers have since been developed that are based on--and

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems ELCT 912: Advanced Embedded Systems Lecture 10: Applications for Programming PIC18 in C Dr. Mohamed Abd El Ghany, Department of Electronics and Electrical Engineering Programming the PIC18 to transfer

More information

Introduction To MCS-51

Introduction To MCS-51 Introduction To MCS-51 By Charoen Vongchumyen Department of Computer Engineering Faculty of Engineering KMITLadkrabang 8051 Hardware Basic Content Overview Architechture Memory map Register Interrupt Timer/Counter

More information

80C51 Block Diagram. CSE Overview 1

80C51 Block Diagram. CSE Overview 1 80C51 Block Diagram CSE 477 8051 Overview 1 80C51 Memory CSE 477 8051 Overview 3 8051 Memory The data width is 8 bits Registers are 8 bits Addresses are 8 bits i.e. addresses for only 256 bytes! PC is

More information

Real-Time Programming

Real-Time Programming Real-Time Programming Week 7: Real-Time Operating Systems Instructors Tony Montiel & Ken Arnold rtp@hte.com 4/1/2003 Co Montiel 1 Objectives o Introduction to RTOS o Event Driven Systems o Synchronization

More information

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07)

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07) Serial I-O for 8051 Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai 400 076 (version 14/10/07) 1 Motivation Serial communications means sending data a single bit at a time. But

More information

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051: DEPARTMENT OF ECE MICROPROCESSORS AND MICROCONTROLLERS MATERIAL UNIT V 8051 MICROCONTROLLERS To make a complete microcomputer system, only microprocessor is not sufficient. It is necessary to add other

More information

UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING

UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING Instructions Alphabetical List of Instructions ACALL: Absolute Call ADD, ADDC: Add Accumulator (With Carry) AJMP: Absolute Jump ANL: Bitwise AND CJNE: Compare

More information

MACHINE CONTROL INSTRUCTIONS: 1. EI

MACHINE CONTROL INSTRUCTIONS: 1. EI Lecture-33 MACHINE CONTROL INSTRUCTIONS: 1. EI (Enable interrupts): The interrupt system is disabled just after RESET operation. There is an internal INTE F/F (Interrupt enable flipflop) which is reset

More information

INTERRUPTS in microprocessor systems

INTERRUPTS in microprocessor systems INTERRUPTS in microprocessor systems Microcontroller Power Supply clock fx (Central Proccesor Unit) CPU Reset Hardware Interrupts system IRQ Internal address bus Internal data bus Internal control bus

More information

Question Bank Microprocessor and Microcontroller

Question Bank Microprocessor and Microcontroller QUESTION BANK - 2 PART A 1. What is cycle stealing? (K1-CO3) During any given bus cycle, one of the system components connected to the system bus is given control of the bus. This component is said to

More information

4) In response to the the 8259A sets the highest priority ISR, bit and reset the corresponding IRR bit. The 8259A also places

4) In response to the the 8259A sets the highest priority ISR, bit and reset the corresponding IRR bit. The 8259A also places Lecture-52 Interrupt sequence: The powerful features of the 8259A in a system are its programmability and the interrupt routine address capability. It allows direct or indirect jumping to the specific

More information

AN108 IMPLEMENTING A REALTIME CLOCK. Relevant Devices. Introduction. Key Points. Overview

AN108 IMPLEMENTING A REALTIME CLOCK. Relevant Devices. Introduction. Key Points. Overview IMPLEMENTING A REALTIME CLOCK Relevant Devices This application note applies to the following devices: C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F007, C8051F010, C8051F011, and C8051F012.

More information

Lab-Report Microprocessors

Lab-Report Microprocessors Lab-Report Microprocessors Digital Voltage Meter (DVM) NO YES Name: Dirk Becker Course: BEng 2 Group: A Student No.: 9801351 Date: 05/May/1999 1. Contents 1. CONTENTS... 2 2. INTRODUCTION... 3 3. THE PROJECT...

More information

CS 320. Computer Architecture Core Architecture

CS 320. Computer Architecture Core Architecture CS 320 Computer Architecture 8051 Core Architecture Evan Hallam 19 April 2006 Abstract The 8051 is an 8-bit microprocessor designed originally in the 1980 s by the Intel Corporation. This inexpensive and

More information

ATmega Interrupts. Reading. The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

ATmega Interrupts. Reading. The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi 1 P a g e ATmega Interrupts Reading The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi Chapter 10: AVR Interrupt Programming in Assembly

More information

Chapter 7 Subroutines. Richard P. Paul, SPARC Architecture, Assembly Language Programming, and C

Chapter 7 Subroutines. Richard P. Paul, SPARC Architecture, Assembly Language Programming, and C Chapter 7 Subroutines Richard P. Paul, SPARC Architecture, Assembly Language Programming, and C 2 Subroutines Subroutines allow us to either to repeat a computation or to repeat the computation with different

More information

12. Interrupts and Programmable Multilevel Interrupt Controller

12. Interrupts and Programmable Multilevel Interrupt Controller 12. Interrupts and Programmable Multilevel Interrupt Controller 12.1 Features Short and predictable interrupt response time Separate interrupt configuration and vector address for each interrupt Programmable

More information

Microcontroller Intel [Instruction Set]

Microcontroller Intel [Instruction Set] Microcontroller Intel 8051 [Instruction Set] Structure of Assembly Language [ label: ] mnemonic [operands] [ ;comment ] Example: MOV R1, #25H ; load data 25H into R1 2 8051 Assembly Language Registers

More information

Interrupts. by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar

Interrupts. by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Chapter 12 Interrupts by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Microprocessor & Interfacing (140701) Rahul Patel 1 Points to be Discussed 8085 Interrupts

More information

Interrupts Peter Rounce - room 6.18

Interrupts Peter Rounce - room 6.18 Interrupts Peter Rounce - room 6.18 P.Rounce@cs.ucl.ac.uk 20/11/2006 1001 Interrupts 1 INTERRUPTS An interrupt is a signal to the CPU from hardware external to the CPU that indicates than some event has

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET MICROCONTROLLER AND MICROPROCESSOR SYSTEMS ECE2216 TRIMESTER 1 (2017/2018) MP2: Construction and programming of a basic electronic piano *Note: On-the-spot evaluation may

More information

Fundamental concept in computation Interrupt execution of a program to handle an event

Fundamental concept in computation Interrupt execution of a program to handle an event Interrupts Fundamental concept in computation Interrupt execution of a program to handle an event Don t have to rely on program relinquishing control Can code program without worrying about others Issues

More information

Interrupt Lab using PicoBlaze

Interrupt Lab using PicoBlaze Interrupt Lab using PicoBlaze - Vikram & Chethan Advisor: Prof. Gandhi Puvvada Introduction An interrupt is a signal to the processor from hardware (or software) indicating an event that needs immediate

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 04 ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK : Microprocessors and Microcontrollers :

More information

Newbie s Guide to AVR Interrupts

Newbie s Guide to AVR Interrupts Newbie s Guide to AVR Interrupts Dean Camera March 15, 2015 ********** Text Dean Camera, 2013. All rights reserved. This document may be freely distributed without payment to the author, provided that

More information

Interrupts L33-1. Interrupts

Interrupts L33-1. Interrupts L33-1 Interrupts Interrupts Interrupts are like receiving a telephone call while you are in a face-to-face meeting: The phone rings (ie, an interrupt is sent) Tell the person you are meeting with to please

More information

Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples.

Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples. MICROCONTROLLERS AND APPLICATIONS 1 Module 2 Module-2 Contents: Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples. MEMORY

More information

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab By the end of Class Pseudo-code for Lab 1-2 due as part of prelab Homework #5 on website due before next class Outline Introduce Lab 1-2 Counting Timers on C8051 Interrupts Laboratory Worksheet #05 Copy

More information

Embedded Controller Programming

Embedded Controller Programming Embedded Controller Programming Counters, Timers and I/O in Assembly Language Ken Arnold Copyright 2000-2004 Ken Arnold 1 Outline Timer/Counters Serial Port More 8051 Instructions Examples Copyright 2000-2004

More information

Lecture 9. Timer Operations and Programming

Lecture 9. Timer Operations and Programming Lecture 9 Timer Operations and Programming Timer Operations and Programming Introduction Summary of timers Timer programming sequence Summary of timer SFRs Timer 0-1: 8-bit auto-reload mode (mode 2) Programming

More information

MODULE-1. Short Answer Questions

MODULE-1. Short Answer Questions MODULE-1 Short Answer Questions 1. Give the comparison between microprocessor and microcontroller. It is very clear from figure that in microprocessor we have to interface additional circuitry for providing

More information

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers 1. Define microprocessors? UNIT-I A semiconductor device(integrated circuit) manufactured by using the LSI technique. It includes

More information

Microprocessors B (17.384) Spring Lecture Outline

Microprocessors B (17.384) Spring Lecture Outline Microprocessors B (17.384) Spring 2013 Lecture Outline Class # 04 February 12, 2013 Dohn Bowden 1 Today s Lecture Administrative Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013)

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) BHARATHIDASAN ENGINEERING COLLEGE III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) FREQUENTLY ASKED QUESTIONS IN UNIVERSITY EXAMINATION PART A UNIT 1-8085 PROCESSOR 1. Draw the

More information