CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers

Size: px
Start display at page:

Download "CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers"

Transcription

1 CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers 2007, Jae-sul Lee. All rights reserved. 1

2 Agenda 11.1 TCP/IP Transport Layer 11.2 The Application Layer What does the TCP/IP transport layer do? How TCP can offer connection-oriented delivery over the connectionless IP network? What are the TCP/IP application layers? What do they do and how do they work? 2

3 Overview The TCP/IP transport layer Responsible for end-to-end data delivery Transports data between applications on source and destination devices Multiplexes multiple connections between hosts TCP provides connection-oriented delivery Provides reliability, orderly delivery, and flow control Less efficient and slower due to the overhead UDP provides connectionless delivery Efficient and fast, but unreliable The TCP/IP application layer Relies on TCP, UDP/IP for the delivery 3

4 Module objectives Students who complete this module should be able to perform the following tasks: Describe the functions of the TCP/IP transport layer Describe flow control Explain how a connection is established between peer systems Describe windowing Describe acknowledgment Identify and describe transport layer protocols Describe TCP and UDP header formats Describe TCP and UDP port numbers List the major protocols of the TCP/IP application layer Provide a brief description of the features and operation of wellknown TCP/IP applications 4

5 11.1 TCP/IP Transport Layer 11.2 The Application Layer What does the TCP/IP transport layer do? - Offers reliable end-to-end connectivity over the (unreliable )IP - Offers multiplexing of upper layer communications using the port numbers How TCP can offer connection-oriented delivery over the connectionless IP network? - Using three way handshake, sequence number, acknowledgement, flow control by adjusting the window size Characteristics of TCP and UDP How do TCP and UDP support multiple various upper layer services? 5

6 Outlines Introduction to the TCP/IP transport layer Flow control Session establishment, maintenance, and termination Three-way handshake Acknowledgment Windowing TCP UDP TCP and UDP port numbers 6

7 Introduction to the TCP/IP transport layer The functions of the transport layer End-to-end logical connectivity between host applications Transport and regulate the flow of information reliably and accurately Establish end-to-end operation Divide upper layer data into segments Send segments from one end host to another end host Ensure data reliability and accuracy» Error detection, request retransmission, & acknowledgments»use sequence numbers to ensure the order of received packet Provide end-to-end flow control» Avoid Rx data buffer overflow at the destination»use sliding window mechanism to control flow rate Matter of Quality of Service (QoS) 7

8 TCP and UDP port numbers Multiplexing of upper-layer conversations Multiple connections can be made for multiple services They are multiplexed into a stream of the segments in a channel End-to-end connections are distinguished by the port number Each connection has unique pair of source port-destination port Use of port numbers are defined by IANA The Well Known Ports: 0 ~ 1023 Used only by system (or root) processes or by programs executed by privileged users (usually, the server processes) The Registered Ports: 1024 ~ Can be used by ordinary user processes or programs executed by ordinary users (usually, the client or p2p processes) The Dynamic and/or Private Ports: ~

9 TCP and UDP port numbers Example of multiple use of ports A C data A=pearl A C data A B data A C data A B data B= ( ) web telnet C=oslab.dtcinfo.net ( ) telnet telnet web 9

10 TCP and UDP port numbers Application services and port numbers Copyrighted material is cleared 10

11 Session establishment, maintenance, and termination Establishing a connection-oriented session in TCP Establishing a connection using three way handshaking Copyrighted material is cleared Sender requests synchronization (initiates a connecion) Receiver acknowledges the synchronization request from the sender and requests synchronization Sender acknowledges the synchronization request from the receiver and informs the receiver that both sides agree that a connection has been established 11

12 Session establishment, maintenance, and termination Concept of flow control in TCP Communicating hosts may experience congestion if Too fast source hosts saturate the network link Too slow destination host fail to process the receiving packets timely In both cases, excessive traffic overflows the buffer memory of the nodes (routers or the destination hosts) The packets are lost The TCP process has the control mechanism to avoid this problem Copyrighted material is cleared 12

13 Session establishment, maintenance, and termination Overview of flow control Copyrighted material is cleared 13

14 Session establishment, maintenance, and termination Termination of a connection Thesource host sends a signal (FIN) that indicates the end of the transmission The destination host acknowledges and confirms the end of transmission The source host acknowledges The connection is terminated 14

15 Three-way handshake Establishing a connection before data transmission Sequence numbers are needed for reliable communication For orderly delivery, error detection, and flow control Sequence numbers act as the reference of each end s starting point Each host has its own sequence number It starts with an arbitrary number at the connection establishment phase It represents the position of the starting data octet in the segment relative to the first octet of all data stream in a whole TCP session Each end must know the other s sequence number Two hosts must synchronize their initial sequence numbers to establish a connection Three-way handshake is used for this purpose 1.Originating end send its own sequence number to the other end 2.The other end responds with its own sequence number and the acknowledge (= the originating end s sequence number +1) 3.The originating end responds with the acknowledge (the other s sequence number + 1) 15

16 Three-way handshake ACK=1 SYN=1 SYN=1, ACK=1 = = Copyrighted material is cleared SYN: My sequence number is 100 ACK: I have received yours, too. Give me next (301) ACK: I have received yours. Give me next (101) SYN: My sequence number is 300 Connection is established 16

17 Three-way handshake example 17

18 Acknowledgment TCP must support reliable, orderly delivery of segments Implemented by the sequence number and the acknowledgement Positive acknowledgment with retransmission (PAR) Data stream is divided into small segments The sender assigns sequence numbers to each segment of the data stream 1. The sender transmits a segment of sequence number N 2. If the receiver received the segment, it calculates the checksum If the checksum is good, it sends back an ACK of sequence number N + data bytes received (positive acknowledgement) It means next anticipated data octet If NOT, it discards the segment and does not send the acknowledgement 3. If the receiver did not receive the segment, it does not send the acknowledgement 4. If the sender receives ACK before the preset timer expires, it transmits a segment with sequence number (received ACK number) If NOT, the sender retransmits the segment of sequence number N 5. The receiver reassembles the segments 18

19 Acknowledgment You received #10. I send #10. Now I send #11. Copyrighted material is cleared 19

20 Acknowledgment Ex) Imagine a TCP connection is transferring a file of 6000 bytes. The sequence number for the first octet of the data is numbered What are the sequence numbers for each segment if data is sent in five segments with the first four segments carrying 1,000 bytes and the last segment carrying 2,000 bytes of data? The following shows the sequence number for each segment: Segment 1 10,010 (10,010 to 11,009) Segment 2 11,010 (11,010 to 12,009) Segment 3 12,010 (12,010 to 13,009) Segment 4 13,010 (13,010 to 14,009) Segment 5 14,010 (14,010 to 16,009) 20

21 Windowing TCP must be able to control the amount of data flow Implemented by controlling the window size (sliding window) Window size defines number of data octets that can be sent without receiving the acknowledgement Data octets = window size x 2 window scale factor (defined in the option field) The receiving end sends acknowledgement with the preferred window size The sending end transmits number of data octets specified by the received window size The sending end waits another ACK The receiving end receives the data and replies ACK with window size If the buffer overflows before it receives all data octets, send reduced window size with ACK number (=received seq. number + received data octets) If it receives all data octets and the buffer is not filled up, send increased window size with ACK number The larger the window size, the faster and the more efficient the transmission is 21

22 Windowing Comparing the transmission with window size=1 and 3 Copyrighted material is cleared 22

23 Windowing Sliding window Copyrighted material is cleared Currently, Now, window size=2 size=3 23

24 TCP Features of TCP A connection-oriented transport layer protocol Supplies a virtual circuit between end-user applications Provides reliable full-duplex data transmission Breaks messages into segments Reassembles them at the destination Resends anything that is not received Upper layer application protocols supported by TCP FTP HTTP SMTP Telnet 24

25 TCP Header fields of a TCP segment Copyrighted material is cleared Source port Number of the port that sends data Destination port Number of the port that receives data 25

26 TCP Sequence number Randomly assigned at the TCP connection establishment phase Prevents spoofing of a hacker Represents the position of starting data octet in a segment relative to the first octet of all data stream in a whole TCP session Ensure the data arrives in the correct order Acknowledgement number Represents the position of next expected TCP data octet relative to the first octet of all data stream in a whole TCP session HELEN Header length in number of 4 octets (32 bits words) Reserved Set to 0 26

27 TCP Control field Copyrighted material is cleared Window size Number of data octets in a segment that the receiver can accept The receiver sets in the acknowledgement for the sender s next transmission Checksum Calculated checksum of the header and data fields 27

28 TCP Urgent pointer If the URG bit is set, this field points to the sequence number of the last byte in a sequence of urgent data. Option Includes padding End of option No operation Copyrighted material is cleared Data Upper-layer protocol data 28

29 UDP Features of UDP The connectionless transport protocol in the TCP/IP protocol stack Exchanges datagrams without guaranteed delivery Does not use windows or sequence numbers/acks Designed for applications that do not need to put sequences of segments together Relies on higher-layer protocols to handle errors and retransmit data Upper layer application protocols supported by UDP TFTP SNMP DHCP DNS 29

30 UDP Header fields of a UDP segment Copyrighted material is cleared Source port Number of the port that sends data Destination port Number of the port that receives data Length Number of bytes in header and data Checksum Calculated checksum of the header and data fields Data Upper-layer protocol data 30

31 11.1 TCP/IP Transport Layer 11.2 The Application Layer What are the TCP/IP application layers? What do they do and how do they work? 31

32 Outlines Introduction to the TCP/IP application layer DNS FTP and TFTP HTTP SMTP SNMP Telnet 32

33 Introduction to the TCP/IP application layer TCP/IP application layer Layers 5~7 of the OSI model are bundled into it Handles representation, encoding, and dialog control in a layer Provides maximum flexibility at the application layer for software developers Copyrighted material is cleared 33

34 DNS Domain naming system Helps easier use of the Internet Domain names can be used instead of unfamiliar IP addresses It has systematic naming rules It has the hierarchical naming structure A FQDN (fully qualified domain name) is assigned to a host A hostname with its registered domain name attached gtld Root domain. cctld org int com net edu gov mil biz name pro kr us tv yahoo daum naver ac ne co pe go blog cafe www dongyang danawa www doumi mail www dica 34

35 DNS IP address resolution Translating a domain name into an IP address Done by the domain name servers 35

36 DNS 36

37 FTP and TFTP FTP Used for file transfer between the systems A reliable, connection-oriented service that uses TCP Needs two TCP connections Control channel (21/TCP) Data transfer channel (20/TCP) 37

38 FTP and TFTP Multiple connections and states TCP connection established FTP session 4 38

39 FTP and TFTP TFTP Connectionless service that uses UDP Designed to be small and easy to implement Operates faster than FTP Works reliably in a stable environment Used on the router to transfer configuration files and Cisco IOS images It lacks most of the features of FTP Cannot list directories No authentication features available 39

40 HTTP Features Works with the World Wide Web Fastest growing and most used part of the Internet Easy access to information Contents are represented in the form of the hypertext Hypertext contains the multimedia contents and the hyperlinks to other resources in the Internet Hypertext markup language (HTML) is used to describe the location and the format of the contents in a hypertext The URL describes the access method and the location of the content scheme://[id:password@]server[:port number][/path[/resource_filename]] 40

41 HTTP Client-server operation of the Web #80 See next page for an example 41

42 HTTP TCP connection established HTTP session 4 HTTP header HTTP data (HTML Document) End of HTTP session TCP connection closed 42

43 HTTP How the browser displays the HTML document Browser s view HTML document 43

44 HTTP Overall transaction for a page view CLIENT (request URL) Internet SERVERS ns.dtcinfo.net htmltest.html dc5.donga.com crw_3736_rt8.jpg 44

45 SMTP Features Sends and receives the Internet mail Transports messages in ASCII format using TCP Mail flow DNS MX of naver.com? Mail to: Hi MUA 1 SMTP #25 MTA Mail queue MDA 4 SMTP #25 Mail queue MTA 6 7 MDA Mail box 9 POP3 #110 IMAP4 #143 8 MUA Hi daum.net naver.com 45

46 SMTP 1. An SMTP mail transaction TCP connection established SMTP session End of SMTP session TCP connection closed 46

47 SMTP 2. Filtering by the SPAM blocker 3. Received by mail.dongyang.ac.kr (see next page) 47

48 SMTP Retrieving a message using POP3 TCP connection established POP session End of POP session TCP connection closed 48

49

50 SNMP Features Facilitates the exchange of management information between network devices Network administrators can Manage network performance Find and solve network problems Plan for network growth Uses UDP as its transport layer protocol Key components of the SNMP managed network NMS monitor and control managed devices Managed devices collect and store management information and make this information available to NMSs using SNMP Agents are network-management software modules that reside in managed devices. An agent translates management information into a form compatible with SNMP 50

51 SNMP SNMP SNMP SNMP Copyrighted material is cleared 51

52 Telnet Features Provides the ability to login to a remote Internet host (Telnet server) Local client acts as a remote text terminal of the Telnet server Local keystrokes are transmitted to the remote server Commands are executed at the remote server The results are displayed at the local client s display Works at the application layer of the TCP/IP model The application layer of the OSI model deals with commands The presentation layer of the OSI model handles formatting, usually ASCII The session layer of the OSI model transmits 52

53 Summary Students should understand the following main points: The functions of the TCP/IP transport layer Flow control The processes of establishing a connection between peer systems Windowing Acknowledgment Transport layer protocols TCPand UDP header formats TCP and UDP port numbers The processes and protocols at the TCP/IP application layer Domain Name Services File Transfer Protocols Simple Mail Transfer Protocol Simple Network Management Protocol Telnet 53

OSI Transport Layer. objectives

OSI Transport Layer. objectives LECTURE 5 OSI Transport Layer objectives 1. Roles of the Transport Layer 1. segmentation of data 2. error detection 3. Multiplexing of upper layer application using port numbers 2. The TCP protocol Communicating

More information

CCNA Exploration Network Fundamentals. Chapter 04 OSI Transport Layer

CCNA Exploration Network Fundamentals. Chapter 04 OSI Transport Layer CCNA Exploration Network Fundamentals Chapter 04 OSI Transport Layer Updated: 05/05/2008 1 4.1 Roles of the Transport Layer 2 4.1 Roles of the Transport Layer The OSI Transport layer accept data from the

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

CCNA 1 Chapter 7 v5.0 Exam Answers 2013

CCNA 1 Chapter 7 v5.0 Exam Answers 2013 CCNA 1 Chapter 7 v5.0 Exam Answers 2013 1 A PC is downloading a large file from a server. The TCP window is 1000 bytes. The server is sending the file using 100-byte segments. How many segments will the

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 TRANSMISSION CONTROL PROTOCOL ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 ETI 2506 - TELECOMMUNICATION SYLLABUS Principles of Telecom (IP Telephony and IP TV) - Key Issues to remember 1.

More information

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space provided.

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space provided. 113 Chapter 9 TCP/IP Transport and Application Layer Services that are located in the transport layer enable users to segment several upper-layer applications onto the same transport layer data stream.

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 Transport Layer Role and Services Transport layer is responsible for overall end-to-end transfer of application data 2 Transport Layer Role

More information

Transport Layer TCP & UDP Week 7. Module : Computer Networks Lecturers : Lucy White Office : 324

Transport Layer TCP & UDP Week 7. Module : Computer Networks Lecturers : Lucy White Office : 324 Transport Layer TCP & UDP Week 7 Module : Computer Networks Lecturers : Lucy White lbwhite@wit.ie Office : 324 1 Purpose of the Transport Layer The Transport layer provides for the segmentation of data

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Outline Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 RFC? Transport layer introduction UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 The Transport Layer Transport layer

More information

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data ELEX 4550 : Wide Area Networks 2015 Winter Session UDP and TCP is lecture describes the two most common transport-layer protocols used by IP networks: the User Datagram Protocol (UDP) and the Transmission

More information

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP)

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP) Lecture (07) OSI layer 4 protocols TCP/UDP protocols By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU Fall2014, Computer Networks II Introduction Most data-link protocols notice errors then discard frames

More information

Lecture (11) OSI layer 4 protocols TCP/UDP protocols

Lecture (11) OSI layer 4 protocols TCP/UDP protocols Lecture (11) OSI layer 4 protocols TCP/UDP protocols Dr. Ahmed M. ElShafee ١ Agenda Introduction Typical Features of OSI Layer 4 Connectionless and Connection Oriented Protocols OSI Layer 4 Common feature:

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT Transport Protocols UDP User Datagram Protocol TCP Transport Control Protocol and many others UDP One of the core transport protocols Used

More information

CCNA R&S: Introduction to Networks. Chapter 7: The Transport Layer

CCNA R&S: Introduction to Networks. Chapter 7: The Transport Layer CCNA R&S: Introduction to Networks Chapter 7: The Transport Layer Frank Schneemann 7.0.1.1 Introduction 7.0.1.2 Class Activity - We Need to Talk Game 7.1.1.1 Role of the Transport Layer The primary responsibilities

More information

4.0.1 CHAPTER INTRODUCTION

4.0.1 CHAPTER INTRODUCTION 4.0.1 CHAPTER INTRODUCTION Data networks and the Internet support the human network by supplying seamless, reliable communication between people - both locally and around the globe. On a single device,

More information

Transport Layer. Gursharan Singh Tatla. Upendra Sharma. 1

Transport Layer. Gursharan Singh Tatla.   Upendra Sharma. 1 Transport Layer Gursharan Singh Tatla mailme@gursharansingh.in Upendra Sharma 1 Introduction The transport layer is the fourth layer from the bottom in the OSI reference model. It is responsible for message

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY 23.2 The transport

More information

Hands-On Ethical Hacking and Network Defense

Hands-On Ethical Hacking and Network Defense Hands-On Ethical Hacking and Network Defense Chapter 2 TCP/IP Concepts Review Last modified 1-11-17 Objectives Describe the TCP/IP protocol stack Explain the basic concepts of IP addressing Explain the

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

Different Layers Lecture 21

Different Layers Lecture 21 Different Layers Lecture 21 10/17/2003 Jian Ren 1 The Transport Layer 10/17/2003 Jian Ren 2 Transport Services and Protocols Provide logical communication between app processes running on different hosts

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

Transport Layer. <protocol, local-addr,local-port,foreign-addr,foreign-port> ϒ Client uses ephemeral ports /10 Joseph Cordina 2005

Transport Layer. <protocol, local-addr,local-port,foreign-addr,foreign-port> ϒ Client uses ephemeral ports /10 Joseph Cordina 2005 Transport Layer For a connection on a host (single IP address), there exist many entry points through which there may be many-to-many connections. These are called ports. A port is a 16-bit number used

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

06/02/ Local & Metropolitan Area Networks 0. INTRODUCTION. 1. History and Future of TCP/IP ACOE322

06/02/ Local & Metropolitan Area Networks 0. INTRODUCTION. 1. History and Future of TCP/IP ACOE322 1 Local & Metropolitan Area Networks ACOE322 Lecture 5 TCP/IP Protocol suite and IP addressing 1 0. INTRODUCTION We shall cover in this topic: 1. The relation of TCP/IP with internet and OSI model 2. Internet

More information

The Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) The Transmission Control Protocol (TCP) Application Services (Telnet, FTP, e-mail, WWW) Reliable Stream Transport (TCP) Unreliable Transport Service (UDP) Connectionless Packet Delivery Service (IP) Goals

More information

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space that is provided.

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space that is provided. 223 Chapter 19 Inter mediate TCP The Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols was developed as part of the research that the Defense Advanced Research Projects Agency

More information

Internetworking Models The OSI Reference Model

Internetworking Models The OSI Reference Model Internetworking Models When networks first came into being, computers could typically communicate only with computers from the same manufacturer. In the late 1970s, the Open Systems Interconnection (OSI)

More information

Unit 2.

Unit 2. Unit 2 Unit 2 Topics Covered: 1. PROCESS-TO-PROCESS DELIVERY 1. Client-Server 2. Addressing 2. IANA Ranges 3. Socket Addresses 4. Multiplexing and Demultiplexing 5. Connectionless Versus Connection-Oriented

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

Internet and Intranet Protocols and Applications

Internet and Intranet Protocols and Applications Internet and Intranet Protocols and Applications Lecture 1b: The Transport Layer in the Internet January 17, 2006 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu 01/17/06

More information

UNIT IV TRANSPORT LAYER

UNIT IV TRANSPORT LAYER Transport Layer UNIT IV TRANSPORT LAYER Congestion Control and Quality of Service Ref: Data Communication & Networking, 4 th edition, Forouzan IV-1 DATA TRAFFIC The main focus of congestion control and

More information

Network Model: Each layer has a specific function.

Network Model: Each layer has a specific function. OBJECTIVES: To discuss the OSI model and its layer architecture and to show the interface between the layers. To briefly discuss the functions of each layer in the OSI model. To introduce the TCP/IP protocol.

More information

TCP/IP Transport Layer Protocols, TCP and UDP

TCP/IP Transport Layer Protocols, TCP and UDP TCP/IP Transport Layer Protocols, TCP and UDP Learning Objectives Identify TCP header fields and operation using a Wireshark FTP session capture. Identify UDP header fields and operation using a Wireshark

More information

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24 Lecture 20 Overview Last Lecture Transport Control Protocol (1) This Lecture Transport Control Protocol (2) Source: chapters 23, 24 Next Lecture Internet Applications Source: chapter 26 COSC244 & TELE202

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY The transport

More information

UDP, TCP, IP multicast

UDP, TCP, IP multicast UDP, TCP, IP multicast Dan Williams In this lecture UDP (user datagram protocol) Unreliable, packet-based TCP (transmission control protocol) Reliable, connection oriented, stream-based IP multicast Process-to-Process

More information

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Layer 4: UDP, TCP, and others based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Concepts application set transport set High-level, "Application Set" protocols deal only with how handled

More information

Introduction to TCP/IP networking

Introduction to TCP/IP networking Introduction to TCP/IP networking TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute TCP : Transmission Control Protocol HTTP, FTP, ssh What is an internet? A set

More information

User Datagram Protocol (UDP):

User Datagram Protocol (UDP): SFWR 4C03: Computer Networks and Computer Security Feb 2-5 2004 Lecturer: Kartik Krishnan Lectures 13-15 User Datagram Protocol (UDP): UDP is a connectionless transport layer protocol: each output operation

More information

CSCI-GA Operating Systems. Networking. Hubertus Franke

CSCI-GA Operating Systems. Networking. Hubertus Franke CSCI-GA.2250-001 Operating Systems Networking Hubertus Franke frankeh@cs.nyu.edu Source: Ganesh Sittampalam NYU TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute

More information

9th Slide Set Computer Networks

9th Slide Set Computer Networks Prof. Dr. Christian Baun 9th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/49 9th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

Network Technology 1 5th - Transport Protocol. Mario Lombardo -

Network Technology 1 5th - Transport Protocol. Mario Lombardo - Network Technology 1 5th - Transport Protocol Mario Lombardo - lombardo@informatik.dhbw-stuttgart.de 1 overview Transport Protocol Layer realizes process to process communication data unit is called a

More information

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6. Transport Layer 6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6.1 Internet Transport Layer Architecture The

More information

Chapter 7 Transport Layer. 7.0 Introduction 7.1 Transport Layer Protocols 7.2 TCP and UDP 7.3 Summary

Chapter 7 Transport Layer. 7.0 Introduction 7.1 Transport Layer Protocols 7.2 TCP and UDP 7.3 Summary Chapter 7 Transport Layer 7.0 Introduction 7.1 Transport Layer Protocols 7.2 TCP and UDP 7.3 Summary Transport Layer Transportation of Data Role of the Transport Layer The transport layer is responsible

More information

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol)

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) Transport Layer -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) 1 Transport Services The transport layer has the duty to set up logical connections between two applications running on remote

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Recall Transport layer provides

More information

Introduction to Network. Topics

Introduction to Network. Topics Introduction to Network Security Chapter 7 Transport Layer Protocols 1 TCP Layer Topics Responsible for reliable end-to-end transfer of application data. TCP vulnerabilities UDP UDP vulnerabilities DNS

More information

Interconnecting Networks with TCP/IP. 2000, Cisco Systems, Inc. 8-1

Interconnecting Networks with TCP/IP. 2000, Cisco Systems, Inc. 8-1 Interconnecting Networks with TCP/IP 2000, Cisco Systems, Inc. 8-1 Objectives Upon completion of this chapter you will be able to perform the following tasks: Identify the IP protocol stack, its protocol

More information

Different Layers Lecture 20

Different Layers Lecture 20 Different Layers Lecture 20 10/15/2003 Jian Ren 1 The Network Layer 10/15/2003 Jian Ren 2 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host,

More information

4. The transport layer

4. The transport layer 4.1 The port number One of the most important information contained in the header of a segment are the destination and the source port numbers. The port numbers are necessary to identify the application

More information

CSEN 503 Introduction to Communication Networks. Mervat AbuElkheir Hana Medhat Ayman Dayf. ** Slides are attributed to J. F.

CSEN 503 Introduction to Communication Networks. Mervat AbuElkheir Hana Medhat Ayman Dayf. ** Slides are attributed to J. F. CSEN 503 Introduction to Communication Networks Mervat AbuElkheir Hana Medhat Ayman Dayf ** Slides are attributed to J. F. Kurose Chapter 3 outline Transport-layer services Multiplexing and demultiplexing

More information

Transport Protocols. Raj Jain. Washington University in St. Louis

Transport Protocols. Raj Jain. Washington University in St. Louis Transport Protocols Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 16-1 Overview q TCP q Key features

More information

7. TCP 최양희서울대학교컴퓨터공학부

7. TCP 최양희서울대학교컴퓨터공학부 7. TCP 최양희서울대학교컴퓨터공학부 1 TCP Basics Connection-oriented (virtual circuit) Reliable Transfer Buffered Transfer Unstructured Stream Full Duplex Point-to-point Connection End-to-end service 2009 Yanghee Choi

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

Transport Layer Protocols TCP

Transport Layer Protocols TCP Transport Layer Protocols TCP Gail Hopkins Introduction Features of TCP Packet loss and retransmission Adaptive retransmission Flow control Three way handshake Congestion control 1 Common Networking Issues

More information

05 Transmission Control Protocol (TCP)

05 Transmission Control Protocol (TCP) SE 4C03 Winter 2003 05 Transmission Control Protocol (TCP) Instructor: W. M. Farmer Revised: 06 February 2003 1 Interprocess Communication Problem: How can a process on one host access a service provided

More information

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University Computer Networks More on Standards & Protocols Quality of Service Week 10 College of Information Science and Engineering Ritsumeikan University Introduction to Protocols l A protocol is a set of rules

More information

Lesson 5 TCP/IP suite, TCP and UDP Protocols. Chapter-4 L05: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

Lesson 5 TCP/IP suite, TCP and UDP Protocols. Chapter-4 L05: Internet of Things , Raj Kamal, Publs.: McGraw-Hill Education Lesson 5 TCP/IP suite, TCP and UDP Protocols 1 TCP/IP Suite: Application layer protocols TCP/IP Suite set of protocols with layers for the Internet TCP/IP communication 5 layers: L7, L4, L3, L2 and L1

More information

IS370 Data Communications and Computer Networks. Chapter 5 : Transport Layer

IS370 Data Communications and Computer Networks. Chapter 5 : Transport Layer IS370 Data Communications and Computer Networks Chapter 5 : Transport Layer Instructor : Mr Mourad Benchikh Introduction Transport layer is responsible on process-to-process delivery of the entire message.

More information

Connection-oriented (virtual circuit) Reliable Transfer Buffered Transfer Unstructured Stream Full Duplex Point-to-point Connection End-to-end service

Connection-oriented (virtual circuit) Reliable Transfer Buffered Transfer Unstructured Stream Full Duplex Point-to-point Connection End-to-end service 최양희서울대학교컴퓨터공학부 Connection-oriented (virtual circuit) Reliable Transfer Buffered Transfer Unstructured Stream Full Duplex Point-to-point Connection End-to-end service 1 2004 Yanghee Choi 2 Addressing: application

More information

ch02 True/False Indicate whether the statement is true or false.

ch02 True/False Indicate whether the statement is true or false. ch02 True/False Indicate whether the statement is true or false. 1. No matter what medium connects computers on a network copper wires, fiber-optic cables, or a wireless setup the same protocol must be

More information

Introduction to Protocols

Introduction to Protocols Chapter 6 Introduction to Protocols 1 Chapter 6 Introduction to Protocols What is a Network Protocol? A protocol is a set of rules that governs the communications between computers on a network. These

More information

Application. Transport. Network. Link. Physical

Application. Transport. Network. Link. Physical Transport Layer ELEC1200 Principles behind transport layer services Multiplexing and demultiplexing UDP TCP Reliable Data Transfer TCP Congestion Control TCP Fairness *The slides are adapted from ppt slides

More information

Networking Revision. TCP/IP Protocol Stack & OSI reference model. Basic Protocols. TCP/IP Model ANTHONY KAO NETWORKING FINAL EXAM SPRING 2014 REVISION

Networking Revision. TCP/IP Protocol Stack & OSI reference model. Basic Protocols. TCP/IP Model ANTHONY KAO NETWORKING FINAL EXAM SPRING 2014 REVISION Networking Revision TCP/IP Protocol Stack & OSI reference model Basic Protocols TCP/IP Model 1 OSI (Open Systems Interconnection) Model main purpose to aid in clearer understanding of the functions and

More information

Transport Layer Review

Transport Layer Review Transport Layer Review Mahalingam Mississippi State University, MS October 1, 2014 Transport Layer Functions Distinguish between different application instances through port numbers Make it easy for applications

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 16 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at

More information

CS457 Transport Protocols. CS 457 Fall 2014

CS457 Transport Protocols. CS 457 Fall 2014 CS457 Transport Protocols CS 457 Fall 2014 Topics Principles underlying transport-layer services Demultiplexing Detecting corruption Reliable delivery Flow control Transport-layer protocols User Datagram

More information

CHAPTER-2 IP CONCEPTS

CHAPTER-2 IP CONCEPTS CHAPTER-2 IP CONCEPTS Page: 1 IP Concepts IP is a very important protocol in modern internetworking; you can't really comprehend modern networking without a good understanding of IP. Unfortunately, IP

More information

Transport Layer Protocols. Internet Transport Layer. Agenda. TCP Fundamentals

Transport Layer Protocols. Internet Transport Layer. Agenda. TCP Fundamentals Transport Layer Protocols Application SMTP HTTP FTP Telnet DNS BootP DHCP ( M I M E ) Presentation Session SNMP TFTP Internet Transport Layer TCP Fundamentals, TCP Performance Aspects, UDP (User Datagram

More information

CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 6 OSI MODEL TRANSPORT LAYER

CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 6 OSI MODEL TRANSPORT LAYER CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 6 OSI MODEL TRANSPORT LAYER Transport Layer The Transport layer ensures the reliable arrival of messages and provides error checking mechanisms and data

More information

QUIZ: Longest Matching Prefix

QUIZ: Longest Matching Prefix QUIZ: Longest Matching Prefix A router has the following routing table: 10.50.42.0 /24 Send out on interface Z 10.50.20.0 /24 Send out on interface A 10.50.24.0 /22 Send out on interface B 10.50.20.0 /22

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 9 Transport Layer Winter 2019 Reading: Begin Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Outline Overview

More information

CPSC156a: The Internet Co-Evolution of Technology and Society. Lecture 4: September 16, 2003 Internet Layers and the Web

CPSC156a: The Internet Co-Evolution of Technology and Society. Lecture 4: September 16, 2003 Internet Layers and the Web CPSC156a: The Internet Co-Evolution of Technology and Society Lecture 4: September 16, 2003 Internet Layers and the Web Layering in the IP Protocols HTTP (Web) Telnet Domain Name Service Simple Network

More information

The Transport Layer: TCP & Reliable Data Transfer

The Transport Layer: TCP & Reliable Data Transfer The Transport Layer: TCP & Reliable Data Transfer Smith College, CSC 249 February 15, 2018 1 Chapter 3: Transport Layer q TCP Transport layer services: v Multiplexing/demultiplexing v Connection management

More information

Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path. Review of TCP/IP Internetworking

Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path. Review of TCP/IP Internetworking 1 Review of TCP/IP working Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path Frame Path Chapter 3 Client Host Trunk Link Server Host Panko, Corporate

More information

CMPE 80N: Introduction to Networking and the Internet

CMPE 80N: Introduction to Networking and the Internet CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 11 CMPE 80N Fall'10 1 Announcements Forum #2 due on 11.05. CMPE 80N Fall'10 2 Last

More information

UNIT 2 TRANSPORT LAYER

UNIT 2 TRANSPORT LAYER Network, Transport and Application UNIT 2 TRANSPORT LAYER Structure Page No. 2.0 Introduction 34 2.1 Objective 34 2.2 Addressing 35 2.3 Reliable delivery 35 2.4 Flow control 38 2.5 Connection Management

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 11 MIDTERM EXAMINATION #1 OCT. 13, 2011 COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2011-75 minutes This examination

More information

Linux Networking: tcp. TCP context and interfaces

Linux Networking: tcp. TCP context and interfaces Linux Networking: tcp David Morgan TCP context and interfaces Computer A Computer B application process application process data data data data TCP process TCP process a network 1 TCP purposes and features

More information

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections Application / Transport Interface Application requests service from transport layer Transport Layer Application Layer Prepare Transport service requirements Data for transport Local endpoint node address

More information

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL Just enough TCP/IP Borrowed from my ITS475/575 class the ITL 1 Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP RTP RTCP SCTP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25,

More information

13. Internet Applications 최양희서울대학교컴퓨터공학부

13. Internet Applications 최양희서울대학교컴퓨터공학부 13. Internet Applications 최양희서울대학교컴퓨터공학부 Internet Applications Telnet File Transfer (FTP) E-mail (SMTP) Web (HTTP) Internet Telephony (SIP/SDP) Presence Multimedia (Audio/Video Broadcasting, AoD/VoD) Network

More information

Lecture-4. TCP/IP-Overview:

Lecture-4. TCP/IP-Overview: Lecture-4 TCP/IP-Overview: The history goes back to ARPANET a research network sponsored by DoD US Govt. It eventually connected hundreds of universities and govt installations, using leased telephone

More information

CCNA Exploration1 Chapter 3: Application Layer Functionality and Protocols

CCNA Exploration1 Chapter 3: Application Layer Functionality and Protocols CCNA Exploration1 Chapter 3: Application Layer Functionality and Protocols LOCAL CISCO ACADEMY ELSYS TU INSTRUCTOR: STELA STEFANOVA 1 Objectives Functions of the three upper OSI model layers, network services

More information

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao EEC-484/584 Computer Networks Lecture 16 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review Services provided by transport layer

More information

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control Chapter 6 What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control OSI Model Hybrid Model Software outside the operating system Software inside

More information

Transport Layer. The transport layer is responsible for the delivery of a message from one process to another. RSManiaol

Transport Layer. The transport layer is responsible for the delivery of a message from one process to another. RSManiaol Transport Layer Transport Layer The transport layer is responsible for the delivery of a message from one process to another Types of Data Deliveries Client/Server Paradigm An application program on the

More information

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A 5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI 635 854. NAME OF THE STAFF : R.ANBARASAN DESIGNATION & DEPARTMENT : AP/CSE SUBJECT CODE : CS 6551 SUBJECT NAME : COMPUTER NETWORKS UNIT I FUNDAMENTALS

More information

Goals and topics. Verkkomedian perusteet Fundamentals of Network Media T Circuit switching networks. Topics. Packet-switching networks

Goals and topics. Verkkomedian perusteet Fundamentals of Network Media T Circuit switching networks. Topics. Packet-switching networks Verkkomedian perusteet Fundamentals of Media T-110.250 19.2.2002 Antti Ylä-Jääski 19.2.2002 / AYJ lide 1 Goals and topics protocols Discuss how packet-switching networks differ from circuit switching networks.

More information

Network and Security: Introduction

Network and Security: Introduction Network and Security: Introduction Seungwon Shin KAIST Some slides are from Dr. Srinivasan Seshan Some slides are from Dr. Nick Mckeown Network Overview Computer Network Definition A computer network or

More information

Interconnecting Networks with TCP/IP

Interconnecting Networks with TCP/IP Chapter 8 Interconnecting s with TCP/IP 1999, Cisco Systems, Inc. 8-1 Introduction to TCP/IP Internet TCP/IP Early protocol suite Universal 1999, Cisco Systems, Inc. www.cisco.com ICND 8-2 TCP/IP Protocol

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 14: TCP Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu Northeastern

More information

Computer Networks. Lecture 9 Network and transport layers, IP, TCP, UDP protocols

Computer Networks. Lecture 9 Network and transport layers, IP, TCP, UDP protocols Computer Networks Lecture 9 Network and transport layers, IP, TCP, UDP protocols Network layer The Network layer, or OSI Layer 3, provides services to exchange the individual pieces of data over the network

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print,

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print, ANNEX B - Communications Protocol Overheads The OSI Model is a conceptual model that standardizes the functions of a telecommunication or computing system without regard of their underlying internal structure

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information