Message Passing Improvements to Shared Address Space Thread Synchronization Techniques DAN STAFFORD, ROBERT RELYEA

Size: px
Start display at page:

Download "Message Passing Improvements to Shared Address Space Thread Synchronization Techniques DAN STAFFORD, ROBERT RELYEA"

Transcription

1 Message Passing Improvements to Shared Address Space Thread Synchronization Techniques DAN STAFFORD, ROBERT RELYEA

2 Agenda Background Motivation Remote Memory Request Shared Address Synchronization Remote Core Locking Combiner Approach Wait Free Locks Limitations of SAS Performance tied to Cache Coherency model Hybrid Solution with Message Passing Server Approach MP-SERVER Combiner Approach HYBCOMB Performance Evaluation Conclusion

3 Motivation Application acceleration through many-core processors Obstacles of Efficient Parallelization Artificial Communication Critical Sections & Synchronization Effectively linearize parallel processing Commonly Shared Objects Involving Synchronization Queues Stacks

4 Remote Memory Request (RMRs) An access to data shared between all processes that requires communication to shared memory Data that is not readily available in the local process cache Generated for any updates or accesses to a shared variable not present in the core

5 Traditional SAS Synchronization Techniques Remote Core Locking Dedicated process (server) for executing critical sections Combiner Approach Every process will adopt critical section execution duty when needed Wait Free Objects Locally modify shared object and only commit if no other thread has modified it

6 Remote Core Locking Transfer execution of a critical section (CS) to the server Server is the only entity that can modify variables in the critical section Improve data locality Reduce Cache Misses Reduce Hot Spots

7 RCL Request List [2] Data to Server Address of the lock Variables (encapsulated in a structure) Address of the CS function Stored in a cache line for SAS

8 Remote Core Locking

9 Combiner Approach No dedicated server to handle CS requests A Head Node or combiner services requests When a CS is reached the task is submitted to the combiner If there is no combiner, the process submitting the task is now the combiner Combiner runs until the request queue is empty or h requests have been serviced SAS Implementations CC-Synch H-Synch Message Passing Implementations HybComb

10 CC-Synch Coherent-Cache Synch List of CS requests maintained in shared memory Atomic operations are used to access the CS request list When a process reaches a critical section Adds the request to the list Tries to acquire a global lock If Successful Thread is now the head node or combiner Services up to h requests Then returns If not successful Spin until it becomes the head node or the CS is completed

11 H-Synch Hierarchal-Synch Implementation for clusters m processors, c clusters m/c processors per cluster Communication slower across clusters CC-Synch locally on each cluster CS Synchronization across clusters: Before the local combiner executes requests Acquire lock L to ensure other clusters do not access the CS Then release L after servicing the request

12 Wait Free Construction Goal: Eliminate serialization delay in shared objects Use atomic primitives on shared objects that execute in a fixed number of cycles CAS LL/SC Fetch&Add Combination of the three primitives are often used for synchronization Use the wait-free primitives for the combiner identity

13 Wait Free Construction CAS Compare and Swap Supports two operations 1. read(o) return the current value of O 2. CAS(O, u, v) Compare O to u If equal, set O to v and return true Not equal, return false LL/SC - Locked Load Store Conditional Supports two operations 1. LL(O)return current value of O 2. SC(O, v) by process p O takes the value of v if and only if no other process has performed SC on O Return true if successful, otherwise false

14 Wait Free Construction Fetch & Add Supports two operations 1. read(o) 2. Fetch&Add(O, x) O+=x Return previous O One memory access Minimize serialization delays

15 Shortcomings of Traditional SAS CC Difficult to scale Performance is tied to cache coherency model RCL or Combiner on SAS still have to synchronize request queue in cache Short CSes dominated by cache-coherency stalls Optimization requires in-depth understanding of hardware Most programmers do not understand the underlying hardware architecture HW Venders hide hardware information

16 Thread Synchronization Using Message Passing Message passing allows explicit control over communication Message Passing Only MP-Server Hybrid SAS & Message Passing HybComb Message Passing better suited for sending tasks to the combiner SAS better suited for maintaining the identity of the combiner Meant for a platform with HW for SAS & Message Passing

17 MP-Server Essentially RCL using Message Passing Server reads requests from local message queue No Remote Memory Requests (RMRs) involved When sending response for a finished CS request Server does not wait for transmission to complete

18 HybComb HW Message Passing synchronization between the combiner and other processes SAS and Cache Stores identity of the combiner When a CS is reached by a process 1. Check the shared memory for the identity of the combiner 2. Send the task to the combiner If no combiner is present, become the combiner Write process identity to the shared memory Using CAS(O,u,v) 3. Wait for completion

19 Performance Concurrent Counter Message Passing implementations perform better MP-Server has the best throughput & latency Little difference between HybComb and SAS RCL & CC-Synch until 15+ application threads [1]

20 Performance [1] Much lower percentage of stalls with Message Passing Shorter Critical Section Length

21 Performance Stacks & Queues Message Passing still offers a performance advantage with queues and stacks Best Performance is achieved by limiting the number of locks in the queue [1]

22 Conclusion Message Passing is a better alternative for thread synchronization MP-Server is the best candidate Out performs HybComb in every characteristic Much lower algorithmic complexity Only Message Passing HW needed

23 References [1]D. Petrović, T. Ropars and A. Schiper, "Leveraging hardware message passing for efficient thread synchronization", ACM SIGPLAN Notices, vol. 49, no. 8, pp , [2]J. Lozi, F. David, G. Thomas, J. Lawal and G. Muller, "Remote Core Locking: MIgrating Critical-Section Execution to Improve the Performance of Multithreaded Applications", Proceedings of the 2012 USENIX Annual Technical Conference, [3]P. Fatourou and N. Kallimanis, "Revisiting the combining synchronization technique", ACM SIGPLAN Notices, vol. 47, no. 8, p. 257, [4]P. Fatourou and N. Kallimanis, "Highly-Efficient Wait-Free Synchronization", Theory of Computing Systems, vol. 55, no. 3, pp , 2013.

Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems

Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems Alexey Paznikov Saint Petersburg Electrotechnical University

More information

Lock Oscillation: Boosting the Performance of Concurrent Data Structures

Lock Oscillation: Boosting the Performance of Concurrent Data Structures Lock Oscillation: Boosting the Performance of Concurrent Data Structures Panagiota Fatourou FORTH ICS & University of Crete Nikolaos D. Kallimanis FORTH ICS The Multicore Era The dominance of Multicore

More information

Remote Core Locking. Migrating Critical-Section Execution to Improve the Performance of Multithreaded Applications. to appear at USENIX ATC 12

Remote Core Locking. Migrating Critical-Section Execution to Improve the Performance of Multithreaded Applications. to appear at USENIX ATC 12 Remote Core Locking Migrating Critical-Section Execution to Improve the Performance of Multithreaded Applications to appear at USENIX ATC 12 Jean-Pierre Lozi LIP6/INRIA Florian David LIP6/INRIA Gaël Thomas

More information

Lock Oscillation: Boosting the Performance of Concurrent Data Structures

Lock Oscillation: Boosting the Performance of Concurrent Data Structures Lock Oscillation: Boosting the Performance of Concurrent Data Structures Panagiota Fatourou 1 and Nikolaos D. Kallimanis 2 1 Institute of Computer Science (ICS), Foundation of Research and Technology-Hellas

More information

Revisiting the Combining Synchronization Technique

Revisiting the Combining Synchronization Technique Revisiting the Combining Synchronization Technique Panagiota Fatourou Department of Computer Science University of Crete & FORTH ICS faturu@csd.uoc.gr Nikolaos D. Kallimanis Department of Computer Science

More information

Fast and Portable Locking for Multicore Architectures

Fast and Portable Locking for Multicore Architectures Fast and Portable Locking for Multicore Architectures Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, Gilles Muller To cite this version: Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia

More information

Multiprocessor Synchronization

Multiprocessor Synchronization Multiprocessor Synchronization Material in this lecture in Henessey and Patterson, Chapter 8 pgs. 694-708 Some material from David Patterson s slides for CS 252 at Berkeley 1 Multiprogramming and Multiprocessing

More information

Distributed Computing

Distributed Computing HELLENIC REPUBLIC UNIVERSITY OF CRETE Distributed Computing Graduate Course Section 3: Spin Locks and Contention Panagiota Fatourou Department of Computer Science Spin Locks and Contention In contrast

More information

Synchronization. Coherency protocols guarantee that a reading processor (thread) sees the most current update to shared data.

Synchronization. Coherency protocols guarantee that a reading processor (thread) sees the most current update to shared data. Synchronization Coherency protocols guarantee that a reading processor (thread) sees the most current update to shared data. Coherency protocols do not: make sure that only one thread accesses shared data

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 9: Implementing Synchronization (Chapter 6) Multiprocessor Memory Models Uniprocessor memory is simple Every load from a location retrieves the last value stored to that

More information

Leveraging Hardware Message Passing for Efficient Thread Synchronization

Leveraging Hardware Message Passing for Efficient Thread Synchronization Leveraging Hardware Message Passing for Efficient Thread Synchronization Darko Petrović Thomas Ropars André Schiper Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland firstname.lastname@epfl.ch

More information

Handout 3 Multiprocessor and thread level parallelism

Handout 3 Multiprocessor and thread level parallelism Handout 3 Multiprocessor and thread level parallelism Outline Review MP Motivation SISD v SIMD (SIMT) v MIMD Centralized vs Distributed Memory MESI and Directory Cache Coherency Synchronization and Relaxed

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

A Practical Scalable Distributed B-Tree

A Practical Scalable Distributed B-Tree A Practical Scalable Distributed B-Tree CS 848 Paper Presentation Marcos K. Aguilera, Wojciech Golab, Mehul A. Shah PVLDB 08 March 8, 2010 Presenter: Evguenia (Elmi) Eflov Presentation Outline 1 Background

More information

Multiprocessors and Locking

Multiprocessors and Locking Types of Multiprocessors (MPs) Uniform memory-access (UMA) MP Access to all memory occurs at the same speed for all processors. Multiprocessors and Locking COMP9242 2008/S2 Week 12 Part 1 Non-uniform memory-access

More information

Chapter 5. Multiprocessors and Thread-Level Parallelism

Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Lecture 18: Coherence and Synchronization. Topics: directory-based coherence protocols, synchronization primitives (Sections

Lecture 18: Coherence and Synchronization. Topics: directory-based coherence protocols, synchronization primitives (Sections Lecture 18: Coherence and Synchronization Topics: directory-based coherence protocols, synchronization primitives (Sections 5.1-5.5) 1 Cache Coherence Protocols Directory-based: A single location (directory)

More information

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types Chapter 5 Multiprocessor Cache Coherence Thread-Level Parallelism 1: read 2: read 3: write??? 1 4 From ILP to TLP Memory System is Coherent If... ILP became inefficient in terms of Power consumption Silicon

More information

Concurrent Counting using Combining Tree

Concurrent Counting using Combining Tree Final Project Report by Shang Wang, Taolun Chai and Xiaoming Jia Concurrent Counting using Combining Tree 1. Introduction Counting is one of the very basic and natural activities that computers do. However,

More information

Performance and Optimization Issues in Multicore Computing

Performance and Optimization Issues in Multicore Computing Performance and Optimization Issues in Multicore Computing Minsoo Ryu Department of Computer Science and Engineering 2 Multicore Computing Challenges It is not easy to develop an efficient multicore program

More information

Lecture: Coherence and Synchronization. Topics: synchronization primitives, consistency models intro (Sections )

Lecture: Coherence and Synchronization. Topics: synchronization primitives, consistency models intro (Sections ) Lecture: Coherence and Synchronization Topics: synchronization primitives, consistency models intro (Sections 5.4-5.5) 1 Performance Improvements What determines performance on a multiprocessor: What fraction

More information

Lecture 19: Coherence and Synchronization. Topics: synchronization primitives (Sections )

Lecture 19: Coherence and Synchronization. Topics: synchronization primitives (Sections ) Lecture 19: Coherence and Synchronization Topics: synchronization primitives (Sections 5.4-5.5) 1 Caching Locks Spin lock: to acquire a lock, a process may enter an infinite loop that keeps attempting

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 15: Multicore Geoffrey M. Voelker Multicore Operating Systems We have generally discussed operating systems concepts independent of the number

More information

Chapter 5. Thread-Level Parallelism

Chapter 5. Thread-Level Parallelism Chapter 5 Thread-Level Parallelism Instructor: Josep Torrellas CS433 Copyright Josep Torrellas 1999, 2001, 2002, 2013 1 Progress Towards Multiprocessors + Rate of speed growth in uniprocessors saturated

More information

Chapter 5. Multiprocessors and Thread-Level Parallelism

Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

ffwd: delegation is (much) faster than you think Sepideh Roghanchi, Jakob Eriksson, Nilanjana Basu

ffwd: delegation is (much) faster than you think Sepideh Roghanchi, Jakob Eriksson, Nilanjana Basu ffwd: delegation is (much) faster than you think Sepideh Roghanchi, Jakob Eriksson, Nilanjana Basu int get_seqno() { } return ++seqno; // ~1 Billion ops/s // single-threaded int threadsafe_get_seqno()

More information

An Overview of MIPS Multi-Threading. White Paper

An Overview of MIPS Multi-Threading. White Paper Public Imagination Technologies An Overview of MIPS Multi-Threading White Paper Copyright Imagination Technologies Limited. All Rights Reserved. This document is Public. This publication contains proprietary

More information

Chapter 5 Thread-Level Parallelism. Abdullah Muzahid

Chapter 5 Thread-Level Parallelism. Abdullah Muzahid Chapter 5 Thread-Level Parallelism Abdullah Muzahid 1 Progress Towards Multiprocessors + Rate of speed growth in uniprocessors is saturating + Modern multiple issue processors are becoming very complex

More information

NUMA-aware Reader-Writer Locks. Tom Herold, Marco Lamina NUMA Seminar

NUMA-aware Reader-Writer Locks. Tom Herold, Marco Lamina NUMA Seminar 04.02.2015 NUMA Seminar Agenda 1. Recap: Locking 2. in NUMA Systems 3. RW 4. Implementations 5. Hands On Why Locking? Parallel tasks access shared resources : Synchronization mechanism in concurrent environments

More information

Advance Operating Systems (CS202) Locks Discussion

Advance Operating Systems (CS202) Locks Discussion Advance Operating Systems (CS202) Locks Discussion Threads Locks Spin Locks Array-based Locks MCS Locks Sequential Locks Road Map Threads Global variables and static objects are shared Stored in the static

More information

MULTIPROCESSORS AND THREAD LEVEL PARALLELISM

MULTIPROCESSORS AND THREAD LEVEL PARALLELISM UNIT III MULTIPROCESSORS AND THREAD LEVEL PARALLELISM 1. Symmetric Shared Memory Architectures: The Symmetric Shared Memory Architecture consists of several processors with a single physical memory shared

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

Parallel Computer Architecture Spring Memory Consistency. Nikos Bellas

Parallel Computer Architecture Spring Memory Consistency. Nikos Bellas Parallel Computer Architecture Spring 2018 Memory Consistency Nikos Bellas Computer and Communications Engineering Department University of Thessaly Parallel Computer Architecture 1 Coherence vs Consistency

More information

Part 1: Concepts and Hardware- Based Approaches

Part 1: Concepts and Hardware- Based Approaches Part 1: Concepts and Hardware- Based Approaches CS5204-Operating Systems Introduction Provide support for concurrent activity using transactionstyle semantics without explicit locking Avoids problems with

More information

Per-Thread Batch Queues For Multithreaded Programs

Per-Thread Batch Queues For Multithreaded Programs Per-Thread Batch Queues For Multithreaded Programs Tri Nguyen, M.S. Robert Chun, Ph.D. Computer Science Department San Jose State University San Jose, California 95192 Abstract Sharing resources leads

More information

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services Presented by: Jitong Chen Outline Architecture of Web-based Data Center Three-Stage framework to benefit

More information

Speculative Locks. Dept. of Computer Science

Speculative Locks. Dept. of Computer Science Speculative Locks José éf. Martínez and djosep Torrellas Dept. of Computer Science University it of Illinois i at Urbana-Champaign Motivation Lock granularity a trade-off: Fine grain greater concurrency

More information

Lecture 9: Multiprocessor OSs & Synchronization. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 9: Multiprocessor OSs & Synchronization. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 9: Multiprocessor OSs & Synchronization CSC 469H1F Fall 2006 Angela Demke Brown The Problem Coordinated management of shared resources Resources may be accessed by multiple threads Need to control

More information

Lecture 12: Hardware/Software Trade-Offs. Topics: COMA, Software Virtual Memory

Lecture 12: Hardware/Software Trade-Offs. Topics: COMA, Software Virtual Memory Lecture 12: Hardware/Software Trade-Offs Topics: COMA, Software Virtual Memory 1 Capacity Limitations P P P P B1 C C B1 C C Mem Coherence Monitor Mem Coherence Monitor B2 In a Sequent NUMA-Q design above,

More information

GLocks: Efficient Support for Highly- Contended Locks in Many-Core CMPs

GLocks: Efficient Support for Highly- Contended Locks in Many-Core CMPs GLocks: Efficient Support for Highly- Contended Locks in Many-Core CMPs Authors: Jos e L. Abell an, Juan Fern andez and Manuel E. Acacio Presenter: Guoliang Liu Outline Introduction Motivation Background

More information

Scalable, multithreaded, shared memory machine Designed for single word random global access patterns Very good at large graph problems

Scalable, multithreaded, shared memory machine Designed for single word random global access patterns Very good at large graph problems Cray XMT Scalable, multithreaded, shared memory machine Designed for single word random global access patterns Very good at large graph problems Next Generation Cray XMT Goals Memory System Improvements

More information

Synchronization. Erik Hagersten Uppsala University Sweden. Components of a Synchronization Even. Need to introduce synchronization.

Synchronization. Erik Hagersten Uppsala University Sweden. Components of a Synchronization Even. Need to introduce synchronization. Synchronization sum := thread_create Execution on a sequentially consistent shared-memory machine: Erik Hagersten Uppsala University Sweden while (sum < threshold) sum := sum while + (sum < threshold)

More information

Synchronization COMPSCI 386

Synchronization COMPSCI 386 Synchronization COMPSCI 386 Obvious? // push an item onto the stack while (top == SIZE) ; stack[top++] = item; // pop an item off the stack while (top == 0) ; item = stack[top--]; PRODUCER CONSUMER Suppose

More information

Computer Architecture and Engineering CS152 Quiz #5 April 27th, 2016 Professor George Michelogiannakis Name: <ANSWER KEY>

Computer Architecture and Engineering CS152 Quiz #5 April 27th, 2016 Professor George Michelogiannakis Name: <ANSWER KEY> Computer Architecture and Engineering CS152 Quiz #5 April 27th, 2016 Professor George Michelogiannakis Name: This is a closed book, closed notes exam. 80 Minutes 19 pages Notes: Not all questions

More information

Lecture: Coherence, Synchronization. Topics: directory-based coherence, synchronization primitives (Sections )

Lecture: Coherence, Synchronization. Topics: directory-based coherence, synchronization primitives (Sections ) Lecture: Coherence, Synchronization Topics: directory-based coherence, synchronization primitives (Sections 5.1-5.5) 1 Cache Coherence Protocols Directory-based: A single location (directory) keeps track

More information

Introduction. Coherency vs Consistency. Lec-11. Multi-Threading Concepts: Coherency, Consistency, and Synchronization

Introduction. Coherency vs Consistency. Lec-11. Multi-Threading Concepts: Coherency, Consistency, and Synchronization Lec-11 Multi-Threading Concepts: Coherency, Consistency, and Synchronization Coherency vs Consistency Memory coherency and consistency are major concerns in the design of shared-memory systems. Consistency

More information

MULTIPROCESSORS AND THREAD-LEVEL. B649 Parallel Architectures and Programming

MULTIPROCESSORS AND THREAD-LEVEL. B649 Parallel Architectures and Programming MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM B649 Parallel Architectures and Programming Motivation behind Multiprocessors Limitations of ILP (as already discussed) Growing interest in servers and server-performance

More information

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM. B649 Parallel Architectures and Programming

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM. B649 Parallel Architectures and Programming MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM B649 Parallel Architectures and Programming Motivation behind Multiprocessors Limitations of ILP (as already discussed) Growing interest in servers and server-performance

More information

Reducing contention in STM

Reducing contention in STM Reducing contention in STM Panagiota Fatourou Department of Computer Science University of Crete & FORTH ICS faturu@csd.uoc.gr Mykhailo Iaremko 1 Institute of Computer Science (ICS) Foundation for Research

More information

LogTM: Log-Based Transactional Memory

LogTM: Log-Based Transactional Memory LogTM: Log-Based Transactional Memory Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, & David A. Wood 12th International Symposium on High Performance Computer Architecture () 26 Mulitfacet

More information

Concurrent Preliminaries

Concurrent Preliminaries Concurrent Preliminaries Sagi Katorza Tel Aviv University 09/12/2014 1 Outline Hardware infrastructure Hardware primitives Mutual exclusion Work sharing and termination detection Concurrent data structures

More information

Motivations. Shared Memory Consistency Models. Optimizations for Performance. Memory Consistency

Motivations. Shared Memory Consistency Models. Optimizations for Performance. Memory Consistency Shared Memory Consistency Models Authors : Sarita.V.Adve and Kourosh Gharachorloo Presented by Arrvindh Shriraman Motivations Programmer is required to reason about consistency to ensure data race conditions

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 7.2: Multicore TLP (1) Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design, Patterson & Hennessy,

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III/VI Section : CSE-1 & CSE-2 Subject Code : CS2354 Subject Name : Advanced Computer Architecture Degree & Branch : B.E C.S.E. UNIT-1 1.

More information

Multi-threaded programming in Java

Multi-threaded programming in Java Multi-threaded programming in Java Java allows program to specify multiple threads of execution Provides instructions to ensure mutual exclusion, and selective blocking/unblocking of threads What is a

More information

Role of Synchronization. CS 258 Parallel Computer Architecture Lecture 23. Hardware-Software Trade-offs in Synchronization and Data Layout

Role of Synchronization. CS 258 Parallel Computer Architecture Lecture 23. Hardware-Software Trade-offs in Synchronization and Data Layout CS 28 Parallel Computer Architecture Lecture 23 Hardware-Software Trade-offs in Synchronization and Data Layout April 21, 2008 Prof John D. Kubiatowicz http://www.cs.berkeley.edu/~kubitron/cs28 Role of

More information

1) If a location is initialized to 0, what will the first invocation of TestAndSet on that location return?

1) If a location is initialized to 0, what will the first invocation of TestAndSet on that location return? Synchronization Part 1: Synchronization - Locks Dekker s Algorithm and the Bakery Algorithm provide software-only synchronization. Thanks to advancements in hardware, synchronization approaches have been

More information

CS 61C: Great Ideas in Computer Architecture. Amdahl s Law, Thread Level Parallelism

CS 61C: Great Ideas in Computer Architecture. Amdahl s Law, Thread Level Parallelism CS 61C: Great Ideas in Computer Architecture Amdahl s Law, Thread Level Parallelism Instructor: Alan Christopher 07/17/2014 Summer 2014 -- Lecture #15 1 Review of Last Lecture Flynn Taxonomy of Parallel

More information

Real-Time Scalability of Nested Spin Locks. Hiroaki Takada and Ken Sakamura. Faculty of Science, University of Tokyo

Real-Time Scalability of Nested Spin Locks. Hiroaki Takada and Ken Sakamura. Faculty of Science, University of Tokyo Real-Time Scalability of Nested Spin Locks Hiroaki Takada and Ken Sakamura Department of Information Science, Faculty of Science, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan Abstract

More information

Non-blocking Array-based Algorithms for Stacks and Queues. Niloufar Shafiei

Non-blocking Array-based Algorithms for Stacks and Queues. Niloufar Shafiei Non-blocking Array-based Algorithms for Stacks and Queues Niloufar Shafiei Outline Introduction Concurrent stacks and queues Contributions New algorithms New algorithms using bounded counter values Correctness

More information

CS510 Advanced Topics in Concurrency. Jonathan Walpole

CS510 Advanced Topics in Concurrency. Jonathan Walpole CS510 Advanced Topics in Concurrency Jonathan Walpole Threads Cannot Be Implemented as a Library Reasoning About Programs What are the valid outcomes for this program? Is it valid for both r1 and r2 to

More information

Towards scalable RDMA locking on a NIC

Towards scalable RDMA locking on a NIC TORSTEN HOEFLER spcl.inf.ethz.ch Towards scalable RDMA locking on a NIC with support of Patrick Schmid, Maciej Besta, Salvatore di Girolamo @ SPCL presented at HP Labs, Palo Alto, CA, USA NEED FOR EFFICIENT

More information

EE382 Processor Design. Processor Issues for MP

EE382 Processor Design. Processor Issues for MP EE382 Processor Design Winter 1998 Chapter 8 Lectures Multiprocessors, Part I EE 382 Processor Design Winter 98/99 Michael Flynn 1 Processor Issues for MP Initialization Interrupts Virtual Memory TLB Coherency

More information

Transactional Memory

Transactional Memory Transactional Memory Michał Kapałka EPFL, LPD STiDC 08, 1.XII 2008 Michał Kapałka (EPFL, LPD) Transactional Memory STiDC 08, 1.XII 2008 1 / 25 Introduction How to Deal with Multi-Threading? Locks? Wait-free

More information

NOW Handout Page 1. Memory Consistency Model. Background for Debate on Memory Consistency Models. Multiprogrammed Uniprocessor Mem.

NOW Handout Page 1. Memory Consistency Model. Background for Debate on Memory Consistency Models. Multiprogrammed Uniprocessor Mem. Memory Consistency Model Background for Debate on Memory Consistency Models CS 258, Spring 99 David E. Culler Computer Science Division U.C. Berkeley for a SAS specifies constraints on the order in which

More information

Order Is A Lie. Are you sure you know how your code runs?

Order Is A Lie. Are you sure you know how your code runs? Order Is A Lie Are you sure you know how your code runs? Order in code is not respected by Compilers Processors (out-of-order execution) SMP Cache Management Understanding execution order in a multithreaded

More information

1. Memory technology & Hierarchy

1. Memory technology & Hierarchy 1. Memory technology & Hierarchy Back to caching... Advances in Computer Architecture Andy D. Pimentel Caches in a multi-processor context Dealing with concurrent updates Multiprocessor architecture In

More information

Multiprocessors II: CC-NUMA DSM. CC-NUMA for Large Systems

Multiprocessors II: CC-NUMA DSM. CC-NUMA for Large Systems Multiprocessors II: CC-NUMA DSM DSM cache coherence the hardware stuff Today s topics: what happens when we lose snooping new issues: global vs. local cache line state enter the directory issues of increasing

More information

EEC 581 Computer Architecture. Lec 11 Synchronization and Memory Consistency Models (4.5 & 4.6)

EEC 581 Computer Architecture. Lec 11 Synchronization and Memory Consistency Models (4.5 & 4.6) EEC 581 Computer rchitecture Lec 11 Synchronization and Memory Consistency Models (4.5 & 4.6) Chansu Yu Electrical and Computer Engineering Cleveland State University cknowledgement Part of class notes

More information

SMT Issues SMT CPU performance gain potential. Modifications to Superscalar CPU architecture necessary to support SMT.

SMT Issues SMT CPU performance gain potential. Modifications to Superscalar CPU architecture necessary to support SMT. SMT Issues SMT CPU performance gain potential. Modifications to Superscalar CPU architecture necessary to support SMT. SMT performance evaluation vs. Fine-grain multithreading Superscalar, Chip Multiprocessors.

More information

740: Computer Architecture Memory Consistency. Prof. Onur Mutlu Carnegie Mellon University

740: Computer Architecture Memory Consistency. Prof. Onur Mutlu Carnegie Mellon University 740: Computer Architecture Memory Consistency Prof. Onur Mutlu Carnegie Mellon University Readings: Memory Consistency Required Lamport, How to Make a Multiprocessor Computer That Correctly Executes Multiprocess

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 14: Multithreading Part 2 Synchronization 1

CS252 Spring 2017 Graduate Computer Architecture. Lecture 14: Multithreading Part 2 Synchronization 1 CS252 Spring 2017 Graduate Computer Architecture Lecture 14: Multithreading Part 2 Synchronization 1 Lisa Wu, Krste Asanovic http://inst.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 Last Time in Lecture

More information

wait with priority An enhanced version of the wait operation accepts an optional priority argument:

wait with priority An enhanced version of the wait operation accepts an optional priority argument: wait with priority An enhanced version of the wait operation accepts an optional priority argument: syntax: .wait the smaller the value of the parameter, the highest the priority

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

Computer Architecture. A Quantitative Approach, Fifth Edition. Chapter 5. Multiprocessors and Thread-Level Parallelism

Computer Architecture. A Quantitative Approach, Fifth Edition. Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Summary: Open Questions:

Summary: Open Questions: Summary: The paper proposes an new parallelization technique, which provides dynamic runtime parallelization of loops from binary single-thread programs with minimal architectural change. The realization

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Shared-Memory Multi-Processors Shared-Memory Multiprocessors Multiple threads use shared memory (address space) SysV Shared Memory or Threads in software Communication implicit

More information

l12 handout.txt l12 handout.txt Printed by Michael Walfish Feb 24, 11 12:57 Page 1/5 Feb 24, 11 12:57 Page 2/5

l12 handout.txt l12 handout.txt Printed by Michael Walfish Feb 24, 11 12:57 Page 1/5 Feb 24, 11 12:57 Page 2/5 Feb 24, 11 12:57 Page 1/5 1 Handout for CS 372H 2 Class 12 3 24 February 2011 4 5 1. CAS / CMPXCHG 6 7 Useful operation: compare and swap, known as CAS. Says: "atomically 8 check whether a given memory

More information

Speculative Synchronization

Speculative Synchronization Speculative Synchronization José F. Martínez Department of Computer Science University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu/martinez Problem 1: Conservative Parallelization No parallelization

More information

Transactional Memory: Architectural Support for Lock-Free Data Structures Maurice Herlihy and J. Eliot B. Moss ISCA 93

Transactional Memory: Architectural Support for Lock-Free Data Structures Maurice Herlihy and J. Eliot B. Moss ISCA 93 Transactional Memory: Architectural Support for Lock-Free Data Structures Maurice Herlihy and J. Eliot B. Moss ISCA 93 What are lock-free data structures A shared data structure is lock-free if its operations

More information

Computer Architecture: Multi-Core Processors: Why? Prof. Onur Mutlu Carnegie Mellon University

Computer Architecture: Multi-Core Processors: Why? Prof. Onur Mutlu Carnegie Mellon University Computer Architecture: Multi-Core Processors: Why? Prof. Onur Mutlu Carnegie Mellon University Moore s Law Moore, Cramming more components onto integrated circuits, Electronics, 1965. 2 3 Multi-Core Idea:

More information

Getting CPI under 1: Outline

Getting CPI under 1: Outline CMSC 411 Computer Systems Architecture Lecture 12 Instruction Level Parallelism 5 (Improving CPI) Getting CPI under 1: Outline More ILP VLIW branch target buffer return address predictor superscalar more

More information

Lecture 25: Board Notes: Threads and GPUs

Lecture 25: Board Notes: Threads and GPUs Lecture 25: Board Notes: Threads and GPUs Announcements: - Reminder: HW 7 due today - Reminder: Submit project idea via (plain text) email by 11/24 Recap: - Slide 4: Lecture 23: Introduction to Parallel

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 System I/O System I/O (Chap 13) Central

More information

Software-Controlled Multithreading Using Informing Memory Operations

Software-Controlled Multithreading Using Informing Memory Operations Software-Controlled Multithreading Using Informing Memory Operations Todd C. Mowry Computer Science Department University Sherwyn R. Ramkissoon Department of Electrical & Computer Engineering University

More information

Review: Creating a Parallel Program. Programming for Performance

Review: Creating a Parallel Program. Programming for Performance Review: Creating a Parallel Program Can be done by programmer, compiler, run-time system or OS Steps for creating parallel program Decomposition Assignment of tasks to processes Orchestration Mapping (C)

More information

250P: Computer Systems Architecture. Lecture 14: Synchronization. Anton Burtsev March, 2019

250P: Computer Systems Architecture. Lecture 14: Synchronization. Anton Burtsev March, 2019 250P: Computer Systems Architecture Lecture 14: Synchronization Anton Burtsev March, 2019 Coherence and Synchronization Topics: synchronization primitives (Sections 5.4-5.5) 2 Constructing Locks Applications

More information

Queue Delegation Locking

Queue Delegation Locking Queue Delegation Locking David Klaftenegger Konstantinos Sagonas Kjell Winblad Department of Information Technology, Uppsala University, Sweden Abstract The scalability of parallel programs is often bounded

More information

EECS 570 Final Exam - SOLUTIONS Winter 2015

EECS 570 Final Exam - SOLUTIONS Winter 2015 EECS 570 Final Exam - SOLUTIONS Winter 2015 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points 1 / 21 2 / 32

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

Martin Kruliš, v

Martin Kruliš, v Martin Kruliš 1 Optimizations in General Code And Compilation Memory Considerations Parallelism Profiling And Optimization Examples 2 Premature optimization is the root of all evil. -- D. Knuth Our goal

More information

The complete license text can be found at

The complete license text can be found at SMP & Locking These slides are made distributed under the Creative Commons Attribution 3.0 License, unless otherwise noted on individual slides. You are free: to Share to copy, distribute and transmit

More information

Brushing the Locks out of the Fur: A Lock-Free Work Stealing Library Based on Wool

Brushing the Locks out of the Fur: A Lock-Free Work Stealing Library Based on Wool Brushing the Locks out of the Fur: A Lock-Free Work Stealing Library Based on Wool Håkan Sundell School of Business and Informatics University of Borås, 50 90 Borås E-mail: Hakan.Sundell@hb.se Philippas

More information

Lock cohorting: A general technique for designing NUMA locks

Lock cohorting: A general technique for designing NUMA locks Lock cohorting: A general technique for designing NUMA locks The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

DESIGN CHALLENGES FOR SCALABLE CONCURRENT DATA STRUCTURES for Many-Core Processors

DESIGN CHALLENGES FOR SCALABLE CONCURRENT DATA STRUCTURES for Many-Core Processors DESIGN CHALLENGES FOR SCALABLE CONCURRENT DATA STRUCTURES for Many-Core Processors DIMACS March 15 th, 2011 Philippas Tsigas Data Structures In Manycore Sys. Decomposition Synchronization Load Balancing

More information

Design of MPI Passive Target Synchronization for a Non-Cache- Coherent Many-Core Processor

Design of MPI Passive Target Synchronization for a Non-Cache- Coherent Many-Core Processor Design of MPI Passive Target Synchronization for a Non-Cache- Coherent Many-Core Processor 27th PARS Workshop, Hagen, Germany, May 5 2017 Steffen Christgau, Bettina Schnor Operating Systems and Distributed

More information

Lecture 10: Avoiding Locks

Lecture 10: Avoiding Locks Lecture 10: Avoiding Locks CSC 469H1F Fall 2006 Angela Demke Brown (with thanks to Paul McKenney) Locking: A necessary evil? Locks are an easy to understand solution to critical section problem Protect

More information

Multiprocessor Systems. Chapter 8, 8.1

Multiprocessor Systems. Chapter 8, 8.1 Multiprocessor Systems Chapter 8, 8.1 1 Learning Outcomes An understanding of the structure and limits of multiprocessor hardware. An appreciation of approaches to operating system support for multiprocessor

More information

Software transactional memory

Software transactional memory Transactional locking II (Dice et. al, DISC'06) Time-based STM (Felber et. al, TPDS'08) Mentor: Johannes Schneider March 16 th, 2011 Motivation Multiprocessor systems Speed up time-sharing applications

More information

High-Performance Distributed RMA Locks

High-Performance Distributed RMA Locks High-Performance Distributed RMA Locks PATRICK SCHMID, MACIEJ BESTA, TORSTEN HOEFLER Presented at ARM Research, Austin, Texas, USA, Feb. 2017 NEED FOR EFFICIENT LARGE-SCALE SYNCHRONIZATION spcl.inf.ethz.ch

More information