Implementation Work on SILKIE

Size: px
Start display at page:

Download "Implementation Work on SILKIE"

Transcription

1 Program Structure Implementation Work on SILKIE Tom Eskridge, IHMC, 2009 While the whole system is not yet complete, much of the infrastructure of SILKIE has been implemented, including a robust parser and clause constructor, and linear unifier. Overview SILKIE uses tableau-style reasoning and unit resolution, treating them essentially as two halves of a bidirectional search strategy. The search is primarily governed by the growth of the tableau. Resolution is applied when it will shorten or truncate a potential tableau extension, and acts as a form of archiving of lemmas dioscovered during the tableau search. The search strategy is partially controlled by scripts, which are userprovided constraints upon tableau extensions. At each search point, the active scripts are consulted in order until one is found which applies to the conditions (currently determined by the values of a small number of global parameters and the state of the current open tableau branch being extended) and that determines the way that the tableau is extended. Although this is not yet implemented, we plan to allow for scripts which take control for a series of inferences, in effect running an algorithm in pursuit of a local goal; such mechanisms are appropriate for example when tracing up subclass chains. Parser Several versions of the IKL parser have been developed during the course of this project so far. Each version has had strengths and weaknesses, either from the implementation language used (C++, LISP, and Java) and from the parsing/lexing style employed (direct parsing, EBNF, LL(r)). For several reasons, the final parser/lexer chosen was a Java implementation based on the ANTLR parser generator ( These reasons include: 1. Ease of development of the lexer/parser. The ANTLR program interprets a rule-based format shown in Figs 2 & 3 to generate Java code that is capable of recognizing syntactically correct input. It also provides extensions to the recognition components that allow the generation of internal program structure that can be used for later processing. We take advantage of both of these capabilities in the implemented parser.

2 2. Portability of the resulting parser. The ANTLR community is large and very active. Thus, the resulting parser will be available and potentially useful to researchers in a wide variety of other fields. 3. Language independence of the resulting parser. ANTLR separates the issues of recognizing the language from the construction of lexers/parsers for that language. Thus, lexers/parsers can be output in several different languages, including java, C, python, C#, and ActionScript. Other more experimental language emitters are also available. 4. The quality/maintainability of the resulting grammar. Fig. 1 shows the dependency graph of the implemented grammar. The narrowness and simplicity of the graph provides a good indication of the continuing ability to test, evaluate, and extend the grammar. Researchers will be able to understand the existing code and make modifications as necessary to support future language revisions. The parsing component of the program is implemented in three sections. The first two sections are those created by the ANTLR program, the lexer and parser. The third section takes the abstract parse tree constructed by the ANTLR-generated code and normalizes the clauses read in. During the process of normalization, the code generates a network structure of term identifiers (TIDs) that are used as the basis for the linear unification algorithm. This process also populates a number of controls that can be used by the scripting language to control the direction of future processing by the resolution and/or other proof systems. Fig. 1 shows a block diagram of the parsing sections in context of the script reasoning component.

3 IKL Input Input IKL Text Lexer IKL Tokens Parser Abstract Syntax Tree Graph Construction Normalized Term IDs, Scripts Controls Reasoning Updates Script Execution Fig. 1. Block Structure Diagram. Shows the implemented parsing components (the shaded boxes) in the context of the script reasoning and execution module. Normalization Our initial implementation includes the normalization functionality discussed in (Hayes 2009.) For example, the input statement: (FredBelieves (that (forall ((x human)) (exists (y)(hasfather x y))))) can be parsed and converted into the following abstract syntax tree. FredBelieves THAT that QUANTIFIER forall

4 BINDING TYPEDBINDING x human QUANTIFIER exists BINDING BINDING y hasfather x y The normalization process eliminates the proposition names, eliminates all connectives other than conjunction, disjunction and atomic negations, and skolemizes the exposed quantifiers, resulting in three conjuncts: Conjunct 1: (FredBelieves THSK) FredBelieves THSK Conjunct 2: (or (not (THSK)) (hasfather x (SK1 x))) BOOLEAN or NEGATION not THSK nil hasfather

5 x FUNCTION SK1 x Conjunct 3: (or (not (hasfather SK2 x)) (THSK)) BOOLEAN or NEGATION not hasfather SK2 x THSK nil The result of normalization is a text of expressions which are written entirely in the CLIF dialect of common logic using only the and and or connectives and negation only applied to atomic sentences and equations, and the universal quantifier. We do not convert all the way to clausal form. Conjunctions inside disjunctions may become exposed by resolution operations, and are then treated as new expressons. This limits the search space to a moderate extent, while facilitating tableau reasoning. Matching and Unification One of our focus issues was the efficiency of the matching and unification process. We investigated a number of different approaches to this problem, first with the goal of understanding where the recent advancements in efficiency have been made, then with the goal of attempting to integrate and reuse existing software. The motivation for doing this was the idea that the most important component of a nonscriptable reasoner is its matching and unification algorithm. This algorithm is run thousands of times for even simple problems, and so any efficiency enhancement made here will affect all subsequent processing.

6 Graph Hashing One of the first techniques that we investigated to improve the speed of the matching and unification algorithm was the idea of producing a signature for each conjunct in memory, and to use that signature to determine which conjuncts will unify and which will not. Doing this will allow a simple linear test (perhaps log(n) with a shared graph structure) to determine which conjuncts in memory should be tested for unification. One signature we considered is the bloom filter (Bloom 1970). Bloom filters are probabilistic data structures that enable the constant time determination of the membership of an element in a set. Our initial experiments with Bloom filters included implementing a function to compute Bloom filters on CNF conjuncts and testing on relatively small data sets. Our conclusions from this simple experiment were that it would not be applicable for our purposes due to the false positives inherent in the Bloom filter design and the inability to remove elements from the filter. The relative lack of situations where there no unifiable conjuncts (which the Bloom filter can reliably tell) reduced the utility of including the filter enough to cause us to look at other methods. The second method for graph signatures that we investigated were based on hashing techniques (Portegys ; Cordella, Foggia et al. 1999; Cordella, Foggia et al. 2001; Plate 2003; Cordella, Foggia et al. 2004). The central idea here is that by spending time at CNF creation time to encode a hash of the conjunct, we can greatly reduce the time necessary to determine if the conjuncts are unifiable or not. We have experimented with two different implementation of the Holographic Reduced Representations (Plate 2003) and graph hashing with MD5 (Portegys ; Portegys 2009). Based on tests run, the utility of the approach appears to be promising. Linear Unification with Term Identifiers Term Identifiers (TIDs) are data structures that are constructed during the CNF normalization process to enable maximal reuse of the conjunct graph structures and to facilitate the unification process. Although there are faster unification algorithms than the one being developed here, they are also considerably more complex - both conceptually and in implementation. The method under development here draws from (Henckel 1997) and (Henckel 1993) with modifications appropriate to our implementation language and use. A Term Identifier (TID) is a small graph structure that represents the variables in a clause available for unification, and their possible substitutions. For example, the TID for the expression father-of(x,y) AND mother-of(y, z) is shown in Fig 2a. This shows two predicate terms each containing two variables, with one of them shared. Fig. 2b shows another TID, this time with literals filled in for the variables. Unifying the two clauses fills in the variable list (shown as NIL in both figures.) The shared substructure Y allows each unification step to either completely dereference a variable, or to move deeper into

7 the TID structure. Thus, if m is the number of variables in the expression and n is the number of nodes in the TID graphs, then the number of recursive unifications that will be called is m+n. father-of mother-of father-of mother-of X Y Z Tom Bob Katie T1 T2 NIL NIL (a) (b) Fig. 2. Term Identifiers. At the start of the unification process, the variable matching lists are set to NIL. Scripting the Reasoning Process One of the main ideas behind this work is the idea that the data should drive the processing to be performed. In this way, input forms which fall within a known inferential 'sweet spot' can be handled by strategies known to be of utility there. The paradigm example of course are the well-known description logic subcases of full FOL. When the IKL read into the system can be determined to be in DL form, the processing to be done should follow standard DL reasoning methods, which can be described as constraints and conditions on the underlying tableau-construction process. To recognize these as patterns in arbitrary IKL axioms, while possible in principle, is probably not feasible. We have adopted the simpler strategy of recognizing DL input encoded in a particular way using a known, fixed vocabulary and following a standard translation scheme. This of course requires users to adopt a particular axiomatic style for composing DL content in IKL (in fact, in CL) in order to enable the reasoner to use the associated search strategies, but this is still a much lower burden than being obliged to use an entirely different language, with distinct parsers and infrastructure; particularly as the axiomatic style in question closely mirrors the compact and readable 'Manchester syntax' for OWL. For example, The Manchester syntax OWL expression Person and haschild some (Person and (haschild only Man)) becomes the IKL term (AND Person (SOME haschild (AND Person (ONLY haschild Man)))))

8 in the 'standard' translation. The reasoner recognizes the use of the special function name AND (note, distinguished from the connective and) as having its own tableau extension rule and applies this directly, rather than expanding it using the recursive axiomatic definition (forall (x)((and) x)) (forall (x p)(iff ((AND p...) x)(and (p x)((and...) x) ) )) One can think of this as an efficient implementation of a form of greedy inference, in which the axiomatic defintion, once triggered, is re-run until it cannot be applied further. Currently, our scripting abilities are limited to 'switching on' a set of triggered tableau rules which are associated to a given vocabulary in this way. This enables the engine to accurately emulate a DL tableau reasoner, while retaining the background ability to perform general infernces. However, it means that one gains the efficiency of the restricted search only when the input is strictly conformant to the relevant vocabulary's usual restrictions. The result is that the system behaves more like a 'switchable' DL reasoner connected to a general-purpose resolution reasoner, and is not able currently to take advantage of the DL reasoning in a fully opportunistic way. We plan to experiment with more sophisticated strategies, based more explicitly upon the use of the underlying recursive definitions, in future work. Global parameters We currently compute a number of global parameter values of the input set and the set of resolutions generated. Work on propositional reasoners has shown that the ratio of numbers of clauses to numbers of propositions is a highly predictive measure of the likelihood of satisfiability, especially for large set of propositions. We hope to be able to compute estimates of this ratio for the set of all possible instances of the expressions currently in use, to help focus the search towards those expressions which are more likely to increase the 'propositinal density' of the instance space. There are a number of features that can be extracted from the IKL structures that may be accessed from a scripting language to control the reasoning process. Some of these are: 1. # of individual TIDs (negated/not negated) 2. # of shared TIDs (negated/not negated) 3. # reasoning steps so far 4. # reasoning steps on current branch The scripts themselves are basically control statements that are used to determine what priority to give each open branch of the tableau and to filter possible extensions to the branch, i.e. to select from the logically possible extensions provided by the sentences in the theory under consideration.

9 In future work, we plan to use (an expanded) such a vector of features as the 'genome' of a genetic learning process which to learn new search strategies. Bibliography Bloom, B. H. (1970). "Space/time trade-offs in hash coding with allowable errors." Communications of the ACM 13(7): Cordella, L. P., P. Foggia, et al. (1999). performance Evaluation of the VF Graph Matching Algorithm. Proceedings of the 10th ICIAP, IEEE Computer Society Press. 2: Cordella, L. P., P. Foggia, et al. (2001). An Improved Algorithm for Matching Large Graphs. Proceedings of the International Workshop on Graph-based Representation in Pattern Recognition, Ischia, Italy. Cordella, L. P., P. Foggia, et al. (2004). "A (sub)graph isomorphism algorithm for matching large graphs." Pattern Analysis and Machine Intelligence, IEEE Transactions on 26(10): Henckel, J. (1993). Theorem prover with natural language interface. Computer Science, University of Minnesota. M.S. Henckel, J. (1997). "An efficient linear unification algorithm." Retrieved Nov 11, 2008, from Plate, T. A. (2003). Holographic reduced representation : distributed representation for cognitive structures. Stanford, Calif., CSLI Publications. Portegys, T. E. General Graph identification with Hashing. Normal, IL, Illinois State University. Portegys, T. E. (2009). "General Graph Identification by Hashing." Retrieved Feb 12, 2009, from

An Evolution of Mathematical Tools

An Evolution of Mathematical Tools An Evolution of Mathematical Tools From Conceptualization to Formalization Here's what we do when we build a formal model (or do a computation): 0. Identify a collection of objects/events in the real world.

More information

So many Logics, so little time

So many Logics, so little time So many Logics, so little time One classical way to organize them is by tractability vs. expressivity. Description Logics (DLs) are basically subsets of FO logic, located in a 'sweet spot' which provides

More information

An LCF-Style Interface between HOL and First-Order Logic

An LCF-Style Interface between HOL and First-Order Logic An LCF-Style Interface between HOL and First-Order Logic Joe Hurd Computer Laboratory University of Cambridge, joe.hurd@cl.cam.ac.uk 1 Introduction Performing interactive proof in the HOL theorem prover

More information

Propositional Logic. Part I

Propositional Logic. Part I Part I Propositional Logic 1 Classical Logic and the Material Conditional 1.1 Introduction 1.1.1 The first purpose of this chapter is to review classical propositional logic, including semantic tableaux.

More information

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Foundations of AI 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 09/1 Contents Motivation

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) 6.1 Instructional Objective Students should understand the advantages of first order logic as a knowledge representation language Students

More information

X-KIF New Knowledge Modeling Language

X-KIF New Knowledge Modeling Language Proceedings of I-MEDIA 07 and I-SEMANTICS 07 Graz, Austria, September 5-7, 2007 X-KIF New Knowledge Modeling Language Michal Ševčenko (Czech Technical University in Prague sevcenko@vc.cvut.cz) Abstract:

More information

Theorem proving. PVS theorem prover. Hoare style verification PVS. More on embeddings. What if. Abhik Roychoudhury CS 6214

Theorem proving. PVS theorem prover. Hoare style verification PVS. More on embeddings. What if. Abhik Roychoudhury CS 6214 Theorem proving PVS theorem prover Abhik Roychoudhury National University of Singapore Both specification and implementation can be formalized in a suitable logic. Proof rules for proving statements in

More information

Lecture 17 of 41. Clausal (Conjunctive Normal) Form and Resolution Techniques

Lecture 17 of 41. Clausal (Conjunctive Normal) Form and Resolution Techniques Lecture 17 of 41 Clausal (Conjunctive Normal) Form and Resolution Techniques Wednesday, 29 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Chapter 9,

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter 2.1-2.7 p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer

More information

Logical reasoning systems

Logical reasoning systems Logical reasoning systems Theorem provers and logic programming languages Production systems Frame systems and semantic networks Description logic systems CS 561, Session 19 1 Logical reasoning systems

More information

Towards a Logic of the Ontological Dodecagon

Towards a Logic of the Ontological Dodecagon Towards a Logic of the Ontological Dodecagon Giancarlo Guizzardi 1 and Gerd Wagner 2 1 Computer Science Department Federal University of Esprito Santo, Brazil gguizzardi@inf.ufes.br 2 Chair of Internet

More information

Functional Parsing A Multi-Lingual Killer- Application

Functional Parsing A Multi-Lingual Killer- Application RIT Scholar Works Presentations and other scholarship 2008 Functional Parsing A Multi-Lingual Killer- Application Axel-Tobias Schreiner James Heliotis Follow this and additional works at: http://scholarworks.rit.edu/other

More information

Logic and Computation

Logic and Computation Logic and Computation From Conceptualization to Formalization Here's what we do when we build a formal model (or do a computation): 0. Identify a collection of objects/events in the real world. This is

More information

Knowledge Representation and Reasoning Logics for Artificial Intelligence

Knowledge Representation and Reasoning Logics for Artificial Intelligence Knowledge Representation and Reasoning Logics for Artificial Intelligence Stuart C. Shapiro Department of Computer Science and Engineering and Center for Cognitive Science University at Buffalo, The State

More information

VS 3 : SMT Solvers for Program Verification

VS 3 : SMT Solvers for Program Verification VS 3 : SMT Solvers for Program Verification Saurabh Srivastava 1,, Sumit Gulwani 2, and Jeffrey S. Foster 1 1 University of Maryland, College Park, {saurabhs,jfoster}@cs.umd.edu 2 Microsoft Research, Redmond,

More information

A Small Interpreted Language

A Small Interpreted Language A Small Interpreted Language What would you need to build a small computing language based on mathematical principles? The language should be simple, Turing equivalent (i.e.: it can compute anything that

More information

Modern Programming Languages. Lecture LISP Programming Language An Introduction

Modern Programming Languages. Lecture LISP Programming Language An Introduction Modern Programming Languages Lecture 18-21 LISP Programming Language An Introduction 72 Functional Programming Paradigm and LISP Functional programming is a style of programming that emphasizes the evaluation

More information

Introduction to predicate calculus

Introduction to predicate calculus Logic Programming Languages Logic programming systems allow the programmer to state a collection of axioms from which theorems can be proven. Express programs in a form of symbolic logic Use a logical

More information

Comp 411 Principles of Programming Languages Lecture 3 Parsing. Corky Cartwright January 11, 2019

Comp 411 Principles of Programming Languages Lecture 3 Parsing. Corky Cartwright January 11, 2019 Comp 411 Principles of Programming Languages Lecture 3 Parsing Corky Cartwright January 11, 2019 Top Down Parsing What is a context-free grammar (CFG)? A recursive definition of a set of strings; it is

More information

Description Logics as Ontology Languages for Semantic Webs

Description Logics as Ontology Languages for Semantic Webs Description Logics as Ontology Languages for Semantic Webs Franz Baader, Ian Horrocks, and Ulrike Sattler Presented by:- Somya Gupta(10305011) Akshat Malu (10305012) Swapnil Ghuge (10305907) Presentation

More information

St. MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St. MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St. MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-00 014 Subject: PPL Class : CSE III 1 P a g e DEPARTMENT COMPUTER SCIENCE AND ENGINEERING S No QUESTION Blooms Course taxonomy level Outcomes UNIT-I

More information

Semantics of programming languages

Semantics of programming languages Semantics of programming languages Informatics 2A: Lecture 27 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 21 November, 2011 1 / 19 1 2 3 4 2 / 19 Semantics for programming

More information

Object-oriented Compiler Construction

Object-oriented Compiler Construction 1 Object-oriented Compiler Construction Extended Abstract Axel-Tobias Schreiner, Bernd Kühl University of Osnabrück, Germany {axel,bekuehl}@uos.de, http://www.inf.uos.de/talks/hc2 A compiler takes a program

More information

Chapter 2 & 3: Representations & Reasoning Systems (2.2)

Chapter 2 & 3: Representations & Reasoning Systems (2.2) Chapter 2 & 3: A Representation & Reasoning System & Using Definite Knowledge Representations & Reasoning Systems (RRS) (2.2) Simplifying Assumptions of the Initial RRS (2.3) Datalog (2.4) Semantics (2.5)

More information

Axioms: Semantics Aspects of C++ Concepts

Axioms: Semantics Aspects of C++ Concepts Doc no: N2887=09-0077 Date: 2009-06-21 Project: ISO/IEC JTC1/SC22/WG21 Reply-To: Gabriel Dos Reis gdr@cs.tamu.edu Axioms: Semantics Aspects of C++ Concepts Gabriel Dos Reis Bjarne Stroustrup Alisdair Meredith

More information

6.001 Notes: Section 15.1

6.001 Notes: Section 15.1 6.001 Notes: Section 15.1 Slide 15.1.1 Our goal over the next few lectures is to build an interpreter, which in a very basic sense is the ultimate in programming, since doing so will allow us to define

More information

Integration of SMT Solvers with ITPs There and Back Again

Integration of SMT Solvers with ITPs There and Back Again Integration of SMT Solvers with ITPs There and Back Again Sascha Böhme and University of Sheffield 7 May 2010 1 2 Features: SMT-LIB vs. Yices Translation Techniques Caveats 3 4 Motivation Motivation System

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University dissertation Author: Gouw, Stijn de Title: Combining monitoring with run-time assertion checking Issue

More information

Representing Product Designs Using a Description Graph Extension to OWL 2

Representing Product Designs Using a Description Graph Extension to OWL 2 Representing Product Designs Using a Description Graph Extension to OWL 2 Henson Graves Lockheed Martin Aeronautics Company Fort Worth Texas, USA henson.graves@lmco.com Abstract. Product development requires

More information

Notes for Chapter 12 Logic Programming. The AI War Basic Concepts of Logic Programming Prolog Review questions

Notes for Chapter 12 Logic Programming. The AI War Basic Concepts of Logic Programming Prolog Review questions Notes for Chapter 12 Logic Programming The AI War Basic Concepts of Logic Programming Prolog Review questions The AI War How machines should learn: inductive or deductive? Deductive: Expert => rules =>

More information

Bliksem 1.10 User Manual

Bliksem 1.10 User Manual Bliksem 1.10 User Manual H. de Nivelle January 2, 2003 Abstract Bliksem is a theorem prover that uses resolution with paramodulation. It is written in portable C. The purpose of Bliksem was to develope

More information

Concepts of Programming Languages

Concepts of Programming Languages Concepts of Programming Languages Lecture 1 - Introduction Patrick Donnelly Montana State University Spring 2014 Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014

More information

PSOA-to-TPTP Converter Documentation

PSOA-to-TPTP Converter Documentation PSOA-to-TPTP Converter Documentation Release 1.0.0 Reuben Peter-Paul, Gen Zou November 07, 2011 CONTENTS 1 Proposal for PSOA-to-TPTP Converter 1 1.1 Introduction...............................................

More information

Constraint Solving. Systems and Internet Infrastructure Security

Constraint Solving. Systems and Internet Infrastructure Security Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Constraint Solving Systems

More information

Syntax and Grammars 1 / 21

Syntax and Grammars 1 / 21 Syntax and Grammars 1 / 21 Outline What is a language? Abstract syntax and grammars Abstract syntax vs. concrete syntax Encoding grammars as Haskell data types What is a language? 2 / 21 What is a language?

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

CIS 1.5 Course Objectives. a. Understand the concept of a program (i.e., a computer following a series of instructions)

CIS 1.5 Course Objectives. a. Understand the concept of a program (i.e., a computer following a series of instructions) By the end of this course, students should CIS 1.5 Course Objectives a. Understand the concept of a program (i.e., a computer following a series of instructions) b. Understand the concept of a variable

More information

Baby Steps Toward an Implementation of Axiomatic Language

Baby Steps Toward an Implementation of Axiomatic Language Baby Steps Toward an Implementation of Axiomatic Language Extended Abstract Walter W. Wilson Lockheed Martin, P.O. Box 748, Fort Worth TX 76101, USA wwwilson@acm.org Abstract. This paper describes an initial

More information

Losp for Predicate Calculus

Losp for Predicate Calculus Losp for Predicate Calculus William Bricken June 1985 Contents 1 Extension to Predicate Calculus 1 1.1 Representation of Terms....................... 1 1.2 The Theory of Equality.......................

More information

yacc, lex Source Code (C) compile Executable Parser Test on HOL Examples, TPTP Library, and TSTP Library

yacc, lex Source Code (C) compile Executable Parser Test on HOL Examples, TPTP Library, and TSTP Library Extending the TPTP Language to Higher-Order Logic with Automated Parser Generation Allen Van Gelder 1 and Geoff Sutcliffe 2 1 University of California at Santa Cruz, USA, http://www.cse.ucsc.edu/~avg 2

More information

Graph Representation of Declarative Languages as a Variant of Future Formal Specification Language

Graph Representation of Declarative Languages as a Variant of Future Formal Specification Language Economy Informatics, vol. 9, no. 1/2009 13 Graph Representation of Declarative Languages as a Variant of Future Formal Specification Language Ian ORLOVSKI Technical University of Moldova, Chisinau, Moldova

More information

COMP4418 Knowledge Representation and Reasoning

COMP4418 Knowledge Representation and Reasoning COMP4418 Knowledge Representation and Reasoning Week 3 Practical Reasoning David Rajaratnam Click to edit Present s Name Practical Reasoning - My Interests Cognitive Robotics. Connect high level cognition

More information

A Project of System Level Requirement Specification Test Cases Generation

A Project of System Level Requirement Specification Test Cases Generation A Project of System Level Requirement Specification Test Cases Generation Submitted to Dr. Jane Pavelich Dr. Jeffrey Joyce by Cai, Kelvin (47663000) for the course of EECE 496 on August 8, 2003 Abstract

More information

Supplementary Notes on Abstract Syntax

Supplementary Notes on Abstract Syntax Supplementary Notes on Abstract Syntax 15-312: Foundations of Programming Languages Frank Pfenning Lecture 3 September 3, 2002 Grammars, as we have discussed them so far, define a formal language as a

More information

CS152 Programming Language Paradigms Prof. Tom Austin, Fall Syntax & Semantics, and Language Design Criteria

CS152 Programming Language Paradigms Prof. Tom Austin, Fall Syntax & Semantics, and Language Design Criteria CS152 Programming Language Paradigms Prof. Tom Austin, Fall 2014 Syntax & Semantics, and Language Design Criteria Lab 1 solution (in class) Formally defining a language When we define a language, we need

More information

Com S 541. Programming Languages I

Com S 541. Programming Languages I Programming Languages I Lecturer: TA: Markus Lumpe Department of Computer Science 113 Atanasoff Hall http://www.cs.iastate.edu/~lumpe/coms541.html TR 12:40-2, W 5 Pramod Bhanu Rama Rao Office hours: TR

More information

11. a b c d e. 12. a b c d e. 13. a b c d e. 14. a b c d e. 15. a b c d e

11. a b c d e. 12. a b c d e. 13. a b c d e. 14. a b c d e. 15. a b c d e CS-3160 Concepts of Programming Languages Spring 2015 EXAM #1 (Chapters 1-6) Name: SCORES MC: /75 PROB #1: /15 PROB #2: /10 TOTAL: /100 Multiple Choice Responses Each multiple choice question in the separate

More information

Chapter 3. Describing Syntax and Semantics

Chapter 3. Describing Syntax and Semantics Chapter 3 Describing Syntax and Semantics Chapter 3 Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute Grammars Describing the Meanings of Programs:

More information

LOGIC AND DISCRETE MATHEMATICS

LOGIC AND DISCRETE MATHEMATICS LOGIC AND DISCRETE MATHEMATICS A Computer Science Perspective WINFRIED KARL GRASSMANN Department of Computer Science University of Saskatchewan JEAN-PAUL TREMBLAY Department of Computer Science University

More information

Axiomatic Specification. Al-Said, Apcar, Jerejian

Axiomatic Specification. Al-Said, Apcar, Jerejian Axiomatic Specification Al-Said, Apcar, Jerejian 1 Axioms: Wffs that can be written down without any reference to any other Wffs. Wffs that are stipulated as unproved premises for the proof of other wffs

More information

Introduction to Formal Methods

Introduction to Formal Methods 2008 Spring Software Special Development 1 Introduction to Formal Methods Part I : Formal Specification i JUNBEOM YOO jbyoo@knokuk.ac.kr Reference AS Specifier s Introduction to Formal lmethods Jeannette

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

Better Extensibility through Modular Syntax. Robert Grimm New York University

Better Extensibility through Modular Syntax. Robert Grimm New York University Better Extensibility through Modular Syntax Robert Grimm New York University Syntax Matters More complex syntactic specifications Extensions to existing programming languages Transactions, event-based

More information

1. true / false By a compiler we mean a program that translates to code that will run natively on some machine.

1. true / false By a compiler we mean a program that translates to code that will run natively on some machine. 1. true / false By a compiler we mean a program that translates to code that will run natively on some machine. 2. true / false ML can be compiled. 3. true / false FORTRAN can reasonably be considered

More information

REVISION OF ISO (COMMON LOGIC)

REVISION OF ISO (COMMON LOGIC) REVISION OF ISO 24707 (COMMON LOGIC) MICHAEL GRÜNINGER, MEGAN KATSUMI, AND TILL MOSSAKOWSKI Contents 1. What Is Common Logic? 2 1.1. First-Order Logic 2 1.2. How Is Common Logic Used? 2 1.3. Additional

More information

General Graph Identification By Hashing

General Graph Identification By Hashing General Graph Identification By Hashing Tom Portegys Email: portegys@gmail.com Abstract A method for identifying graphs using MD5 hashing is presented. This allows fast graph equality comparisons and can

More information

WHY WE NEED AN XML STANDARD FOR REPRESENTING BUSINESS RULES. Introduction. Production rules. Christian de Sainte Marie ILOG

WHY WE NEED AN XML STANDARD FOR REPRESENTING BUSINESS RULES. Introduction. Production rules. Christian de Sainte Marie ILOG WHY WE NEED AN XML STANDARD FOR REPRESENTING BUSINESS RULES Christian de Sainte Marie ILOG Introduction We are interested in the topic of communicating policy decisions to other parties, and, more generally,

More information

Advanced Logic and Functional Programming

Advanced Logic and Functional Programming Advanced Logic and Functional Programming Lecture 1: Programming paradigms. Declarative programming. From first-order logic to Logic Programming. Programming paradigms Programming paradigm (software engineering)

More information

A review of First-Order Logic

A review of First-Order Logic Knowledge Interchange Format A review of First-Order Logic Using KIF Knowledge Interchange Format Material adapted from Professor Richard Fikes Stanford University Sys 3 Know. Base in Lang3 KIF ~ First

More information

Programming Languages Third Edition

Programming Languages Third Edition Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

More information

Programming Languages Third Edition. Chapter 7 Basic Semantics

Programming Languages Third Edition. Chapter 7 Basic Semantics Programming Languages Third Edition Chapter 7 Basic Semantics Objectives Understand attributes, binding, and semantic functions Understand declarations, blocks, and scope Learn how to construct a symbol

More information

Term Algebras with Length Function and Bounded Quantifier Elimination

Term Algebras with Length Function and Bounded Quantifier Elimination with Length Function and Bounded Ting Zhang, Henny B Sipma, Zohar Manna Stanford University tingz,sipma,zm@csstanfordedu STeP Group, September 3, 2004 TPHOLs 2004 - p 1/37 Motivation: Program Verification

More information

Formally Certified Satisfiability Solving

Formally Certified Satisfiability Solving SAT/SMT Proof Checking Verifying SAT Solver Code Future Work Computer Science, The University of Iowa, USA April 23, 2012 Seoul National University SAT/SMT Proof Checking Verifying SAT Solver Code Future

More information

PdOd Kev Events I Re-world war I1 rwa

PdOd Kev Events I Re-world war I1 rwa I PdOd Kev Events I Re-world war I rwa LECTURE: Knowledge Representation Overview 0 'Qpes of knowledge: objects, events, meta-knowledge, etc. 0 Characteristics of representation: expressive adequacy vs.

More information

Encryption as an Abstract Datatype:

Encryption as an Abstract Datatype: June 2003 1/18 Outline Encryption as an Abstract Datatype: an extended abstract Dale Miller INRIA/Futurs/Saclay and École polytechnique 1. Security protocols specified using multisets rewriting. 2. Eigenvariables

More information

Data Types. (with Examples In Haskell) COMP 524: Programming Languages Srinivas Krishnan March 22, 2011

Data Types. (with Examples In Haskell) COMP 524: Programming Languages Srinivas Krishnan March 22, 2011 Data Types (with Examples In Haskell) COMP 524: Programming Languages Srinivas Krishnan March 22, 2011 Based in part on slides and notes by Bjoern 1 Brandenburg, S. Olivier and A. Block. 1 Data Types Hardware-level:

More information

CS 416, Artificial Intelligence Midterm Examination Fall 2004

CS 416, Artificial Intelligence Midterm Examination Fall 2004 CS 416, Artificial Intelligence Midterm Examination Fall 2004 Name: This is a closed book, closed note exam. All questions and subquestions are equally weighted. Introductory Material 1) True or False:

More information

Towards a Logical Reconstruction of Relational Database Theory

Towards a Logical Reconstruction of Relational Database Theory Towards a Logical Reconstruction of Relational Database Theory On Conceptual Modelling, Lecture Notes in Computer Science. 1984 Raymond Reiter Summary by C. Rey November 27, 2008-1 / 63 Foreword DB: 2

More information

A language is a subset of the set of all strings over some alphabet. string: a sequence of symbols alphabet: a set of symbols

A language is a subset of the set of all strings over some alphabet. string: a sequence of symbols alphabet: a set of symbols The current topic:! Introduction! Object-oriented programming: Python! Functional programming: Scheme! Python GUI programming (Tkinter)! Types and values! Logic programming: Prolog! Introduction! Rules,

More information

arxiv: v1 [cs.lo] 23 Apr 2012

arxiv: v1 [cs.lo] 23 Apr 2012 The Distributed Ontology Language (DOL): Ontology Integration and Interoperability Applied to Mathematical Formalization Christoph Lange 1,2, Oliver Kutz 1, Till Mossakowski 1,3, and Michael Grüninger

More information

THE PREDICATE CALCULUS

THE PREDICATE CALCULUS 2 THE PREDICATE CALCULUS Slide 2.1 2.0 Introduction 2.1 The Propositional Calculus 2.2 The Predicate Calculus 2.3 Using Inference Rules to Produce Predicate Calculus Expressions 2.4 Application: A Logic-Based

More information

Automatic Reasoning (Section 8.3)

Automatic Reasoning (Section 8.3) Automatic Reasoning (Section 8.3) Automatic Reasoning Can reasoning be automated? Yes, for some logics, including first-order logic. We could try to automate natural deduction, but there are many proof

More information

Lecture 4: January 12, 2015

Lecture 4: January 12, 2015 32002: AI (First Order Predicate Logic, Interpretation and Inferences) Spring 2015 Lecturer: K.R. Chowdhary Lecture 4: January 12, 2015 : Professor of CS (VF) Disclaimer: These notes have not been subjected

More information

Mapping between Digital Identity Ontologies through SISM

Mapping between Digital Identity Ontologies through SISM Mapping between Digital Identity Ontologies through SISM Matthew Rowe The OAK Group, Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK m.rowe@dcs.shef.ac.uk

More information

The OWL API: An Introduction

The OWL API: An Introduction The OWL API: An Introduction Sean Bechhofer and Nicolas Matentzoglu University of Manchester sean.bechhofer@manchester.ac.uk OWL OWL allows us to describe a domain in terms of: Individuals Particular objects

More information

Programming Languages 2nd edition Tucker and Noonan"

Programming Languages 2nd edition Tucker and Noonan Programming Languages 2nd edition Tucker and Noonan" " Chapter 1" Overview" " A good programming language is a conceptual universe for thinking about programming. " " " " " " " " " " " " "A. Perlis" "

More information

Logic Programming and Resolution Lecture notes for INF3170/4171

Logic Programming and Resolution Lecture notes for INF3170/4171 Logic Programming and Resolution Lecture notes for INF3170/4171 Leif Harald Karlsen Autumn 2015 1 Introduction This note will explain the connection between logic and computer programming using Horn Clauses

More information

Performance of general graph isomorphism algorithms Sara Voss Coe College, Cedar Rapids, IA

Performance of general graph isomorphism algorithms Sara Voss Coe College, Cedar Rapids, IA Performance of general graph isomorphism algorithms Sara Voss Coe College, Cedar Rapids, IA I. Problem and Motivation Graphs are commonly used to provide structural and/or relational descriptions. A node

More information

An Implementation of the Language Lambda Prolog Organized around Higher-Order Pattern Unification

An Implementation of the Language Lambda Prolog Organized around Higher-Order Pattern Unification An Implementation of the Language Lambda Prolog Organized around Higher-Order Pattern Unification SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Xiaochu Qi IN PARTIAL

More information

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence Knowledge Representation CS 486/686: Introduction to Artificial Intelligence 1 Outline Knowledge-based agents Logics in general Propositional Logic& Reasoning First Order Logic 2 Introduction So far we

More information

HOL DEFINING HIGHER ORDER LOGIC LAST TIME ON HOL CONTENT. Slide 3. Slide 1. Slide 4. Slide 2 WHAT IS HIGHER ORDER LOGIC? 2 LAST TIME ON HOL 1

HOL DEFINING HIGHER ORDER LOGIC LAST TIME ON HOL CONTENT. Slide 3. Slide 1. Slide 4. Slide 2 WHAT IS HIGHER ORDER LOGIC? 2 LAST TIME ON HOL 1 LAST TIME ON HOL Proof rules for propositional and predicate logic Safe and unsafe rules NICTA Advanced Course Forward Proof Slide 1 Theorem Proving Principles, Techniques, Applications Slide 3 The Epsilon

More information

Binary Decision Diagrams

Binary Decision Diagrams Logic and roof Hilary 2016 James Worrell Binary Decision Diagrams A propositional formula is determined up to logical equivalence by its truth table. If the formula has n variables then its truth table

More information

argo-lib: A Generic Platform for Decision Procedures

argo-lib: A Generic Platform for Decision Procedures argo-lib: A Generic Platform for Decision Procedures Filip Marić 1 and Predrag Janičić 2 1 e-mail: filip@matf.bg.ac.yu 2 e-mail: janicic@matf.bg.ac.yu Faculty of Mathematics, University of Belgrade Studentski

More information

CSCI 2041: Advanced Language Processing

CSCI 2041: Advanced Language Processing CSCI 2041: Advanced Language Processing Chris Kauffman Last Updated: Wed Nov 28 13:25:47 CST 2018 1 Logistics Reading OSM: Ch 17 The Debugger OSM: Ch 13 Lexer and Parser Generators (optional) Practical

More information

Lesson 5 Web Service Interface Definition (Part II)

Lesson 5 Web Service Interface Definition (Part II) Lesson 5 Web Service Interface Definition (Part II) Service Oriented Architectures Security Module 1 - Basic technologies Unit 3 WSDL Ernesto Damiani Università di Milano Controlling the style (1) The

More information

7. Introduction to Denotational Semantics. Oscar Nierstrasz

7. Introduction to Denotational Semantics. Oscar Nierstrasz 7. Introduction to Denotational Semantics Oscar Nierstrasz Roadmap > Syntax and Semantics > Semantics of Expressions > Semantics of Assignment > Other Issues References > D. A. Schmidt, Denotational Semantics,

More information

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH Slide 3.1 3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 3.0 Introduction 3.1 Graph Theory 3.2 Strategies for State Space Search 3.3 Using the State Space to Represent Reasoning with the Predicate

More information

The RuleML Family of Web Rule Languages

The RuleML Family of Web Rule Languages The RuleML Family of Web Rule Languages PPSWR 06, Budva, Montenegro, 10 June 2006 Revised, RuleML 06, Athens, GA, 11 Nov. 2006 Shortened, Vienna, SWT Course, 17 Nov. 2008 Harold Boley University of New

More information

Compilers and Interpreters

Compilers and Interpreters Overview Roadmap Language Translators: Interpreters & Compilers Context of a compiler Phases of a compiler Compiler Construction tools Terminology How related to other CS Goals of a good compiler 1 Compilers

More information

GBIL: Generic Binary Instrumentation Language. Language Reference Manual. By: Andrew Calvano. COMS W4115 Fall 2015 CVN

GBIL: Generic Binary Instrumentation Language. Language Reference Manual. By: Andrew Calvano. COMS W4115 Fall 2015 CVN GBIL: Generic Binary Instrumentation Language Language Reference Manual By: Andrew Calvano COMS W4115 Fall 2015 CVN Table of Contents 1) Introduction 2) Lexical Conventions 1. Tokens 2. Whitespace 3. Comments

More information

Type-directed Syntax Transformations for ATS-style Programs with Proofs

Type-directed Syntax Transformations for ATS-style Programs with Proofs Type-directed Syntax Transformations for ATS-style Programs with Proofs Andrei Lapets August 14, 2007 1 Introduction In their work on ATS [CX05] and ATS LF [CX04], the authors present an ML-like language

More information

EXTENSIONS OF FIRST ORDER LOGIC

EXTENSIONS OF FIRST ORDER LOGIC EXTENSIONS OF FIRST ORDER LOGIC Maria Manzano University of Barcelona CAMBRIDGE UNIVERSITY PRESS Table of contents PREFACE xv CHAPTER I: STANDARD SECOND ORDER LOGIC. 1 1.- Introduction. 1 1.1. General

More information

Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms?

Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms? Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms? CIS 8690 Enterprise Architectures Duane Truex, 2013 Cognitive Map of 8090

More information

CS 395T Computational Learning Theory. Scribe: Wei Tang

CS 395T Computational Learning Theory. Scribe: Wei Tang CS 395T Computational Learning Theory Lecture 1: September 5th, 2007 Lecturer: Adam Klivans Scribe: Wei Tang 1.1 Introduction Many tasks from real application domain can be described as a process of learning.

More information

This is already grossly inconvenient in present formalisms. Why do we want to make this convenient? GENERAL GOALS

This is already grossly inconvenient in present formalisms. Why do we want to make this convenient? GENERAL GOALS 1 THE FORMALIZATION OF MATHEMATICS by Harvey M. Friedman Ohio State University Department of Mathematics friedman@math.ohio-state.edu www.math.ohio-state.edu/~friedman/ May 21, 1997 Can mathematics be

More information

Programming Languages Fall 2013

Programming Languages Fall 2013 Programming Languages Fall 2013 Lecture 3: Induction Prof. Liang Huang huang@qc.cs.cuny.edu Recursive Data Types (trees) data Ast = ANum Integer APlus Ast Ast ATimes Ast Ast eval (ANum x) = x eval (ATimes

More information

R13 SET Discuss how producer-consumer problem and Dining philosopher s problem are solved using concurrency in ADA.

R13 SET Discuss how producer-consumer problem and Dining philosopher s problem are solved using concurrency in ADA. R13 SET - 1 III B. Tech I Semester Regular Examinations, November - 2015 1 a) What constitutes a programming environment? [3M] b) What mixed-mode assignments are allowed in C and Java? [4M] c) What is

More information

Fall 2018 Discussion 8: October 24, 2018 Solutions. 1 Introduction. 2 Primitives

Fall 2018 Discussion 8: October 24, 2018 Solutions. 1 Introduction. 2 Primitives CS 6A Scheme Fall 208 Discussion 8: October 24, 208 Solutions Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write

More information

Chapter 3. Semantics. Topics. Introduction. Introduction. Introduction. Introduction

Chapter 3. Semantics. Topics. Introduction. Introduction. Introduction. Introduction Topics Chapter 3 Semantics Introduction Static Semantics Attribute Grammars Dynamic Semantics Operational Semantics Axiomatic Semantics Denotational Semantics 2 Introduction Introduction Language implementors

More information