THE UNIVERSITY OF WESTERN AUSTRALIA SAMPLE EXAM QUESTIONS 2007 WITH SOLUTIONS SCHOOL OF COMPUTER SCIENCE CITS3213 CONCURRENT PROGRAMMING (PART II)

Size: px
Start display at page:

Download "THE UNIVERSITY OF WESTERN AUSTRALIA SAMPLE EXAM QUESTIONS 2007 WITH SOLUTIONS SCHOOL OF COMPUTER SCIENCE CITS3213 CONCURRENT PROGRAMMING (PART II)"

Transcription

1 THE UNIVERSITY OF WESTERN AUSTRALIA SAMPLE EXAM QUESTIONS 2007 WITH SOLUTIONS SCHOOL OF COMPUTER SCIENCE CITS3213 CONCURRENT PROGRAMMING (PART II) The exam will contain: 6 questions (3 for each part) Time allowed : TWO HOURS TEN MINTUES Marks for the exam will total 60. Candidates should answer all SIX Questions. 4. (a) Explain the basic idea of a monitor. What is a condition variable in a monitor? Explain the Wait and Signal operations on a condition variable. How do monitors in Java differ from the standard concept of monitors? (6) I answered this in lectures. Also, see the first set of notes on monitors. (b) Would you like Java to support concurrency through semaphores instead of the present support through monitors? What kind of problems do you anticipate as a programmer if such a change is made? (4) A: No, because monitors are easier to program with, since they automatically enforce mutual exclusion in a way that follows the structure of a program. Also, the semaphore operations can easily be programmed using monitors and put in library, while the reverse is not true since using semaphores we cannot emulate the way monitors automatically follow the structure of the program. Semaphores will cause problems because they require that mutual exclusion be explicitly released, and forgetting a single such release will lead to the program deadlocking. Also, monitors are naturally re-entrant, while semaphores are not, and deadlocks will occur if a thread waits on a semaphore that it has already obtained.

2 5. (a) Explain clearly in your own words how Java implements Remote Method Invocation (RMI), including how objects are passed when they are parameters or return results of remote calls. (5) A: A server registers objects in a registry that accepts requests over the network. Each registered object is given a name. The client looks up this name, and is given a remote object reference for the server object. It uses this name to create a stub object (or proxy object) on the client, which is an object that forwards method calls to the actual object on the server via the network. When a method call is made on the stub object, it marshals the arguments into bytes and then sends them over the network to the server, along with the remote reference for the server object, and an identifier for the method being called. On the server, skeleton code receives this information, umarshals the arguments back to their original form, and makes the appropriate call to the actual server object. When this call completes, the skeleton code informs the client stub object, and sends any return value over the network in marshaled form. The client stub object then unmarshals the return value, and the original call to the client stub object returns appropriately. Objects may be marshalled either by local value or by remote reference. Passing by local value means that a clone of the object is created on the remote host, which is done by serializing the instance variables of the object into a series of bytes. Passing by remote reference means that the object remains on the same host, and has a remote reference created for it so that it can receive remote method calls from other host. Then, this remote reference is passed, and is unmarshaled at the other end by creating an appropriate stub object. (b) Explain how distributed snapshots can be used for distributed termination detection. What is it about termination that makes it a suitable property for checking using snapshots? (5) A: To use snapshots to detect termination, we need to periodically take a snapshot and check whether termination has occurred in the snapshot. Each snapshot is performed using the standard distributed snapshot algorithm. 2

3 This records a state for each host and some messages in transit for each communication channel. To detect termination, the state information for a host only needs to include whether that host is currently active or is ready to terminate. We detect that the whole system has terminated if in the snapshot all hosts are ready to terminate, and there are no messages in transit on any channel. Termination can be checked using snapshots because it is a stable property: once it becomes true, it stays true forever. That is, once the system has terminated, it stays terminated. This is important because the snapshot is only guaranteed to be a possible state that the system could have a gone through while the snapshot was being taking. Since termination is a stable property, we know that if we see termination in the snapshot, that the system must have terminated by the end of the snapshot. 6. Consider the following Java code for circular linked lists. public class CList extends Thread { private int item; private Clist next; private int updatecount=0; public synchronized void replace(int old, int neww, Clist startedat) { if(item==old) {item=neww; updatecount++; public void run() { for(int i=0; i<100; i++) replace(i, i-1, this); public Clist(int item, Clist next) { this.item=item; this.next=next; public static void main(string args[]) { Clist clist3 = new Clist(60, null); Clist clist2 = new Clist(40, clist3); Clist clist1 = new Clist(20, clist2); clist3.next = clist1; 3

4 clist1.start(); clist2.start(); clist3.start(); (a) Explain why it is possible for this code to deadlock. Include a description of a situation where a deadlock occurs. (4) A: This code may deadlock because clist1, clist2 and clist3 together form a cycle - repeatedly following the next instance variable leads back to the original CList object. The three threads each run replace, which will lock the object, then the next object, and then the third object. So, we can have a deadlock if two threads commence a call to replace at about the same time, since each will lock its own CList object, then then try to obtain locks on the other two CList objects. E.g., we can have the following sequence. thread 1: calls replace, obtains the lock on CList1 thread 2: calls replace, obtains the lock on CList2 thread 1: calls next.replace, waits for the lock on CList2 thread 2: calls next.replace, obtains the lock on CList3 thread 2: calls next.replace, waits for lock on CList1 DEADLOCKED (b) Show two different ways that this code may be fixed in order to avoid deadlocks. For each, show the code for the methods that need to be changed and also explain why deadlocks are no longer possible. (6) A: The deadlock may be resolved by using the class object lock, as follows. public void replace(int old, int neww, Clist startedat) { synchronized(clist.class) { if(item==old) {item=neww; updatecount++; 4

5 This code can no longer deadlock because any thread that holds the class object lock will be able to complete the original call to replace without waiting for any more locks, since it never waits for any other lock. So, it will eventually release the lock, and since this is the only lock other threads could be waiting for, they will eventually get to continue. Another way to fix this code is to reduce the duration that locks are held, as follows. public void replace(int old, int neww, Clist startedat) { synchronized(this) { if(item==old) {item=neww; updatecount++; This code cannot deadlock because threads only hold one lock at a time. So, if one thread is waiting for a lock held by a second thread, we know that the second thread only hold the lock for a short time (while executing the first if above), and in particular it will release the lock before it waits on another lock. Hence, the first thread will be able to obtain the lock and will not wait forever. END OF PAPER 5

Remote Procedure Call

Remote Procedure Call Remote Procedure Call Suited for Client-Server structure. Combines aspects of monitors and synchronous message passing: Module (remote object) exports operations, invoked with call. call blocks (delays

More information

SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (II)

SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (II) SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (II) Shan He School for Computational Science University of Birmingham Module 06-19321: SSC Outline Outline of Topics

More information

CMSC 132: Object-Oriented Programming II

CMSC 132: Object-Oriented Programming II CMSC 132: Object-Oriented Programming II Synchronization in Java Department of Computer Science University of Maryland, College Park Multithreading Overview Motivation & background Threads Creating Java

More information

Distributed Systems Recitation 3. Tamim Jabban

Distributed Systems Recitation 3. Tamim Jabban 15-440 Distributed Systems Recitation 3 Tamim Jabban Project 1 Involves creating a Distributed File System (DFS): FileStack Stores data that does not fit on a single machine Enables clients to perform

More information

User Space Multithreading. Computer Science, University of Warwick

User Space Multithreading. Computer Science, University of Warwick User Space Multithreading 1 Threads Thread short for thread of execution/control B efore create Global During create Global Data Data Executing Code Code Stack Stack Stack A fter create Global Data Executing

More information

Lecture 8: September 30

Lecture 8: September 30 CMPSCI 377 Operating Systems Fall 2013 Lecture 8: September 30 Lecturer: Prashant Shenoy Scribe: Armand Halbert 8.1 Semaphores A semaphore is a more generalized form of a lock that can be used to regulate

More information

CS193k, Stanford Handout #12. Threads 4 / RMI

CS193k, Stanford Handout #12. Threads 4 / RMI CS193k, Stanford Handout #12 Spring, 99-00 Nick Parlante Threads 4 / RMI Semaphore1 Semaphore1 from last time uses the count in a precise way to know exactly how many threads are waiting. In this way,

More information

Deadlock. Only one process can use the resource at a time but once it s done it can give it back for use by another process.

Deadlock. Only one process can use the resource at a time but once it s done it can give it back for use by another process. Deadlock A set of processes is deadlocked if each process in the set is waiting for an event that can be caused by another process in the set. The events that we are mainly concerned with are resource

More information

Contents. Java RMI. Java RMI. Java RMI system elements. Example application processes/machines Client machine Process/Application A

Contents. Java RMI. Java RMI. Java RMI system elements. Example application processes/machines Client machine Process/Application A Contents Java RMI G53ACC Chris Greenhalgh Java RMI overview A Java RMI example Overview Walk-through Implementation notes Argument passing File requirements RPC issues and RMI Other problems with RMI 1

More information

CSCI 201L Final Written SOLUTION. 13% of course grade

CSCI 201L Final Written SOLUTION. 13% of course grade SOLUTION 13% of course grade 1. Generics C++ has had templates long before Java even existed as a language. When Java was created, there were no templates or generics. It wasn t until many years and many

More information

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. UNIT I PART A (2 marks)

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. UNIT I PART A (2 marks) DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Code : IT1001 Subject Name : Distributed Systems Year / Sem : IV / VII UNIT I 1. Define distributed systems. 2. Give examples of distributed systems

More information

IBD Intergiciels et Bases de Données

IBD Intergiciels et Bases de Données IBD Intergiciels et Bases de Données RMI-based distributed systems Fabien Gaud, Fabien.Gaud@inrialpes.fr Overview of lectures and practical work Lectures Introduction to distributed systems and middleware

More information

Java RMI Middleware Project

Java RMI Middleware Project Java RMI Middleware Project Nathan Balon CIS 578 Advanced Operating Systems December 7, 2004 Introduction The semester project was to implement a middleware similar to Java RMI or CORBA. The purpose of

More information

Remote Method Invocation in Java

Remote Method Invocation in Java Remote Method Invocation in Java Ajay Khatri Senior Assistant Professor,Department IT Acropolis Institute of Technology & Research ajay.acropolis@gmail.com What is RMI RMI is an API that provides a mechanism

More information

JAVA RMI. Remote Method Invocation

JAVA RMI. Remote Method Invocation 1 JAVA RMI Remote Method Invocation 2 Overview Java RMI is a mechanism that allows one to invoke a method on an object that exists in another address space. The other address space could be: On the same

More information

What is a thread anyway?

What is a thread anyway? Concurrency in Java What is a thread anyway? Smallest sequence of instructions that can be managed independently by a scheduler There can be multiple threads within a process Threads can execute concurrently

More information

Do not start the test until instructed to do so!

Do not start the test until instructed to do so! CS 3204 Operating Systems Midterm (Abrams) Spring 2004 VIRG INIA POLYTECHNIC INSTITUTE AND STATE U T PRO SI M UNI VERSI TY Instructions: Do not start the test until instructed to do so! Print your name

More information

Generic architecture

Generic architecture Java-RMI Lab Outline Let first builds a simple home-made framework This is useful to understand the main issues We see later how java-rmi works and how it solves the same issues Generic architecture object

More information

CHAPTER - 4 REMOTE COMMUNICATION

CHAPTER - 4 REMOTE COMMUNICATION CHAPTER - 4 REMOTE COMMUNICATION Topics Introduction to Remote Communication Remote Procedural Call Basics RPC Implementation RPC Communication Other RPC Issues Case Study: Sun RPC Remote invocation Basics

More information

Concurrency: State Models & Design Patterns

Concurrency: State Models & Design Patterns Concurrency: State Models & Design Patterns Practical Session Week 02 1 / 13 Exercises 01 Discussion Exercise 01 - Task 1 a) Do recent central processing units (CPUs) of desktop PCs support concurrency?

More information

5 Distributed Objects: The Java Approach

5 Distributed Objects: The Java Approach 5 Distributed Objects: The Java Approach Main Points Why distributed objects Distributed Object design points Java RMI Dynamic Code Loading 5.1 What s an Object? An Object is an autonomous entity having

More information

Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multit

Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multit Threads Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multitasking Thread-based multitasking Multitasking

More information

Parallel Programming Languages COMP360

Parallel Programming Languages COMP360 Parallel Programming Languages COMP360 The way the processor industry is going, is to add more and more cores, but nobody knows how to program those things. I mean, two, yeah; four, not really; eight,

More information

Threads and Parallelism in Java

Threads and Parallelism in Java Threads and Parallelism in Java Java is one of the few main stream programming languages to explicitly provide for user-programmed parallelism in the form of threads. A Java programmer may organize a program

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 1 Review: Sync Terminology Worksheet 2 Review: Semaphores 3 Semaphores o Motivation: Avoid busy waiting by blocking a process execution

More information

Questions and Answers. A. RMI allows us to invoke a method of java object that executes on another machine.

Questions and Answers. A. RMI allows us to invoke a method of java object that executes on another machine. Q.1) What is Remote method invocation (RMI)? A. RMI allows us to invoke a method of java object that executes on another machine. B. RMI allows us to invoke a method of java object that executes on another

More information

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications Distributed Objects and Remote Invocation Programming Models for Distributed Applications Extending Conventional Techniques The remote procedure call model is an extension of the conventional procedure

More information

Recap. Contents. Reenterancy of synchronized. Explicit Locks: ReentrantLock. Reenterancy of synchronise (ctd) Advanced Thread programming.

Recap. Contents. Reenterancy of synchronized. Explicit Locks: ReentrantLock. Reenterancy of synchronise (ctd) Advanced Thread programming. Lecture 07: Advanced Thread programming Software System Components 2 Behzad Bordbar School of Computer Science, University of Birmingham, UK Recap How to deal with race condition in Java Using synchronised

More information

Last Class: RPCs. Today:

Last Class: RPCs. Today: Last Class: RPCs RPCs make distributed computations look like local computations Issues: Parameter passing Binding Failure handling Lecture 4, page 1 Today: Case Study: Sun RPC Lightweight RPCs Remote

More information

1) Discuss the mutual exclusion mechanism that you choose as implemented in the chosen language and the associated basic syntax

1) Discuss the mutual exclusion mechanism that you choose as implemented in the chosen language and the associated basic syntax Lab report Project 3 Mihai Ene I have implemented the solution in Java. I have leveraged its threading mechanisms and concurrent API (i.e. concurrent package) in order to achieve the required functionality

More information

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other No efficient solution Involve conflicting

More information

The University of Texas at Arlington

The University of Texas at Arlington The University of Texas at Arlington Lecture 10: Threading and Parallel Programming Constraints CSE 5343/4342 Embedded d Systems II Objectives: Lab 3: Windows Threads (win32 threading API) Convert serial

More information

i219 Software Design Methodology 11. Software model checking Kazuhiro Ogata (JAIST) Outline of lecture

i219 Software Design Methodology 11. Software model checking Kazuhiro Ogata (JAIST) Outline of lecture i219 Software Design Methodology 11. Software model checking Kazuhiro Ogata (JAIST) Outline of lecture 2 Concurrency Model checking Java Pathfinder (JPF) Detecting race condition Bounded buffer problem

More information

Figure 6.1 System layers

Figure 6.1 System layers Figure 6.1 System layers Applications, services Middleware OS: kernel, libraries & servers OS1 Processes, threads, communication,... OS2 Processes, threads, communication,... Platform Computer & network

More information

CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers

CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers 1 Critical sections and atomicity We have been seeing that sharing mutable objects between different threads is tricky We need some

More information

Message Passing vs. Distributed Objects. 5/15/2009 Distributed Computing, M. L. Liu 1

Message Passing vs. Distributed Objects. 5/15/2009 Distributed Computing, M. L. Liu 1 Message Passing vs. Distributed Objects 5/15/2009 Distributed Computing, M. L. Liu 1 Distributed Objects M. L. Liu 5/15/2009 Distributed Computing, M. L. Liu 2 Message Passing versus Distributed Objects

More information

Operating Systems. Thread Synchronization Primitives. Thomas Ropars.

Operating Systems. Thread Synchronization Primitives. Thomas Ropars. 1 Operating Systems Thread Synchronization Primitives Thomas Ropars thomas.ropars@univ-grenoble-alpes.fr 2017 2 Agenda Week 42/43: Synchronization primitives Week 44: Vacation Week 45: Synchronization

More information

The University of Texas at Arlington

The University of Texas at Arlington The University of Texas at Arlington Lecture 6: Threading and Parallel Programming Constraints CSE 5343/4342 Embedded Systems II Based heavily on slides by Dr. Roger Walker More Task Decomposition: Dependence

More information

High Performance Computing Course Notes Shared Memory Parallel Programming

High Performance Computing Course Notes Shared Memory Parallel Programming High Performance Computing Course Notes 2009-2010 2010 Shared Memory Parallel Programming Techniques Multiprocessing User space multithreading Operating system-supported (or kernel) multithreading Distributed

More information

Principles of Software Construction: Concurrency, Part 2

Principles of Software Construction: Concurrency, Part 2 Principles of Software Construction: Concurrency, Part 2 Josh Bloch Charlie Garrod School of Computer Science 1 Administrivia Homework 5a due now Homework 5 framework goals: Functionally correct Well documented

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

Lecture 06: Distributed Object

Lecture 06: Distributed Object Lecture 06: Distributed Object Distributed Systems Behzad Bordbar School of Computer Science, University of Birmingham, UK Lecture 0? 1 Recap Interprocess communication Synchronous and Asynchronous communication

More information

System Software Assignment 8 Deadlocks

System Software Assignment 8 Deadlocks System Software Assignment 8 Deadlocks Exercise 1: Barrier Objects Create a barrier object in Java, Active Oberon or the language of your choice that is able to synchronize a set of predefined threads

More information

CS 351 Design of Large Programs Threads and Concurrency

CS 351 Design of Large Programs Threads and Concurrency CS 351 Design of Large Programs Threads and Concurrency Brooke Chenoweth University of New Mexico Spring 2018 Concurrency in Java Java has basic concurrency support built into the language. Also has high-level

More information

JAVA CONCURRENCY FRAMEWORK. Kaushik Kanetkar

JAVA CONCURRENCY FRAMEWORK. Kaushik Kanetkar JAVA CONCURRENCY FRAMEWORK Kaushik Kanetkar Old days One CPU, executing one single program at a time No overlap of work/processes Lots of slack time CPU not completely utilized What is Concurrency Concurrency

More information

Lecture 18 Inside Java RMI

Lecture 18 Inside Java RMI CMSC 433 Fall 2014 Sec/on 0101 Mike Hicks (slides due to Rance Cleaveland) Lecture 18 Inside Java RMI Recall Java RMI applica/ons consist of three en//es Remote object servers Host remote objects Handle

More information

Exam Number/Code : 1Z Exam Name: Name: Java Standard Edition 6. Demo. Version : Programmer Certified Professional Exam.

Exam Number/Code : 1Z Exam Name: Name: Java Standard Edition 6. Demo. Version : Programmer Certified Professional Exam. Exam Number/Code : 1Z0-851 Exam Name: Name: Java Standard Edition 6 Programmer Certified Professional Exam Version : Demo http://it-shiken.jp/ QUESTION 1 public class Threads2 implements Runnable { public

More information

RMI: Design & Implementation

RMI: Design & Implementation RMI: Design & Implementation Operating Systems RMI 1 Middleware layers Applications, services RMI and RPC request-reply protocol marshalling and external data representation Middleware layers UDP and TCP

More information

Lecture Topics. Announcements. Today: Concurrency: Mutual Exclusion (Stallings, chapter , 5.7)

Lecture Topics. Announcements. Today: Concurrency: Mutual Exclusion (Stallings, chapter , 5.7) Lecture Topics Today: Concurrency: Mutual Exclusion (Stallings, chapter 5.1-5.4, 5.7) Next: Concurrency: Deadlock and Starvation (Stallings, chapter 6.1, 6.6-6.8) 1 Announcements Self-Study Exercise #5

More information

Last Class: Deadlocks. Today

Last Class: Deadlocks. Today Last Class: Deadlocks Necessary conditions for deadlock: Mutual exclusion Hold and wait No preemption Circular wait Ways of handling deadlock Deadlock detection and recovery Deadlock prevention Deadlock

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [RPC & DISTRIBUTED OBJECTS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey XDR Standard serialization

More information

Lecture 5: Object Interaction: RMI and RPC

Lecture 5: Object Interaction: RMI and RPC 06-06798 Distributed Systems Lecture 5: Object Interaction: RMI and RPC Distributed Systems 1 Recap Message passing: send, receive synchronous versus asynchronous No global Time types of failure socket

More information

CS 153 Lab4 and 5. Kishore Kumar Pusukuri. Kishore Kumar Pusukuri CS 153 Lab4 and 5

CS 153 Lab4 and 5. Kishore Kumar Pusukuri. Kishore Kumar Pusukuri CS 153 Lab4 and 5 CS 153 Lab4 and 5 Kishore Kumar Pusukuri Outline Introduction A thread is a straightforward concept : a single sequential flow of control. In traditional operating systems, each process has an address

More information

COMP 346 WINTER Tutorial 5 MONITORS

COMP 346 WINTER Tutorial 5 MONITORS COMP 346 WINTER 2018 1 Tutorial 5 MONITORS WHY DO WE NEED MONITORS? Semaphores are very useful for solving concurrency problems But it s easy to make mistakes! If proper usage of semaphores is failed by

More information

A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 4 Shared-Memory Concurrency & Mutual Exclusion

A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 4 Shared-Memory Concurrency & Mutual Exclusion A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 4 Shared-Memory Concurrency & Mutual Exclusion Dan Grossman Last Updated: August 2010 For more information, see http://www.cs.washington.edu/homes/djg/teachingmaterials/

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [RMI] Frequently asked questions from the previous class survey Shrideep Pallickara Computer Science Colorado State University L21.1 L21.2 Topics covered in this lecture RMI

More information

Synchronization Lecture 24 Fall 2018

Synchronization Lecture 24 Fall 2018 Synchronization Lecture 24 Fall 2018 Prelim 2 tonight! The room assignments are on the course website, page Exams. Check it carefully! Come on time! Bring you Cornell id card! No lunch with gries this

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst What is a Monitor? Ties data and the synchronization operations together Monitors guarantee mutual exclusion, i.e.,

More information

Recitation 14: Proxy Lab Part 2

Recitation 14: Proxy Lab Part 2 Recitation 14: Proxy Lab Part 2 Instructor: TA(s) 1 Outline Proxylab Threading Threads and Synchronization 2 ProxyLab ProxyLab is due in 1 week. No grace days Late days allowed (-15%) Make sure to submit

More information

Distributed object component middleware I - Java RMI

Distributed object component middleware I - Java RMI Prof. Dr. Claudia Müller-Birn Institute for Computer Science, Networked Information Systems Distributed object component middleware I - Java RMI Nov 15th, 2011 Netzprogrammierung (Algorithmen und Programmierung

More information

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 13 Robert Grimm, New York University 1 Review Last week Exceptions 2 Outline Concurrency Discussion of Final Sources for today s lecture: PLP, 12

More information

Distributed object component middleware I - Java RMI

Distributed object component middleware I - Java RMI Prof. Dr. Claudia Müller-Birn Institute for Computer Science, Networked Information Systems Distributed object component middleware I - Java RMI Nov 15th, 2011 Netzprogrammierung (Algorithmen und Programmierung

More information

CSE332: Data Abstractions Lecture 22: Shared-Memory Concurrency and Mutual Exclusion. Tyler Robison Summer 2010

CSE332: Data Abstractions Lecture 22: Shared-Memory Concurrency and Mutual Exclusion. Tyler Robison Summer 2010 CSE332: Data Abstractions Lecture 22: Shared-Memory Concurrency and Mutual Exclusion Tyler Robison Summer 2010 1 Toward sharing resources (memory) So far we ve looked at parallel algorithms using fork-join

More information

Synchronising Threads

Synchronising Threads Synchronising Threads David Chisnall March 1, 2011 First Rule for Maintainable Concurrent Code No data may be both mutable and aliased Harder Problems Data is shared and mutable Access to it must be protected

More information

SFDV3006 Concurrent Programming

SFDV3006 Concurrent Programming SFDV3006 Concurrent Programming Lecture 6 Deadlocks, livelocks, Starvation Introduction Last week we covered semaphore and how to use them for both synchronization and condition synchronization This week

More information

Last Class: Synchronization Problems. Need to hold multiple resources to perform task. CS377: Operating Systems. Real-world Examples

Last Class: Synchronization Problems. Need to hold multiple resources to perform task. CS377: Operating Systems. Real-world Examples Last Class: Synchronization Problems Reader Writer Multiple readers, single writer In practice, use read-write locks Dining Philosophers Need to hold multiple resources to perform task Lecture 10, page

More information

CSCI 201L Written Exam #2. 10% of course grade

CSCI 201L Written Exam #2. 10% of course grade Name Final Score ID Extra Credit Section (circle one): MW 3:30-6:30 CSCI 201L Written Exam #2 10% of course grade 1. Anonymous Inner Classes In lecture we walked through the following: 1. Having two classes

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst Clicker Question #1 public static void main(string[] args) { (new Thread(new t1())).start(); (new Thread(new t2())).start();}

More information

Faculty of Computers & Information Computer Science Department

Faculty of Computers & Information Computer Science Department Cairo University Faculty of Computers & Information Computer Science Department Theoretical Part 1. Introduction to Critical Section Problem Critical section is a segment of code, in which the process

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK 2015-2016 : DISTRIBUTED SYSTEMS

More information

Verteilte Systeme (Distributed Systems)

Verteilte Systeme (Distributed Systems) Verteilte Systeme (Distributed Systems) Karl M. Göschka Karl.Goeschka@tuwien.ac.at http://www.infosys.tuwien.ac.at/teaching/courses/ VerteilteSysteme/ Lecture 3: Communication (Part 2) Remote Procedure

More information

CMSC 433 Programming Language Technologies and Paradigms. Synchronization

CMSC 433 Programming Language Technologies and Paradigms. Synchronization CMSC 433 Programming Language Technologies and Paradigms Synchronization Aspects of Synchronization Atomicity Locking to obtain mutual exclusion What we most often think about Visibility Ensuring that

More information

Multiple Inheritance. Computer object can be viewed as

Multiple Inheritance. Computer object can be viewed as Multiple Inheritance We have seen that a class may be derived from a given parent class. It is sometimes useful to allow a class to be derived from more than one parent, inheriting members of all parents.

More information

What's wrong with Semaphores?

What's wrong with Semaphores? Next: Monitors and Condition Variables What is wrong with semaphores? Monitors What are they? How do we implement monitors? Two types of monitors: Mesa and Hoare Compare semaphore and monitors Lecture

More information

Parallelism and Concurrency. Motivation, Challenges, Impact on Software Development CSE 110 Winter 2016

Parallelism and Concurrency. Motivation, Challenges, Impact on Software Development CSE 110 Winter 2016 Parallelism and Concurrency Motivation, Challenges, Impact on Software Development CSE 110 Winter 2016 About These Slides Due to the nature of this material, this lecture was delivered via the chalkboard.

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall CSE 451: Operating Systems Winter 2003 Lecture 7 Synchronization Hank Levy Levy@cs.washington.edu 412 Sieg Hall Synchronization Threads cooperate in multithreaded programs to share resources, access shared

More information

The Proxy Pattern. Design Patterns In Java Bob Tarr

The Proxy Pattern. Design Patterns In Java Bob Tarr The Proxy Pattern Intent Provide a surrogate or placeholder for another object to control access to it Also Known As Surrogate Motivation A proxy is a person authorized to act for another person an agent

More information

CMSC 714 Lecture 14 Lamport Clocks and Eraser

CMSC 714 Lecture 14 Lamport Clocks and Eraser Notes CMSC 714 Lecture 14 Lamport Clocks and Eraser Midterm exam on April 16 sample exam questions posted Research project questions? Alan Sussman (with thanks to Chris Ackermann) 2 Lamport Clocks Distributed

More information

Unix System Programming - Chapter 2, part a

Unix System Programming - Chapter 2, part a Unix System Programming - Chapter 2, part a Neal Nelson The Evergreen State College Mar 23, 2010 USP Chapter 2.1 to 2.6 Processes and Threads Program Storage and Linkage Library Function Calls Error Handling

More information

DISTRIBUTED COMPUTING

DISTRIBUTED COMPUTING DISTRIBUTED COMPUTING SYSTEMS 1 REMOTE PROCEDURE CALL RPC-REMOTE PROCEDURE CALL RMI-REMOTE METHOD INVOCATION 2 3 RPC TECHNOLOGY Remote procedure call is a technology that allows computer programs to call

More information

Homework #1 (Spring 2012) Due: Tuesday, February 28, 2012

Homework #1 (Spring 2012) Due: Tuesday, February 28, 2012 Name: AndrewID: 15-440 Homework #1 (Spring 2012) Due: Tuesday, February 28, 2012 Communication 1. Consider a sliding window protocol, such as the one we discussed in class. What effect does the window

More information

Week 7. Concurrent Programming: Thread Synchronization. CS 180 Sunil Prabhakar Department of Computer Science Purdue University

Week 7. Concurrent Programming: Thread Synchronization. CS 180 Sunil Prabhakar Department of Computer Science Purdue University Week 7 Concurrent Programming: Thread Synchronization CS 180 Sunil Prabhakar Department of Computer Science Purdue University Announcements Exam 1 tonight 6:30 pm - 7:30 pm MTHW 210 2 Outcomes Understand

More information

Distributed Software Systems

Distributed Software Systems RMI Programming Distributed Software Systems RMI Programming RMI software Generated by IDL compiler Proxy Behaves like remote object to clients (invoker) Marshals arguments, forwards message to remote

More information

Programmazione di sistemi multicore

Programmazione di sistemi multicore Programmazione di sistemi multicore A.A. 2015-2016 LECTURE 12 IRENE FINOCCHI http://wwwusers.di.uniroma1.it/~finocchi/ Shared-memory concurrency & mutual exclusion TASK PARALLELISM AND OVERLAPPING MEMORY

More information

Project. Threads. Plan for today. Before we begin. Thread. Thread. Minimum submission. Synchronization TSP. Thread synchronization. Any questions?

Project. Threads. Plan for today. Before we begin. Thread. Thread. Minimum submission. Synchronization TSP. Thread synchronization. Any questions? Project Threads Synchronization Minimum submission Deadline extended to tonight at midnight Early submitters 10 point bonus TSP Still due on Tuesday! Before we begin Plan for today Thread synchronization

More information

Distributed Computing

Distributed Computing Distributed Computing Computing on many systems to solve one problem Why? - Combination of cheap processors often more cost-effective than one expensive fast system - Flexibility to add according to needs

More information

4:40pm - 6:10pm (90 min)

4:40pm - 6:10pm (90 min) CMPT-401 Operating Systems II (Fall 2005) Midterm School of Computing Science Simon Fraser University October 18, 2005 4:40pm - 6:10pm (90 min) Last name: First name: Student number: Signature: Note: 1.

More information

Exam Concurrent and Real-Time Programming

Exam Concurrent and Real-Time Programming LUNDS TEKNISKA HÖGSKOLA 1(12) Institutionen för datavetenskap Exam Concurrent and Real-Time Programming 2014 01 07, 08.00 13.00 You are allowed to use the Java quick reference and a calculator. Also dictionaries

More information

Writing Parallel Programs COMP360

Writing Parallel Programs COMP360 Writing Parallel Programs COMP360 We stand at the threshold of a many core world. The hardware community is ready to cross this threshold. The parallel software community is not. Tim Mattson principal

More information

Remote Method Invocation

Remote Method Invocation Non-101samples available here: https://github.com/101companies/101repo/tree/master/languages/aspectj/javarmisamples Remote Method Invocation Prof. Dr. Ralf Lämmel Universität Koblenz-Landau Software Languages

More information

Lecture 17 Java Remote Method Invoca/on

Lecture 17 Java Remote Method Invoca/on CMSC 433 Fall 2014 Sec/on 0101 Mike Hicks (slides due to Rance Cleaveland) Lecture 17 Java Remote Method Invoca/on 11/4/2014 2012-14 University of Maryland 0 Recall Concurrency Several opera/ons may be

More information

Implementing Mutual Exclusion. Sarah Diesburg Operating Systems CS 3430

Implementing Mutual Exclusion. Sarah Diesburg Operating Systems CS 3430 Implementing Mutual Exclusion Sarah Diesburg Operating Systems CS 3430 From the Previous Lecture The too much milk example shows that writing concurrent programs directly with load and store instructions

More information

Remote Objects and RMI

Remote Objects and RMI Outline Remote Objects and RMI Instructor: Dr. Tongping Liu Distributed/Remote Objects Remote object reference (ROR) Remote Method Invocation (RMI) Case study and example: Java RMI Other issues for objects

More information

DISTRIBUTED OBJECTS AND REMOTE INVOCATION

DISTRIBUTED OBJECTS AND REMOTE INVOCATION DISTRIBUTED OBJECTS AND REMOTE INVOCATION Introduction This chapter is concerned with programming models for distributed applications... Familiar programming models have been extended to apply to distributed

More information

Mutual Exclusion: Classical Algorithms for Locks

Mutual Exclusion: Classical Algorithms for Locks Mutual Exclusion: Classical Algorithms for Locks John Mellor-Crummey Department of Computer Science Rice University johnmc@cs.rice.edu COMP 422 Lecture 18 21 March 2006 Motivation Ensure that a block of

More information

Synchronization. Announcements. Concurrent Programs. Race Conditions. Race Conditions 11/9/17. Purpose of this lecture. A8 released today, Due: 11/21

Synchronization. Announcements. Concurrent Programs. Race Conditions. Race Conditions 11/9/17. Purpose of this lecture. A8 released today, Due: 11/21 Announcements Synchronization A8 released today, Due: 11/21 Late deadline is after Thanksgiving You can use your A6/A7 solutions or ours A7 correctness scores have been posted Next week's recitation will

More information

Remote Method Invocation

Remote Method Invocation Remote Method Invocation A true distributed computing application interface for Java, written to provide easy access to objects existing on remote virtual machines Provide access to objects existing on

More information

COMP 6231: Distributed System Design

COMP 6231: Distributed System Design COMP 6231: Distributed System Design Remote Invocation and RMI Based on Chapters 5, 7 of the text book and the slides from Prof. M.L. Liu, California Polytechnic State University COMP 6231, Fall 2013 Remote

More information

Programming Languages

Programming Languages TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Programming Languages Concurrency: Atomic Executions, Locks and Monitors Dr. Michael Petter Winter term 2016 Atomic Executions, Locks and Monitors

More information

Synchronization II: EventBarrier, Monitor, and a Semaphore. COMPSCI210 Recitation 4th Mar 2013 Vamsi Thummala

Synchronization II: EventBarrier, Monitor, and a Semaphore. COMPSCI210 Recitation 4th Mar 2013 Vamsi Thummala Synchronization II: EventBarrier, Monitor, and a Semaphore COMPSCI210 Recitation 4th Mar 2013 Vamsi Thummala Check point: Mission in progress Master synchronization techniques Develop best practices for

More information