1/19/2010. Usually for static, deterministic environment

Size: px
Start display at page:

Download "1/19/2010. Usually for static, deterministic environment"

Transcription

1 To download the discussion slides, go to eterministic, tochastic and trategic nvironment eterministic ompletely predictable ource of Non-determinism tochasticity trategic actions of other agents strategic environment is not necessarily otherwise deterministic xample: poker is both stochastic and strategic rror occurred during initialization of VM ould not reserve enough space for object heap ould not create the Java virtual machine. olution: Limit the size of maximum memory for VM (Max memory of 512M) tep 1: setenv NT_OPT "-Xmx512m" on command line tep 2: add memorymaximumize="512m" to javac block in build-java section of your build.xml file tep 3: run java with Xmx512m parameter 1. ormulate the problem 2. ind a sequence of actions (offline) that achieves the goal Offline vs. Online search 3. xecute the sequence of action Usually for static, deterministic environment tates tate: Internal representation of an agent about the world; what the agent cares about Not necessarily be correct Initial state ctions iven a state, what the available actions are Transition model Result(s,a) that returns state resulting from doing action a in state s oal states Path cost Vacuum world tates: gent location + dirt location? 8 states Initial tate: ny ctions: Left, Right and uck Transition model: xpected effects. xcept for no effects on Left in leftmost square, Right in rightmost square and uck in a clean square oal state: ll squares are clean Path cost: 1 (?) 1

2 7-queen tates: Initial tate: ctions: Transition model: oal tate Path cost: 7-queen tates: ll possible arrangements of n queens, one per column in the leftmost n columns, with no queen attacking another Initial tate: No queens on the board ctions: dd a queen to any square in the leftmost empty column such that it is not attacked by any other queen Transition model: or any addition, return the board with a queen added to the specified square oal tate: 8 queens on the board, none attacked Path cost:1 tate: agent s representation of the world configuration tate space: all reachable states from initial state earch space: a data structure that abstracts the state space Nodes: a data structure that represent states and related information (state, parent node, path cost ) dges represent actions and path costs(reflects transition model ) olution is the path from initial to goal state Optimal solution is the solution of the shortest path cost Uninformed search Only uses information in problem formulation Informed search Has heuristics that guides an agent on where to look for solutions earch trategy Order of node expansion xpansion: iven a node, creates all children of the node according to transition model function Tree-search(problem) returns a solution, or failure fringe = new Queue(); fringe.put(problem.initialtate) loop do if fringe.ismpty() then return failure node = fringe.get() if problem.isoaltate(node) then return node; fringe.putll(problem.expand(node)) Only the order of the queue makes the difference void repeated states (raph search) function Tree-search(problem) returns a solution, or failure closed = new et(); closed.add(problem.initialtate); fringe = new Queue(); fringe.put(problem.initialtate) loop do if fringe.ismpty() then return failure node = fringe.get() if problem.isoaltate(node) then return node; for each child in problem.expand(node) if!closed.contain(child) fringe.put(child) void repeated states 2

3 readth-irst: IO queue, returning the oldest item Uniform-ost: Priority queue, returning the least-cost item epth-irst: LIO, returning the newest item epth-limited : Run, cut off search at depth L Iterative eepening : Run epth-limited with L from 1 to infinity = start, = goal Queue = {} elect oal() = true? Queue = {, } elect oal() = true? If not, xpand() If not, xpand() Queue = {,, } elect oal() = true? Queue = {,,, } elect etc. If not, expand() 3

4 4 Level 3 Queue = {,,,,,,, } Level 4 xpand queue until is at front elect oal() = true Queue = {,} Queue = {,,} Queue = {,,,} Queue = {,,,}

5 Queue = {,,} 5

6 ompleteness: uaranteed to find a solution if it exists Optimality: The minimum path cost solution is found Time omplexity: How long it takes to find a solution pace omplexity: How much memory is needed Notes: 1. and iterative deepening only optimal when action cost is uniform; 2. U only optimal when action cost is nonnegative; Informed (heuristic) search Use heuristic function as a guidance on which node to expand Heuristic function for * f(n) = g(n) + h(n) where g(n) is the path cost (cost so far to reach n) and h(n) is the heuristic (estimated cost from n go goal) f(n) is an estimated total cost To expand the nodes with smallest f(n) dmissible: Heuristic functions should never overestimate the path cost 6

Summary. Agenda. Search. Search is a common technique in problem solving. Search Formulation Tree Search Uniform cost search A* Search.

Summary. Agenda. Search. Search is a common technique in problem solving. Search Formulation Tree Search Uniform cost search A* Search. ummary rtificial Intelligence and its applications ecture earch earch onstraint atisfaction Problems rom start state to goal state onsider constraints Professor aniel Yeung danyeung@ieee.org r. Patrick

More information

Uninformed Search. Models To Be Studied in CS 540. Chapter Search Example: Route Finding

Uninformed Search. Models To Be Studied in CS 540. Chapter Search Example: Route Finding Models To e tudied in 50 Uninformed earch hapter 3. 3. tate-based Models Model task as a graph of all possible states l alled a state-space graph state captures all the relevant information about the past

More information

Problem solving by search

Problem solving by search Problem solving by search based on tuart ussel s slides (http://aima.cs.berkeley.edu) February 27, 2017, E533KUI - Problem solving by search 1 Outline Problem-solving agents Problem types Problem formulation

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 2 estricted form of general agent: Problem-solving

More information

Reminders. Problem solving and search. Problem-solving agents. Outline. Assignment 0 due 5pm today

Reminders. Problem solving and search. Problem-solving agents. Outline. Assignment 0 due 5pm today ssignment 0 due 5pm today eminders Problem solving and search ssignment 1 posted, due 2/9 ection 105 will move to 9-10am starting next week hapter 3 hapter 3 1 hapter 3 2 Outline Problem-solving agents

More information

Outline. Problem solving and search. Problem-solving agents. Example: Romania. Example: Romania. Problem types. Problem-solving agents.

Outline. Problem solving and search. Problem-solving agents. Example: Romania. Example: Romania. Problem types. Problem-solving agents. Outline Problem-solving agents Problem solving and search hapter 3 Problem types Problem formulation Example problems asic search algorithms hapter 3 1 hapter 3 3 estricted form of general agent: Problem-solving

More information

Lecture overview. Knowledge-based systems in Bioinformatics, 1MB602, Goal based agents. Search terminology. Specifying a search problem

Lecture overview. Knowledge-based systems in Bioinformatics, 1MB602, Goal based agents. Search terminology. Specifying a search problem Lecture overview Knowledge-based systems in ioinformatics, 1M602, 2006 Lecture 6: earch oal based agents earch terminology pecifying a search problem earch considerations Uninformed search euristic methods

More information

Problem-solving agents. Problem solving and search. Example: Romania. Reminders. Example: Romania. Outline. Chapter 3

Problem-solving agents. Problem solving and search. Example: Romania. Reminders. Example: Romania. Outline. Chapter 3 Problem-solving agents Problem solving and search hapter 3 function imple-problem-olving-gent( percept) returns an action static: seq, an action sequence, initially empty state, some description of the

More information

Problem-solving agents. Solving Problems by Searching. Outline. Example: Romania. Chapter 3

Problem-solving agents. Solving Problems by Searching. Outline. Example: Romania. Chapter 3 Problem-solving agents olving Problems by earching hapter 3 function imple-problem-olving-gent( percept) returns an action static: seq, an action sequence, initially empty state, some description of the

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 eminders ssignment 0 due midnight Thursday 9/8 ssignment 1 posted, due 9/20 (online or in box in 283) hapter 3 2 Outline Problem-solving agents Problem types

More information

Problem Solving and Search. Chapter 3

Problem Solving and Search. Chapter 3 Problem olving and earch hapter 3 Outline Problem-solving agents Problem formulation Example problems asic search algorithms In the simplest case, an agent will: formulate a goal and a problem; Problem-olving

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 3 Example: omania On holiday in omania;

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2: Search. Problem Solving Agents

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2: Search. Problem Solving Agents Class Overview COMP 3501 / COMP 4704-4 Lecture 2: Search Prof. 1 2 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions?

More information

UNINFORMED SEARCH. What to do if teammates drop? Still have 3 or more? No problem keep going. Have two or fewer and want to be merged?

UNINFORMED SEARCH. What to do if teammates drop? Still have 3 or more? No problem keep going. Have two or fewer and want to be merged? UNINFORMED SEARCH EECS492 January 14, 2010 Administrative What to do if teammates drop? Still have 3 or more? No problem keep going. Have two or fewer and want to be merged? We ll do what we can. Submitting

More information

mywbut.com Uninformed Search

mywbut.com Uninformed Search Uninformed Search 1 2.4 Search Searching through a state space involves the following: set of states Operators and their costs Start state test to check for goal state We will now outline the basic search

More information

Logic Programming: Search Strategies

Logic Programming: Search Strategies O Logic Programming: earch trategies Alan maill ov 5, 2012 Alan maill Logic Programming: earch trategies ov 5, 2012 1/1 oday Problem representation earch epth irst terative eepening readth irst A/O (alternating/game

More information

COMP 8620 Advanced Topics in AI

COMP 8620 Advanced Topics in AI OMP 8620 dvanced Topics in Lecturers: Philip Kilby & Jinbo uang 25/07/2008 1 Part 1: Search Lecturer: r Philip Kilby Philip.Kilby@nicta.com.au Weeks 1-71 (Week 7 is assignment seminars) Part 2: Probabilistic

More information

A* Optimality CS4804

A* Optimality CS4804 A* Optimality CS4804 Plan A* in a tree A* in a graph How to handle multiple paths to a node Intuition about consistency Search space + heuristic design practice A* Search Expand node in frontier with best

More information

Lecture 14: March 9, 2015

Lecture 14: March 9, 2015 324: tate-space, F, F, Uninformed earch. pring 2015 Lecture 14: March 9, 2015 Lecturer: K.R. howdhary : Professor of (VF) isclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Artificial Intelligence Fall, 2010

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Artificial Intelligence Fall, 2010 MSSHUSETTS INSTITUTE OF TEHNOLOY epartment of Electrical Engineering and omputer Science 6.0 rtificial Intelligence Fall, 00 Search Me! Recitation, Thursday September Prof. ob erwick. ifference between

More information

AI: Week 2. Tom Henderson. Fall 2014 CS 5300

AI: Week 2. Tom Henderson. Fall 2014 CS 5300 AI: Week 2 Tom Henderson Fall 2014 What s a Problem? Initial state Actions Transition model Goal Test Path Cost Does this apply to: Problem: Get A in CS5300 Solution: action sequence from initial to goal

More information

CS 331: Artificial Intelligence Uninformed Search. Real World Search Problems

CS 331: Artificial Intelligence Uninformed Search. Real World Search Problems S 331: rtificial Intelligence Uninformed Search 1 Real World Search Problems 2 1 Simpler Search Problems 3 ssumptions bout Our Environment Fully Observable Deterministic Sequential Static Discrete Single-agent

More information

Chapter3. Problem-Solving Agents. Problem Solving Agents (cont.) Well-defined Problems and Solutions. Example Problems.

Chapter3. Problem-Solving Agents. Problem Solving Agents (cont.) Well-defined Problems and Solutions. Example Problems. Problem-Solving Agents Chapter3 Solving Problems by Searching Reflex agents cannot work well in those environments - state/action mapping too large - take too long to learn Problem-solving agent - is one

More information

Last time: Problem-Solving

Last time: Problem-Solving Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation: Initial state??? 1 Last time: Problem-Solving Problem types:

More information

Solving Problem by Searching. Chapter 3

Solving Problem by Searching. Chapter 3 Solving Problem by Searching Chapter 3 Outline Problem-solving agents Problem formulation Example problems Basic search algorithms blind search Heuristic search strategies Heuristic functions Problem-solving

More information

Problem solving Basic search. Example: Romania. Example: Romania. Problem types. Intelligent Systems and HCI D7023E. Single-state problem formulation

Problem solving Basic search. Example: Romania. Example: Romania. Problem types. Intelligent Systems and HCI D7023E. Single-state problem formulation Intelligent Systems and HI 7023 Lecture 3: asic Search Paweł Pietrzak Problem solving asic search 1 2 xample: Romania On holiday in Romania; currently in rad. light leaves tomorrow from ucharest ormulate

More information

Logic Programming: Search Strategies

Logic Programming: Search Strategies O Logic Programming: earch trategies Alan maill Oct 19, 2015 Alan maill Logic Programming: earch trategies Oct 19, 2015 1/28 oday Problem representation earch epth irst terative eepening readth irst A/O

More information

Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement

Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement Outline Informed Search EE457 pplied rtificial Intelligence Spring 8 Lecture # Heuristics Informed search techniques More on heuristics Iterative improvement Russell & Norvig, chapter 4 Skip Genetic algorithms

More information

CS 771 Artificial Intelligence. Problem Solving by Searching Uninformed search

CS 771 Artificial Intelligence. Problem Solving by Searching Uninformed search CS 771 Artificial Intelligence Problem Solving by Searching Uninformed search Complete architectures for intelligence? Search? Solve the problem of what to do. Learning? Learn what to do. Logic and inference?

More information

Chapter 3. A problem-solving agent is a kind of goal-based agent. It decide what to do by finding sequences of actions that lead to desirable states.

Chapter 3. A problem-solving agent is a kind of goal-based agent. It decide what to do by finding sequences of actions that lead to desirable states. Chapter 3 A problem-solving agent is a kind of goal-based agent. It decide what to do by finding sequences of actions that lead to desirable states. A problem can be defined by four components : 1. The

More information

Problem Solving as State Space Search. Assignments

Problem Solving as State Space Search. Assignments Problem olving as tate pace earch rian. Williams 6.0- ept th, 00 lides adapted from: 6.0 Tomas Lozano Perez, Russell and Norvig IM rian Williams, Fall 0 ssignments Remember: Problem et #: Java warm up

More information

Solving problems by searching

Solving problems by searching olving problems by searching Uninformed search lides from ussell & Norvig book, revised by ndrea oli Problem-solving agents Problem types Problem formulation Example problems asic search algorithms Outline

More information

ITCS 6150 Intelligent Systems. Lecture 3 Uninformed Searches

ITCS 6150 Intelligent Systems. Lecture 3 Uninformed Searches ITCS 6150 Intelligent Systems Lecture 3 Uninformed Searches Outline Problem Solving Agents Restricted form of general agent Problem Types Fully vs. partially observable, deterministic vs. stochastic Problem

More information

Outline. Solving problems by searching. Prologue. Example: Romania. Uninformed search

Outline. Solving problems by searching. Prologue. Example: Romania. Uninformed search Outline olving problems by searching Uninformed search lides from ussell & Norvig book, revised by ndrea oli Problem-solving agents Problem types Problem formulation Example problems asic search algorithms

More information

CS 331: Artificial Intelligence Uninformed Search. Leftovers from last time

CS 331: Artificial Intelligence Uninformed Search. Leftovers from last time S 331: rtificial Intelligence Uninformed Search 1 Leftovers from last time Discrete/ontinuous Discrete: finite number of values eg. Rating can be thumbs up or down ontinuous: infinite continuum of values

More information

Set 2: State-spaces and Uninformed Search. ICS 271 Fall 2015 Kalev Kask

Set 2: State-spaces and Uninformed Search. ICS 271 Fall 2015 Kalev Kask Set 2: State-spaces and Uninformed Search ICS 271 Fall 2015 Kalev Kask You need to know State-space based problem formulation State space (graph) Search space Nodes vs. states Tree search vs graph search

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 Some slide credits to Hwee Tou Ng (Singapore) Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Heuristics

More information

What is Search? Intro to Search. Search problems. Finding goals in trees. Why is goal search not trivial? Blind Search Methods

What is Search? Intro to Search. Search problems. Finding goals in trees. Why is goal search not trivial? Blind Search Methods What is Search? lind Search Methods Search as an Tool S, DS, DS, US, ids Search is one of the most powerful approaches to problem solving in Search is a universal problem solving mechanism that Systematically

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions Class Overview COMP 3501 / COMP 4704-4 Lecture 2 Prof. JGH 318 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions? Discrete

More information

Today More about Trees. Introduction to Computers and Programming. Spanning trees. Generic search algorithm. Prim s algorithm Kruskal s algorithm

Today More about Trees. Introduction to Computers and Programming. Spanning trees. Generic search algorithm. Prim s algorithm Kruskal s algorithm Introduction to omputers and Programming Prof. I. K. Lundqvist Lecture 8 pril Today More about Trees panning trees Prim s algorithm Kruskal s algorithm eneric search algorithm epth-first search example

More information

Pengju XJTU 2016

Pengju XJTU 2016 Introduction to AI Chapter03 Solving Problems by Uninformed Searching(3.1~3.4) Pengju Ren@IAIR Outline Problem-solving agents Problem types Problem formulation Search on Trees and Graphs Uninformed algorithms

More information

CS 331: Artificial Intelligence Uninformed Search. Real World Search Problems

CS 331: Artificial Intelligence Uninformed Search. Real World Search Problems S 331: rtificial Intelligence Uninformed Search 1 Real World Search Problems 2 1 Simpler Search Problems 3 Static Observable Discrete Deterministic Single-agent ssumptions bout Our Environment 4 2 Search

More information

Outline. Solving Problems by Searching. Introduction. Problem-solving agents

Outline. Solving Problems by Searching. Introduction. Problem-solving agents Outline Solving Problems by Searching S/ University of Waterloo Sept 7, 009 Problem solving agents and search Examples Properties of search algorithms Uninformed search readth first Depth first Iterative

More information

SOLVING PROBLEMS BY SEARCHING

SOLVING PROBLEMS BY SEARCHING ontents Foundations of rtificial Intelligence 3. olving Problems by earching Problem-olving gents, Formulating Problems, earch trategies Wolfram urgard, ernhard Nebel, and Martin iedmiller lbert-udwigs-universität

More information

A2 Uninformed Search

A2 Uninformed Search 2 Uninformed Search Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of omputer Science rtificial Intelligence p.1/82 Example: The 8-puzzle 2 8 3 1 7 6 4 5 It can be

More information

Example: The 8-puzzle. A2 Uninformed Search. It can be generalized to 15-puzzle, 24-puzzle, or. (n 2 1)-puzzle for n 6. Department of Computer Science

Example: The 8-puzzle. A2 Uninformed Search. It can be generalized to 15-puzzle, 24-puzzle, or. (n 2 1)-puzzle for n 6. Department of Computer Science 2 Uninformed Search Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of omputer Science rtificial Intelligence p.1/82 Example: The 8-puzzle 2 1 7 8 3 6 4 5 It can be

More information

Problem Solving and Search

Problem Solving and Search Artificial Intelligence Problem Solving and Search Dae-Won Kim School of Computer Science & Engineering Chung-Ang University Outline Problem-solving agents Problem types Problem formulation Example problems

More information

DFS. Depth-limited Search

DFS. Depth-limited Search DFS Completeness? No, fails in infinite depth spaces or spaces with loops Yes, assuming state space finite. Time complexity? O(b m ), terrible if m is much bigger than d. can do well if lots of goals Space

More information

Search : Lecture 2. September 9, 2003

Search : Lecture 2. September 9, 2003 Search 6.825: Lecture 2 September 9, 2003 1 Problem-Solving Problems When your environment can be effectively modeled as having discrete states and actions deterministic, known world dynamics known initial

More information

6.01: Introduction to EECS I Lecture 13 May 3, 2011

6.01: Introduction to EECS I Lecture 13 May 3, 2011 6.0: Introduction to S I Lecture 3 May 3, 20 6.0: Introduction to S I Optimizing a Search Nano-Quiz Makeups Wednesday, May 4, 6-pm, 34-0. everyone can makeup/retake NQ everyone can makeup/retake two additional

More information

Informed Search. CMU Snake Robot. Administrative. Uninformed search strategies. Assignment 1 was due before class how d it go?

Informed Search. CMU Snake Robot. Administrative. Uninformed search strategies. Assignment 1 was due before class how d it go? Informed Search S151 David Kauchak Fall 2010 MU Snake Robot http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/web/people/biorobotics/projects/ modsnake/index.html Some material borrowed from : Sara Owsley Sood

More information

CS 8520: Artificial Intelligence

CS 8520: Artificial Intelligence CS 8520: Artificial Intelligence Solving Problems by Searching Paula Matuszek Spring, 2013 Slides based on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are in turn based on Russell, aima.eecs.berkeley.edu/slides-pdf.

More information

Problem Solving and Searching

Problem Solving and Searching Problem Solving and Searching CS 171/ 271 (Chapter 3) Some text and images in these slides were drawn from Russel & Norvig s published material 1 Problem Solving Agent Function 2 Problem Solving Agent

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 3: Problem Solving and Search Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes The

More information

Search. Intelligent agents. Problem-solving. Problem-solving agents. Road map of Romania. The components of a problem. that will take me to the goal!

Search. Intelligent agents. Problem-solving. Problem-solving agents. Road map of Romania. The components of a problem. that will take me to the goal! Search Intelligent agents Reflex agent Problem-solving agent T65 rtificial intelligence and Lisp Peter alenius petda@ida.liu.se epartment of omputer and Information Science Linköping University Percept

More information

Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu. Lecture 2: Search 1.

Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu. Lecture 2: Search 1. rtificial Intelligence, S, Nanjing University Spring, 2018, Yang Yu Lecture 2: Search 1 http://lamda.nju.edu.cn/yuy/course_ai18.ashx Problem in the lecture 7 2 4 51 2 3 5 6 4 5 6 8 3 1 7 8 Start State

More information

Pengju

Pengju Introduction to AI Chapter03 Solving Problems by Uninformed Searching(3.1~3.4) Pengju Ren@IAIR Outline Problem-solving agents Problem types Problem formulation Search on Trees and Graphs Uninformed algorithms

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 CS 2710 1 Outline Problem-solving agents Problem formulation Example problems Basic search algorithms CS 2710 - Blind Search 2 1 Goal-based Agents Agents that take

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

Chapter 3 Solving problems by searching

Chapter 3 Solving problems by searching 1 Chapter 3 Solving problems by searching CS 461 Artificial Intelligence Pinar Duygulu Bilkent University, Slides are mostly adapted from AIMA and MIT Open Courseware 2 Introduction Simple-reflex agents

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Berlin Chen 2004 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 3 1 Introduction Problem-Solving Agents vs. Reflex Agents Problem-solving

More information

AI: problem solving and search

AI: problem solving and search : problem solving and search Stefano De Luca Slides mainly by Tom Lenaerts Outline Problem-solving agents A kind of goal-based agent Problem types Single state (fully observable) Search with partial information

More information

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department Princess Nora University Faculty of Computer & Information Systems 1 ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department (CHAPTER-3-PART1) PROBLEM SOLVING AND SEARCH (Course coordinator) WHY

More information

Algorithms for Data Structures: Uninformed Search. Phillip Smith 19/11/2013

Algorithms for Data Structures: Uninformed Search. Phillip Smith 19/11/2013 lgorithms for Data Structures: Uninformed Search Phillip Smith 19/11/2013 Representations for Reasoning We know (at least) two models of a world: model of the static states of the world model of the effects

More information

Artificial Intelligence

Artificial Intelligence COMP224 Artificial Intelligence The Meaning of earch in AI The terms search, search space, search problem, search algorithm are widely used in computer science and especially in AI. In this context the

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Search Marc Toussaint University of Stuttgart Winter 2015/16 (slides based on Stuart Russell s AI course) Outline Problem formulation & examples Basic search algorithms 2/100 Example:

More information

Solving problems by searching

Solving problems by searching Solving problems by searching CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Outline Problem-solving

More information

Uninformed Search. Reading: Chapter 4 (Tuesday, 2/5) HW#1 due next Tuesday

Uninformed Search. Reading: Chapter 4 (Tuesday, 2/5) HW#1 due next Tuesday Uninformed Search Reading: Chapter 4 (Tuesday, 2/5) HW#1 due next Tuesday 1 Uninformed Search through the space of possible solutions Use no knowledge about which path is likely to be best Exception: uniform

More information

Solving problems by searching

Solving problems by searching Solving problems by searching CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2014 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Outline Problem-solving

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

Search. CS 3793/5233 Artificial Intelligence Search 1

Search. CS 3793/5233 Artificial Intelligence Search 1 CS 3793/5233 Artificial Intelligence 1 Basics Basics State-Space Problem Directed Graphs Generic Algorithm Examples Uninformed is finding a sequence of actions that achieve a goal from an initial state.

More information

Solving Problems by Searching

Solving Problems by Searching INF5390 Kunstig intelligens Sony Vaio VPC-Z12 Solving Problems by Searching Roar Fjellheim Outline Problem-solving agents Example problems Search programs Uninformed search Informed search Summary AIMA

More information

6.01: Introduction to EECS 1 Week 13 December 1, 2009

6.01: Introduction to EECS 1 Week 13 December 1, 2009 6.0: Introduction to Week ecember, 009 6.0: Introduction to I Optimal earch lgorithms The story so far earch domain characterized by successors function, legal actions, start state, goal function. earch

More information

Solving problems by searching. Chapter 3

Solving problems by searching. Chapter 3 Solving problems by searching Chapter 3 Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms 2 Example: Romania On holiday in Romania; currently in

More information

Informed search strategies (Section ) Source: Fotolia

Informed search strategies (Section ) Source: Fotolia Informed search strategies (Section 3.5-3.6) Source: Fotolia Review: Tree search Initialize the frontier using the starting state While the frontier is not empty Choose a frontier node to expand according

More information

A4B36ZUI - Introduction ARTIFICIAL INTELLIGENCE

A4B36ZUI - Introduction ARTIFICIAL INTELLIGENCE A4B36ZUI - Introduction to ARTIFICIAL INTELLIGENCE https://cw.fel.cvut.cz/wiki/courses/a4b33zui/start Michal Pechoucek, Branislav Bosansky, Jiri Klema & Olga Stepankova Department of Computer Science Czech

More information

Graph and Heuristic Search. Lecture 3. Ning Xiong. Mälardalen University. Agenda

Graph and Heuristic Search. Lecture 3. Ning Xiong. Mälardalen University. Agenda Graph and Heuristic earch Lecture 3 Ning iong Mälardalen University Agenda Uninformed graph search - breadth-first search on graphs - depth-first search on graphs - uniform-cost search on graphs General

More information

CAP 4630 Artificial Intelligence

CAP 4630 Artificial Intelligence CAP 4630 Artificial Intelligence Instructor: Sam Ganzfried sganzfri@cis.fiu.edu 1 http://www.ultimateaiclass.com/ https://moodle.cis.fiu.edu/ 2 Solving problems by search 3 8-puzzle 4 8-queens 5 Search

More information

CS 380: Artificial Intelligence Lecture #4

CS 380: Artificial Intelligence Lecture #4 CS 380: Artificial Intelligence Lecture #4 William Regli Material Chapter 4 Section 1-3 1 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms Hill-climbing

More information

CS 151: Intelligent Agents, Problem Formulation and Search

CS 151: Intelligent Agents, Problem Formulation and Search CS 151: Intelligent Agents, Problem Formulation and Search How do we make a computer "smart?" Computer, clean the house! Um OK?? This one's got no chance How do we represent this problem? Hmmm where to

More information

Intelligent Agents. Foundations of Artificial Intelligence. Problem-Solving as Search. A Simple Reflex Agent. Agent with Model and Internal State

Intelligent Agents. Foundations of Artificial Intelligence. Problem-Solving as Search. A Simple Reflex Agent. Agent with Model and Internal State Intelligent s Foundations of Artificial Intelligence Problem-Solving as Search S7 Fall 007 Thorsten Joachims : Anything that can be viewed as perceiving its environment through sensors and acting upon

More information

Outline. Solving problems by searching. Problem-solving agents. Example: Romania

Outline. Solving problems by searching. Problem-solving agents. Example: Romania Outline Solving problems by searching Chapter 3 Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Systems 1 Systems 2 Problem-solving agents Example: Romania

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence S:4420 rtificial Intelligence Spring 2018 Uninformed Search esare Tinelli The University of Iowa opyright 2004 18, esare Tinelli and Stuart Russell a a These notes were originally developed by Stuart Russell

More information

Solving Problems by Searching

Solving Problems by Searching INF5390 Kunstig intelligens Solving Problems by Searching Roar Fjellheim Outline Problem-solving agents Example problems Search programs Uninformed search Informed search Summary AIMA Chapter 3: Solving

More information

Problem solving and search: Chapter 3, Sections 1 5

Problem solving and search: Chapter 3, Sections 1 5 Problem solving and search: hapter 3, Sections 1 5 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms 2 Problem-solving agents estricted form of

More information

Problem solving and search: Chapter 3, Sections 1 5

Problem solving and search: Chapter 3, Sections 1 5 Problem solving and search: hapter 3, Sections 1 5 S 480 2 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms Problem-solving agents estricted form

More information

Uninformed Search. Remember: Implementation of search algorithms

Uninformed Search. Remember: Implementation of search algorithms Uninformed Search Lecture 4 Introduction to Artificial Intelligence Hadi Moradi moradi@usc.edu Remember: Implementation of search algorithms Function General-Search(problem, Queuing-Fn) returns a solution,

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 3 Restricted form of general agent: Problem-solving

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 Systems 1 Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Systems 2 Problem-solving agents Systems 3 Example:

More information

AGENTS AND ENVIRONMENTS. What is AI in reality?

AGENTS AND ENVIRONMENTS. What is AI in reality? AGENTS AND ENVIRONMENTS What is AI in reality? AI is our attempt to create a machine that thinks (or acts) humanly (or rationally) Think like a human Cognitive Modeling Think rationally Logic-based Systems

More information

Problem Solving. Russell and Norvig: Chapter 3

Problem Solving. Russell and Norvig: Chapter 3 Problem Solving Russell and Norvig: Chapter 3 Example: Route finding Example: 8-puzzle 8 2 3 4 7 6 5 6 Initial state 7 8 Goal state Example: 8-puzzle 8 2 7 8 2 3 4 5 6 3 4 7 5 6 8 2 8 2 3 4 7 3 4 7 5 6

More information

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3 CS 4700: Foundations of Artificial Intelligence Bart Selman Search Techniques R&N: Chapter 3 Outline Search: tree search and graph search Uninformed search: very briefly (covered before in other prerequisite

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE S 380: RTIFIIL INTELLIGENE PROLEM SOLVING: INFORMED SERH, * 10/9/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/s380/intro.html larification Repeated-state checking:

More information

Advanced A* Improvements

Advanced A* Improvements Advanced A* Improvements 1 Iterative Deepening A* (IDA*) Idea: Reduce memory requirement of A* by applying cutoff on values of f Consistent heuristic function h Algorithm IDA*: 1. Initialize cutoff to

More information

Informed (Heuristic) Search. Idea: be smart about what paths to try.

Informed (Heuristic) Search. Idea: be smart about what paths to try. Informed (Heuristic) Search Idea: be smart about what paths to try. 1 Blind Search vs. Informed Search What s the difference? How do we formally specify this? A node is selected for expansion based on

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 19 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 19 January, 2018 DIT411/TIN175, Artificial Intelligence Chapter 3: Classical search algorithms CHAPTER 3: CLASSICAL SEARCH ALGORITHMS DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 19 January, 2018 1 DEADLINE FOR

More information

CS 520: Introduction to Artificial Intelligence. Review

CS 520: Introduction to Artificial Intelligence. Review CS 520: Introduction to Artificial Intelligence Prof. Louis Steinberg Lecture 2: state spaces uninformed search 1 What is AI? A set of goals Review build an artificial intelligence useful subgoals A class

More information

mywbut.com Informed Search Strategies-I

mywbut.com Informed Search Strategies-I Informed Search Strategies-I 1 3.1 Introduction We have outlined the different types of search strategies. In the earlier chapter we have looked at different blind search strategies. Uninformed search

More information

Uninformed Search. Problem-solving agents. Tree search algorithms. Single-State Problems

Uninformed Search. Problem-solving agents. Tree search algorithms. Single-State Problems Uninformed Search Problem-solving agents Tree search algorithms Single-State Problems Breadth-First Search Depth-First Search Limited-Depth Search Iterative Deepening Extensions Graph search algorithms

More information

Logistics. u AI Nugget presentations. u Project Team Wikis, pages. u PolyLearn: Does everybody have access? u Lab and Homework Assignments.

Logistics. u AI Nugget presentations. u Project Team Wikis, pages. u PolyLearn: Does everybody have access? u Lab and Homework Assignments. Logistics u AI Nugget presentations u Section 1: Thomas Soria, Gagandeep Singh Kohli, Alex Ledwith u Section 3: Martin Silverio u Project Team Wikis, pages u project description refined: v Features, Requirements,

More information