Welcome to this course on Operating System Concepts

Size: px
Start display at page:

Download "Welcome to this course on Operating System Concepts"

Transcription

1 Welcome to this course on Operating System Concepts 1

2 2

3 3

4 4

5

6 6

7

8 8

9

10

11

12 12

13 13

14 Operating System is a set of system programs which provides an environment to help the user to execute the programs. The OS is a resource manager which allocates and manages various resources like processor(s), main memory, input/output devices and information (files) on secondary memory devices. The primary goal of Operating System is to provide the execution environment for the system programs and application programs. Secondary Goal of Operating System is to manage and allocate the system resources efficiently to various applications running in the system. Resource Examples Managers Memory Primary, Secondary Memory Management Processors CPU, I/O Process Management Peripherals Terminal, Printer, Tape Device Management Information Files, Data File Management Examples: WINDOWS XP WINDOWS VISTA LINUX UNIX OS/ 2 14

15 System Software which acts as an interface between the user and the computer. It provides an environment to execute different types of applications It is viewed as a Resource Allocator or Resource Manager Memory Processors Peripherals Information 15

16 16

17 Operating System is a set of system programs which provides an environment to help the user to execute the programs. 17

18 Introduction to Operating Systems Introduction to the Concepts of Memory Management 18

19 In sequential program execution/ Uniprogramming, only one program/job at a time can reside in main memory. CPU execute this program. When program is busy in I/O CPU sits idle for that time. 19

20 20

21 21

22 Introduction to Operating Systems Introduction to the Concepts of Memory Management 22

23 The computer must keep several processes in memory at the same time to improve the CPU utilization and the speed of the response of the computer to its users. Memory management discusses various ways to manage memory. 23

24 There are various memory management schemes as mentioned in the slide above. Each scheme has its own advantage and disadvantage. Selection of a particular technique depends on various factors such as hardware support, extent of memory available etc. Logical address is the address generated by the CPU and the range of these addresses is called Address Space/ User Dddress Space. Where as physical address is the actual address of the process in the main memory and the range of these addresses is called Memory Space /Physical Address Space. 24

25 Simple paged allocation is a solution to fragmentation. Advantage: As each page is separately allocated, the users job need not be contiguous. Disadvantages: Extra memory required for storing page tables Considerable amount of hardware support is required for address transformations etc. All pages of entire job must be in memory 25

26 The example in the slide above shows a page map table for 2 jobs viz., page number and frame number which essentially shows the mapping between page number and block number. JOBA has 3 pages viz., 0,1,2. Page 0 maps to frame 5 in the OS, page 1 to frame 3 and page 2 to frame 1 in the OS. JOB 2 has page 0 in frame 2 and page1 in frame7. Thus, we can see that pages of a job need not be located contiguously in the memory. 26

27 An address in job s address space is considered to be of the form(p,d) where p is the page number containing the memory location and d is the displacement (offset) of the memory location from the start of the page. This page number acts as index to a page table which is created for every job. This page table gives the corresponding frame number in the main memory for the particular page. This frame number with the displacement would give the physical address. The Page table has two purposes: It has got entries which map each page number in the program (in the secondary memory) and the corresponding page frame number (or block number present in the primary memory). Since there is one to one mapping between the page number and the frame number, even if the pages are not contiguous in the primary memory, there exists a link between all the pages of a job through this mapping in the page table. 27

28 Fragmentation is wastage of memory, it occurs when memory is divided in to many small chunks/free blocks and these free blocks are not able to satisfy any request. Fragmentation is of two type: 1. Internal fragmentation 2. External fragmentation Internal Fragmentation: As shown in the diagram in this slide, internal fragmentation is wastage of the space inside the allocated memory blocks. Because page size / memory block is of fixed size. Job may need less space but minimum 1 memory block is allocated(space allocated to a job is always multiple of frame), so the wastage of memory happens is internal fragmentation. Limitation because of fixed size memory block. External Fragmentation: Memory that is not allocated to any job but still unusable because it is divided in to small chunks. These chunks are too small to satisfy the request of any job. 28

29 29

30 The diagram in the slide above shows the page map table for demand paging. The page map table (PMT) has two additional columns viz., status and modify or judgment. Initially, all the pages have status field as NA (Not Available) implying that all the pages are in the secondary device (disk). As and when a page is loaded from the secondary to primary, the status is updated to A (Available) from NA. Now, if the same page is required again in the main memory, the status bit will indicate the presence of it in the primary memory. The judgment field decides if a page has to be moved back to the secondary memory or not. 1000, 2000, 3000 are the frame starting addresses 30

31 31

32 Page Fault: If a user job accesses a page and the page is not available in the main memory, a page fault is said to occur Page Replacement: If the memory is full then the inactive pages which are not needed currently for execution are removed and are replaced by those pages from the secondary device which are to be executed. This is called Page Replacement. FIFO: If the algorithm decides that the page has been first moved to the memory should be moved out to secondary memory first, then it is using FIFO. LRU: If the algorithm decides to move a page from main memory and store it in secondary memory based on the fact that it is not used often in the recent times, then it is called LRU. For every page a timestamp is maintained in the judgment field. LFU: If the algorithm decides to move a page from main memory and store it in secondary memory based on the fact that it is not used often, then it is called LFU. For every page a reference counter is maintained in the judgment field. NRU: If the algorithm decides to move a page from main memory and store it in secondary memory based on the fact that it is not used at all in the recent times, then it is called NRU. A reference bit is associated with each page. MRU: If the page which has been used recently will be replaced by the incoming page. MFU: This technique replaces the page which is used most frequently Demand Paging technique could lead to a scenario where in a job might try to access a particular page which is not available in main memory. This would lead to a fault called page fault. Consider the figure discussed in slide 34 (All frames are already occupied), suppose that the page 2 of job A, which is currently in memory, tries to access page 1 of job A then a page fault would occur because page 1 is not loaded in memory. Once this page fault is caused the OS would replace one of the existing pages in physical memory with page 1 of job A. the process of removing some pages from physical memory to accommodate new pages is called Page Replacement. 32

33 Number of page faults=10 Number of page replacement = 7 33

34 Number of Page faults=9 34

35 Number of Page faults=9 Ask the participants to solve the problem using LFU with LRU technique instead of FIFO. Another variation could be not to reset the counter even as a page is swapped out. Refer to the examples in the course material for more examples on different types of page replacement algorithms. 35

36 In paging, job is divided into fixed length pages, it does not provide support to user view of memory. User view of memory means, user like to see job is divided into variable length segments. For example, a program consist of main program, one or more then functions/ subroutines etc. Each of these modules are referred to by a name and each of these segments may be of different length. The length of each segment is calculated from the code written in the segment or from the logical structure of the program. Thus segmentation supports the user view of memory. A programmer has a say on the number of segments in a process and this division is dependent on the logical structure of the process. 36

37 37

38 38

39 39

40 Suppose a process references a virtual/logical address V=(S, P, d),then a search will be performed to locate (S,P). There are three possibilities for it (i) If (S,P) found in associative storage then, we fine page frame and then move as per offset to get real memory address. (ii) If (S,P) is not found in associative storage then we should follow these steps (i) Find base address b of segment map table ( in primary memory) (ii) Add b to segment number S ( Say we set S1) (iii) Then we add S1 to P to get frame number (iv) Finally we add offset d to get real memory address. (iii) If segment map table indicates that segment S is not in primary memory, a segment fault is generated 40

41 41

42 42

43 The computer system today allows multiple programs to be loaded into memory and to be executed concurrently but at one point of time only one program is in execution or rather at most one instruction is executed on behalf of the process. A source program stored on disk is called passive because it will not demand any resource. A process is an active entity i.e. program in execution is called process during execution process demand resource like CPU, memory, I/O etc. for the execution. 43

44 44

45 User feels that all of them run simultaneously, however operating system allocates one process at a time. 45

46 Here, the instructor must draw the state diagram in a piecemeal fashion slowly adding the complexity and inviting more questions. New Here the operating system recognizes the process but does not assign resources to it. Ready The process is ready/waiting to be assigned to a processor. Run When a process is selected by the CPU for execution, it moves to the run state. Blocked When a process is waiting for some event to occur, say for e.g I/O completion or reception of a signal then it is in the blocked state i.e. when a running process does not have immediate access to a resource it is said to be in the blocked state. Terminated This is the state reached when the process finishes execution. 46

47 Here, the instructor must draw the state diagram in a piecemeal fashion slowly adding the complexity and inviting more questions. New Here the operating system recognizes the process but does not assign resources to it. Ready The process is ready and waiting for the processor for execution. Run When a process is selected by the CPU for execution, it moves to the run state. Blocked When a running process does not have immediate access to a resource it is said to be in the blocked state. Terminated This is the state reached when the process finishes execution. 47

48 48

49 Context switching is a overhead as the system does not do any useful work while switching from one process to another. switching speed varies from machine to machine depends upon the memory speed, the no. of registers to be copied etc. Since at any point of time there could be more than one process waiting to be serviced by the CPU, these have to be put in hold at some place. A queue is a place where the IN and OUT of the process is controlled. There are different queues for different purposes. Example: I/O Queue If the process is waiting for an I/O operation to complete, then it goes to the I/O queue. Job queue A process entering the system for the first time goes into the Job queue. 49

50 50

51

52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Computer Hardware and System Software Concepts

Computer Hardware and System Software Concepts Computer Hardware and System Software Concepts Introduction to concepts of System Software/Operating System Welcome to this course on Computer Hardware and System Software Concepts 1 RoadMap Introduction

More information

Computer Hardware and System Software Concepts

Computer Hardware and System Software Concepts Computer Hardware and System Software Concepts Introduction to concepts of Operating System (Process & File Management) Welcome to this course on Computer Hardware and System Software Concepts 1 RoadMap

More information

Operating Systems: (Tue)

Operating Systems: (Tue) Operating Systems: (Tue) Definition: An operating system is the set of software that controls the overall operation of a computer system. provides an interface between the application software and the

More information

Chapter 3 Memory Management: Virtual Memory

Chapter 3 Memory Management: Virtual Memory Memory Management Where we re going Chapter 3 Memory Management: Virtual Memory Understanding Operating Systems, Fourth Edition Disadvantages of early schemes: Required storing entire program in memory

More information

Chapter 5. File and Memory Management

Chapter 5. File and Memory Management K. K. Wagh Polytechnic, Nashik Department: Information Technology Class: TYIF Sem: 5G System Subject: Operating Name of Staff: Suyog S.Dhoot Chapter 5. File and Memory Management A. Define file and explain

More information

Lecture 17. Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne

Lecture 17. Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne Lecture 17 Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne Page Replacement Algorithms Last Lecture: FIFO Optimal Page Replacement LRU LRU Approximation Additional-Reference-Bits

More information

OPERATING SYSTEM. PREPARED BY : DHAVAL R. PATEL Page 1. Q.1 Explain Memory

OPERATING SYSTEM. PREPARED BY : DHAVAL R. PATEL Page 1. Q.1 Explain Memory Q.1 Explain Memory Data Storage in storage device like CD, HDD, DVD, Pen drive etc, is called memory. The device which storage data is called storage device. E.g. hard disk, floppy etc. There are two types

More information

How to create a process? What does process look like?

How to create a process? What does process look like? How to create a process? On Unix systems, executable read by loader Compile time runtime Ken Birman ld loader Cache Compiler: generates one object file per source file Linker: combines all object files

More information

UNIT III MEMORY MANAGEMENT

UNIT III MEMORY MANAGEMENT UNIT III MEMORY MANAGEMENT TOPICS TO BE COVERED 3.1 Memory management 3.2 Contiguous allocation i Partitioned memory allocation ii Fixed & variable partitioning iii Swapping iv Relocation v Protection

More information

Operating systems. Part 1. Module 11 Main memory introduction. Tami Sorgente 1

Operating systems. Part 1. Module 11 Main memory introduction. Tami Sorgente 1 Operating systems Module 11 Main memory introduction Part 1 Tami Sorgente 1 MODULE 11 MAIN MEMORY INTRODUCTION Background Swapping Contiguous Memory Allocation Noncontiguous Memory Allocation o Segmentation

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Recap: Virtual Addresses A virtual address is a memory address that a process uses to access its own memory Virtual address actual physical

More information

Chapter 8: Virtual Memory. Operating System Concepts

Chapter 8: Virtual Memory. Operating System Concepts Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2009 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Chapters 9 & 10: Memory Management and Virtual Memory

Chapters 9 & 10: Memory Management and Virtual Memory Chapters 9 & 10: Memory Management and Virtual Memory Important concepts (for final, projects, papers) addressing: physical/absolute, logical/relative/virtual overlays swapping and paging memory protection

More information

File-System Structure. Allocation Methods. Free-Space Management. Directory Implementation. Efficiency and Performance. Recovery

File-System Structure. Allocation Methods. Free-Space Management. Directory Implementation. Efficiency and Performance. Recovery CHAPTER 11: FILE-SYSTEM IMPLEMENTATION File-System Structure Allocation Methods Free-Space Management Directory Implementation Efficiency and Performance Recovery Operating System Concepts, Addison-Wesley

More information

SMD149 - Operating Systems - VM Management

SMD149 - Operating Systems - VM Management SMD149 - Operating Systems - VM Management Roland Parviainen November 17, 2005 1 / 35 Outline Overview Virtual memory management Fetch, placement and replacement strategies Placement strategies Paging,

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L20 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions from last time Page

More information

Chapter 9: Virtual-Memory

Chapter 9: Virtual-Memory Chapter 9: Virtual-Memory Management Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation of Frames Thrashing Other Considerations Silberschatz, Galvin and Gagne 2013

More information

Operating Systems Unit 6. Memory Management

Operating Systems Unit 6. Memory Management Unit 6 Memory Management Structure 6.1 Introduction Objectives 6.2 Logical versus Physical Address Space 6.3 Swapping 6.4 Contiguous Allocation Single partition Allocation Multiple Partition Allocation

More information

MEMORY MANAGEMENT: Real Storage. Unit IV

MEMORY MANAGEMENT: Real Storage. Unit IV MEMORY MANAGEMENT: Real Storage Unit IV OUTLINE Storage Organization Storage Management Storage Hierarchy Storage Management Strategies Storage Placement Strategies Segmentation Paging & Demand Paging

More information

1. Creates the illusion of an address space much larger than the physical memory

1. Creates the illusion of an address space much larger than the physical memory Virtual memory Main Memory Disk I P D L1 L2 M Goals Physical address space Virtual address space 1. Creates the illusion of an address space much larger than the physical memory 2. Make provisions for

More information

SPOS MODEL ANSWER MAY 2018

SPOS MODEL ANSWER MAY 2018 SPOS MODEL ANSWER MAY 2018 Q 1. a ) Write Algorithm of pass I of two pass assembler. [5] Ans :- begin if starting address is given LOCCTR = starting address; else LOCCTR = 0; while OPCODE!= END do ;; or

More information

Computer Systems II. Memory Management" Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed

Computer Systems II. Memory Management Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed Computer Systems II Memory Management" Memory Management" Subdividing memory to accommodate many processes A program is loaded in main memory to be executed Memory needs to be allocated efficiently to

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Question Points Score Total 100

Question Points Score Total 100 Midterm #2 CMSC 412 Operating Systems Fall 2005 November 22, 2004 Guidelines This exam has 7 pages (including this one); make sure you have them all. Put your name on each page before starting the exam.

More information

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs Optimal Algorithm Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs page 1 Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3,

More information

Chapter 3: Important Concepts (3/29/2015)

Chapter 3: Important Concepts (3/29/2015) CISC 3595 Operating System Spring, 2015 Chapter 3: Important Concepts (3/29/2015) 1 Memory from programmer s perspective: you already know these: Code (functions) and data are loaded into memory when the

More information

Wednesday, November 4, 2009

Wednesday, November 4, 2009 Wednesday, November 4, 2009 Topics for today Storage management Main memory (1) Uniprogramming (2) Fixed-partition multiprogramming (3) Variable-partition multiprogramming (4) Paging (5) Virtual memory

More information

MEMORY MANAGEMENT/1 CS 409, FALL 2013

MEMORY MANAGEMENT/1 CS 409, FALL 2013 MEMORY MANAGEMENT Requirements: Relocation (to different memory areas) Protection (run time, usually implemented together with relocation) Sharing (and also protection) Logical organization Physical organization

More information

Week 2: Tiina Niklander

Week 2: Tiina Niklander Virtual memory Operations and policies Chapters 3.4. 3.6 Week 2: 17.9.2009 Tiina Niklander 1 Policies and methods Fetch policy (Noutopolitiikka) When to load page to memory? Placement policy (Sijoituspolitiikka

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory 9.1 Background 9.2 Demand Paging 9.3 Copy-on-Write 9.4 Page Replacement 9.5 Allocation of Frames 9.6 Thrashing 9.7 Memory-Mapped Files 9.8 Allocating

More information

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013 CSE325 Principles of Operating Systems Virtual Memory David P. Duggan dduggan@sandia.gov March 7, 2013 Reading Assignment 9 Chapters 10 & 11 File Systems, due 3/21 3/7/13 CSE325 - Virtual Memory 2 Outline

More information

First-In-First-Out (FIFO) Algorithm

First-In-First-Out (FIFO) Algorithm First-In-First-Out (FIFO) Algorithm Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1 3 frames (3 pages can be in memory at a time per process) 15 page faults Can vary by reference string:

More information

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles Page Replacement page 1 Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number

More information

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD OPERATING SYSTEMS #8 After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD MEMORY MANAGEMENT MEMORY MANAGEMENT The memory is one of

More information

e-pg Pathshala Subject: Computer Science Paper: Operating Systems Module 35: File Allocation Methods Module No: CS/OS/35 Quadrant 1 e-text

e-pg Pathshala Subject: Computer Science Paper: Operating Systems Module 35: File Allocation Methods Module No: CS/OS/35 Quadrant 1 e-text e-pg Pathshala Subject: Computer Science Paper: Operating Systems Module 35: File Allocation Methods Module No: CS/OS/35 Quadrant 1 e-text 35.1 Introduction File system is the most visible part of the

More information

Operating Systems, Fall

Operating Systems, Fall Policies and methods Virtual memory Operations and policies Chapters 3.4. 3.6 Week 2: 17.9.2009 Tiina Niklander 1 Fetch policy (Noutopolitiikka) When to load page to memory? Placement policy (Sijoituspolitiikka

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

Operating Systems Lecture 6: Memory Management II

Operating Systems Lecture 6: Memory Management II CSCI-GA.2250-001 Operating Systems Lecture 6: Memory Management II Hubertus Franke frankeh@cims.nyu.edu What is the problem? Not enough memory Have enough memory is not possible with current technology

More information

Page Replacement Algorithms

Page Replacement Algorithms Page Replacement Algorithms MIN, OPT (optimal) RANDOM evict random page FIFO (first-in, first-out) give every page equal residency LRU (least-recently used) MRU (most-recently used) 1 9.1 Silberschatz,

More information

Memory Management and Protection

Memory Management and Protection Part IV Memory Management and Protection Sadeghi, Cubaleska RUB 2008-09 Course Operating System Security Memory Management and Protection Main Memory Virtual Memory Roadmap of Chapter 4 Main Memory Background

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part I: Operating system overview: Memory Management 1 Hardware background The role of primary memory Program

More information

Pipelined processors and Hazards

Pipelined processors and Hazards Pipelined processors and Hazards Two options Processor HLL Compiler ALU LU Output Program Control unit 1. Either the control unit can be smart, i,e. it can delay instruction phases to avoid hazards. Processor

More information

Chapter 4 Memory Management

Chapter 4 Memory Management Chapter 4 Memory Management 4.1 Basic memory management 4.2 Swapping 4.3 Virtual memory 4.4 Page replacement algorithms 4.5 Modeling page replacement algorithms 4.6 Design issues for paging systems 4.7

More information

ECE468 Computer Organization and Architecture. Virtual Memory

ECE468 Computer Organization and Architecture. Virtual Memory ECE468 Computer Organization and Architecture Virtual Memory ECE468 vm.1 Review: The Principle of Locality Probability of reference 0 Address Space 2 The Principle of Locality: Program access a relatively

More information

Virtual Memory COMPSCI 386

Virtual Memory COMPSCI 386 Virtual Memory COMPSCI 386 Motivation An instruction to be executed must be in physical memory, but there may not be enough space for all ready processes. Typically the entire program is not needed. Exception

More information

ECE4680 Computer Organization and Architecture. Virtual Memory

ECE4680 Computer Organization and Architecture. Virtual Memory ECE468 Computer Organization and Architecture Virtual Memory If I can see it and I can touch it, it s real. If I can t see it but I can touch it, it s invisible. If I can see it but I can t touch it, it

More information

Memory management, part 2: outline. Operating Systems, 2017, Danny Hendler and Amnon Meisels

Memory management, part 2: outline. Operating Systems, 2017, Danny Hendler and Amnon Meisels Memory management, part 2: outline 1 Page Replacement Algorithms Page fault forces choice o which page must be removed to make room for incoming page? Modified page must first be saved o unmodified just

More information

1. a. Show that the four necessary conditions for deadlock indeed hold in this example.

1. a. Show that the four necessary conditions for deadlock indeed hold in this example. Tutorial 7 (Deadlocks) 1. a. Show that the four necessary conditions for deadlock indeed hold in this example. b. State a simple rule for avoiding deadlocks in this system. a. The four necessary conditions

More information

CS 5523 Operating Systems: Memory Management (SGG-8)

CS 5523 Operating Systems: Memory Management (SGG-8) CS 5523 Operating Systems: Memory Management (SGG-8) Instructor: Dr Tongping Liu Thank Dr Dakai Zhu, Dr Palden Lama, and Dr Tim Richards (UMASS) for providing their slides Outline Simple memory management:

More information

Chapter 9. Storage Management

Chapter 9. Storage Management Chapter 9 Storage Management Memory allocation techniques Uniprogramming Fixed-partition multiprogramming Variable-partition multiprogramming Paging Virtual memory Uniprogramming Operating system resides

More information

Memory Management. Jo, Heeseung

Memory Management. Jo, Heeseung Memory Management Jo, Heeseung Today's Topics Why is memory management difficult? Old memory management techniques: Fixed partitions Variable partitions Swapping Introduction to virtual memory 2 Memory

More information

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory. Demand Paging

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory. Demand Paging TDDB68 Concurrent programming and operating systems Overview: Virtual Memory Virtual Memory [SGG7/8] Chapter 9 Background Demand Paging Page Replacement Allocation of Frames Thrashing and Data Access Locality

More information

Types and Functions of Win Operating Systems

Types and Functions of Win Operating Systems LEC. 2 College of Information Technology / Software Department.. Computer Skills I / First Class / First Semester 2017-2018 Types and Functions of Win Operating Systems What is an Operating System (O.S.)?

More information

Operating Systems. IV. Memory Management

Operating Systems. IV. Memory Management Operating Systems IV. Memory Management Ludovic Apvrille ludovic.apvrille@telecom-paristech.fr Eurecom, office 470 http://soc.eurecom.fr/os/ @OS Eurecom Outline Basics of Memory Management Hardware Architecture

More information

CS420: Operating Systems

CS420: Operating Systems Virtual Memory James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background Code needs to be in memory

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those from an earlier edition of the course text Operating

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Perform page replacement. (Fig 8.8 [Stal05])

Perform page replacement. (Fig 8.8 [Stal05]) Virtual memory Operations and policies Chapters 3.4. 3.7 1 Policies and methods Fetch policy (Noutopolitiikka) When to load page to memory? Placement policy (Sijoituspolitiikka ) Where to place the new

More information

Chapter 14: File-System Implementation

Chapter 14: File-System Implementation Chapter 14: File-System Implementation Directory Implementation Allocation Methods Free-Space Management Efficiency and Performance Recovery 14.1 Silberschatz, Galvin and Gagne 2013 Objectives To describe

More information

Dr. Rafiq Zakaria Campus. Maulana Azad College of Arts, Science & Commerce, Aurangabad. Department of Computer Science. Academic Year

Dr. Rafiq Zakaria Campus. Maulana Azad College of Arts, Science & Commerce, Aurangabad. Department of Computer Science. Academic Year Dr. Rafiq Zakaria Campus Maulana Azad College of Arts, Science & Commerce, Aurangabad Department of Computer Science Academic Year 2015-16 MCQs on Operating System Sem.-II 1.What is operating system? a)

More information

Memory Management Cache Base and Limit Registers base limit Binding of Instructions and Data to Memory Compile time absolute code Load time

Memory Management Cache Base and Limit Registers base limit Binding of Instructions and Data to Memory Compile time absolute code Load time Memory Management To provide a detailed description of various ways of organizing memory hardware To discuss various memory-management techniques, including paging and segmentation To provide a detailed

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

Wednesday, November 22, 2017

Wednesday, November 22, 2017 Wednesday, November 22, 2017 Topics for today Storage management (Chapter 9) Main memory (3) Variable-partition multiprogramming (4) Paging (5) Virtual memory Page turning algorithms Summary of 5 memory

More information

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

Chapter 8 & Chapter 9 Main Memory & Virtual Memory Chapter 8 & Chapter 9 Main Memory & Virtual Memory 1. Various ways of organizing memory hardware. 2. Memory-management techniques: 1. Paging 2. Segmentation. Introduction Memory consists of a large array

More information

Introduction to Virtual Memory Management

Introduction to Virtual Memory Management Introduction to Virtual Memory Management Minsoo Ryu Department of Computer Science and Engineering Virtual Memory Management Page X Demand Paging Page X Q & A Page X Memory Allocation Three ways of memory

More information

Memory management, part 2: outline

Memory management, part 2: outline Memory management, part 2: outline Page replacement algorithms Modeling PR algorithms o Working-set model and algorithms Virtual memory implementation issues 1 Page Replacement Algorithms Page fault forces

More information

Chapter 8 Virtual Memory

Chapter 8 Virtual Memory Chapter 8 Virtual Memory Contents Hardware and control structures Operating system software Unix and Solaris memory management Linux memory management Windows 2000 memory management Characteristics of

More information

Module 9: Virtual Memory

Module 9: Virtual Memory Module 9: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing Other Considerations Demand Segmenation 9.1 Background

More information

Today. Process Memory Layout. CSCI 4061 Introduction to Operating Systems. Where does the memory come from?

Today. Process Memory Layout. CSCI 4061 Introduction to Operating Systems. Where does the memory come from? Today CSCI 4061 Introduction to Operating Systems OS Management Virtual Paging and Swapping Instructor: Abhishek Chandra 2 Process Layout Where does the memory come from? High Address Args, environment

More information

CS 333 Introduction to Operating Systems. Class 14 Page Replacement. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 14 Page Replacement. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 14 Page Replacement Jonathan Walpole Computer Science Portland State University Page replacement Assume a normal page table (e.g., BLITZ) User-program is

More information

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction Chapter 6 Objectives Chapter 6 Memory Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

OS Main Goals. 10/24/2013 Operating Systems, Beykent University 1

OS Main Goals. 10/24/2013 Operating Systems, Beykent University 1 OS Main Goals Interleave the execution of the number of processes to maximize processor utilization Provide reasonable response time Allocate resources to processes Support inter-process communication

More information

Chapter 8. Operating System Support. Yonsei University

Chapter 8. Operating System Support. Yonsei University Chapter 8 Operating System Support Contents Operating System Overview Scheduling Memory Management Pentium II and PowerPC Memory Management 8-2 OS Objectives & Functions OS is a program that Manages the

More information

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory Virtual Memory Virtual Memory CSCI Operating Systems Design Department of Computer Science Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in

More information

Memory Management. Virtual Memory. By : Kaushik Vaghani. Prepared By : Kaushik Vaghani

Memory Management. Virtual Memory. By : Kaushik Vaghani. Prepared By : Kaushik Vaghani Memory Management Virtual Memory By : Kaushik Vaghani Virtual Memory Background Page Fault Dirty Page / Dirty Bit Demand Paging Copy-on-Write Page Replacement Objectives To describe the benefits of a virtual

More information

File Management By : Kaushik Vaghani

File Management By : Kaushik Vaghani File Management By : Kaushik Vaghani File Concept Access Methods File Types File Operations Directory Structure File-System Structure File Management Directory Implementation (Linear List, Hash Table)

More information

Address spaces and memory management

Address spaces and memory management Address spaces and memory management Review of processes Process = one or more threads in an address space Thread = stream of executing instructions Address space = memory space used by threads Address

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 21-23 - Virtual Memory Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian,

More information

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Part-A QUESTION BANK UNIT-III 1. Define Dynamic Loading. To obtain better memory-space utilization dynamic loading is used. With dynamic loading, a routine is not loaded until it is called. All routines

More information

stack Two-dimensional logical addresses Fixed Allocation Binary Page Table

stack Two-dimensional logical addresses Fixed Allocation Binary Page Table Question # 1 of 10 ( Start time: 07:24:13 AM ) Total Marks: 1 LRU page replacement algorithm can be implemented by counter stack linked list all of the given options Question # 2 of 10 ( Start time: 07:25:28

More information

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Week 02 Lecture 06 Virtual Memory Hello. In this video, we

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/20/2013

Operating Systems Comprehensive Exam. Spring Student ID # 3/20/2013 Operating Systems Comprehensive Exam Spring 2013 Student ID # 3/20/2013 You must complete all of Section I You must complete two of the problems in Section II If you need more space to answer a question,

More information

3. Memory Management

3. Memory Management Principles of Operating Systems CS 446/646 3. Memory Management René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2006 Principles of Operating Systems CS 446/646

More information

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 13 Virtual memory and memory management unit In the last class, we had discussed

More information

CS 333 Introduction to Operating Systems. Class 14 Page Replacement. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 14 Page Replacement. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 14 Page Replacement Jonathan Walpole Computer Science Portland State University Page replacement Assume a normal page table (e.g., BLITZ) User-program is

More information

Memory Management. 3. What two registers can be used to provide a simple form of memory protection? Base register Limit Register

Memory Management. 3. What two registers can be used to provide a simple form of memory protection? Base register Limit Register Memory Management 1. Describe the sequence of instruction-execution life cycle? A typical instruction-execution life cycle: Fetches (load) an instruction from specific memory address. Decode the instruction

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture were based on those Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and

More information

10: Virtual Memory Management

10: Virtual Memory Management CSC400 - Operating Systems 10: Virtual Memory Management J. Sumey Introduction virtual memory management: concerned with the actual management operations of a virtual memory system fetch strategies: when

More information

OPERATING SYSTEM. Chapter 9: Virtual Memory

OPERATING SYSTEM. Chapter 9: Virtual Memory OPERATING SYSTEM Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory

More information

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner CPS104 Computer Organization and Programming Lecture 16: Virtual Memory Robert Wagner cps 104 VM.1 RW Fall 2000 Outline of Today s Lecture Virtual Memory. Paged virtual memory. Virtual to Physical translation:

More information

Module 9: Virtual Memory

Module 9: Virtual Memory Module 9: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing Other Considerations Demand Segmentation Operating

More information

Virtual Memory - Overview. Programmers View. Virtual Physical. Virtual Physical. Program has its own virtual memory space.

Virtual Memory - Overview. Programmers View. Virtual Physical. Virtual Physical. Program has its own virtual memory space. Virtual Memory - Overview Programmers View Process runs in virtual (logical) space may be larger than physical. Paging can implement virtual. Which pages to have in? How much to allow each process? Program

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 32 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions for you What is

More information

Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications

Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications concurrently on all computers in the cluster. Disadvantages:

More information

CS 4284 Systems Capstone

CS 4284 Systems Capstone CS 4284 Systems Capstone Virtual Memory Page Replacement Godmar Back VM Design Issues & Techniques CS 4284 Spring 2015 Page Replacement Policies Goal: want to minimize number of (major) page faults (situations

More information

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358 Memory Management Reading: Silberschatz chapter 9 Reading: Stallings chapter 7 1 Outline Background Issues in Memory Management Logical Vs Physical address, MMU Dynamic Loading Memory Partitioning Placement

More information

!! What is virtual memory and when is it useful? !! What is demand paging? !! When should pages in memory be replaced?

!! What is virtual memory and when is it useful? !! What is demand paging? !! When should pages in memory be replaced? Chapter 10: Virtual Memory Questions? CSCI [4 6] 730 Operating Systems Virtual Memory!! What is virtual memory and when is it useful?!! What is demand paging?!! When should pages in memory be replaced?!!

More information

15 Sharing Main Memory Segmentation and Paging

15 Sharing Main Memory Segmentation and Paging Operating Systems 58 15 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

Chapter 7 Memory Management

Chapter 7 Memory Management Operating Systems: Internals and Design Principles Chapter 7 Memory Management Ninth Edition William Stallings Frame Page Segment A fixed-length block of main memory. A fixed-length block of data that

More information