Dimensionality reduction as a defense against evasion attacks on machine learning classifiers

Size: px
Start display at page:

Download "Dimensionality reduction as a defense against evasion attacks on machine learning classifiers"

Transcription

1 Dimensionality reduction as a defense against evasion attacks on machine learning classifiers Arjun Nitin Bhagoji and Prateek Mittal Princeton University DC-Area Anonymity, Privacy, and Security Seminar, Fall

2 The Sixfold Path 1. Motivation 2. Machine learning, briefly 3. Adversaries and attacks 4. Defenses 5. Results 6. Ongoing Work and Extensions 2

3 Motivation 3

4 The The Ubiquity Ubiquity of of Machine Machine Learning learning Images Malware Machine Learning Systems Sound SVMs, Neural Networks, Random Forests, Cat Dog Malicious Benign Who are you? Open mail 4

5 Critical Applications of ML 5

6 Vulnerability of ML Modified by adversary Classified as 5 Classified as 0 Figure taken from Explaining and harnessing adversarial examples by Goodfellow et. al. 6

7 Machine Learning, Briefly 7

8 Typical ML Pipeline Training phase Training Data Labels Training data Training algorithm 1. Starts with f 0,untrained classifier 2. Optimizes to find f, which labels most data correctly Test phase Test Data Labels Trained ML Classifier y = f(x) Verify Test data Predicted labels 8 To find misclassification percentage

9 Support Vector Machines (SVMs) Support vectors Linear SVM on UCI Human Activity Recognition dataset Sitting vs. Walking Margin: Distance between parallel hyperplanes separating data Maximum margin separating hyperplane Image courtesy: Wikimedia Foundation Max. margin hyperplane: Halfway in between parallel hyperplanes 9

10 Adversaries and Attacks 10

11 Adversarial setup During the test phase (or once deployed) Trained ML Classifier y = f(x) x adv y adv = f(x adv ) y adv? = y Minimally modifies legitimate inputs to induce misclassification at test time Assume powerful adversary: has knowledge of trained classifier and input datasets Previous work has shown black-box ML systems can be reverse engineered enough to carry out evasion attacks using queries 11

12 Evasion Attack on Linear SVM x Classified as 7 Adversarial Class Original Class x adv Classified as 3! x adv = x w k. kw k k 2 Adversarial image with =2.0. Leads to 100% misclassification on test set. 2 [0, 1) Attack on Linear SVMs controls the amount of perturbation added (typically small) 12

13 Not just Images Images Szegedy et. al. (2014), Papernot et. al. (2015) Xu et. al. (2016) Malware Machine Learning Systems Sound SVMs, Neural Networks, Random Forests, Cat Malicious Dog Benign Who are you? Open mail Carlini et. al. (2016) 13

14 Defenses 14

15 Defense Desiderata Add defense here and/or modify the classifier x adv Trained ML Classifier y = f(x) y def = f def (x def ) y def = y Maintain classification accuracy (utility) Low efficiency overhead Improve security, i.e. resistance to adversarial samples Tunable, i.e. tradeoff utility, efficiency and security Effective in a range of settings 15

16 Limitations of Existing Defenses Focused on specific classifier families Resistance to adversary with knowledge of defense is unclear Only valid for specific attacks Case in point Proposed defense for neural networks of Papernot et. al. (2015) broken by modified attack in Carlini et. al. (2016) 16

17 Dimensionality reduction Preprocessing step for high-dimensional data Novel use as a defense against evasion attacks Various Algorithms tried Principal Component Analysis (PCA) Random Projections Kernel PCA 17

18 Principal Component Analysis d k u i : 1 n XT X u i = i u i k n d n Data Principal Components Reduced Dimension Data Principal component Use Principal Component Analysis (PCA) to reduce dimension Identifies top k directions of highest variance Directions: eigenvectors of covariance matrix 18

19 Reconstruction-based defense Step 1: Compute ˆx =, reconstructed input kx hx, u i iu i i=1 Initial adversarial example (Input may be benign or adversarial) Step 2: Find f(ˆx), where f( ) is the original classifier After reconstruction Intuition Perturbation added in existing attacks has low variance Reconstruction step removes perturbation 19

20 Re-training based defense f k Step 1: Train new classifier on (red. dim. training data) X train k Step 2: Project all inputs to k dimensions Step 3: Use f k to classify subsequent inputs Intuition For SVMs, margin increases for lower-dimensional classifiers 20

21 Results 21

22 Validation of defenses Do the defenses work for 1. different datasets? 2. various ML classifiers? 3. different attacks on the same classifier? 4. dimensionality reduction algorithms other than PCA? 22

23 Datasets used MNIST: Handwritten digits from 0 to 9. Extensively studied from the attack perspective. Enables visual evaluation of defenses. UCI HAR: Measurements obtained from a smartphone's accelerometer and gyroscope. Six activities: Walking, Walking Upstairs, Walking Downstairs, Sitting, Standing and Laying. 23

24 Linear SVM: Re-training Defense for MNIST Reconstruction 92.33% No defense 9.43% =0 24

25 Linear SVM: Reconstruction Defense for HAR 77.88% 28.74% 25

26 Classification accuracy HAR dataset 96.7% MNIST dataset 91.5% 91.2% 91.6% Takeaway: Defenses work for two different datasets with minimal utility loss 26

27 Neural Network: Reconstruction Defense for MNIST 96.86%, Utility: 97.71% 33.77%, Utility: 96.43% Re-training gives 7.17% misclassification at utility of 97.19%! 27

28 Ongoing Work and Extensions 28

29 Strategic attacks What if the adversary is aware of the defenses? For PCA defense, heuristically, adversary adds perturbation in directions with large projection along principal components Ongoing evaluations suggest defenses are effective even for strategic adversary 29

30 Extensions Formal definitions of classifier security Proofs for the effectiveness of dimensionality reduction Optimal attacks against various defenses and classifiers 30

31 That s all folks! Questions? 31

32 Backup slides 32

33 Evasion Attack on Neural Networks Classified as 5 Fast Sign Gradient attack x adv = x + sign(rj f (x,y, )) 2 [0, 1] Classified as 0! where J f ( ) is the loss function of the neural network Adversarial image with =0.15 Leads to 99% misclassification on test set. 33

34 Neural Networks p 1 p p 3 p C Input layer Output softmax layer Hidden layers Function that takes an input x and outputs a vector of probabilities y, giving the probability of each class 34

35 Motivation Machine Learning systems are ubiquitous BUT Vulnerable to adversarially modified inputs SO Good defenses are needed 35

36 Dimensionality reduction as a defense against evasion attacks on machine learning classifiers min r krk 2 subject to f(x + r) =l, Classified as 8 x + r 2 [0, 1] d. x re is the input, perturbation, r and Classified as 3 neural network. f 36

37 Linear SVM: Re-training Defense for MNIST 37

38 Linear SVM: Reconstruction Defense for Reconstruction MNIST 92.33% No defense 10.39% =0 38

39 Linear SVM: Re-training defense for HAR 39

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples Vulnerability of machine learning models to adversarial examples Petra Vidnerová Institute of Computer Science The Czech Academy of Sciences Hora Informaticae 1 Outline Introduction Works on adversarial

More information

Adversarial Attacks on Image Recognition*

Adversarial Attacks on Image Recognition* Adversarial Attacks on Image Recognition* Masha Itkina, Yu Wu, and Bahman Bahmani 3 Abstract This project extends the work done by Papernot et al. in [4] on adversarial attacks in image recognition. We

More information

Countering Adversarial Images using Input Transformations

Countering Adversarial Images using Input Transformations Countering Adversarial Images using Input Transformations Chuan Guo, Mayank Rana, Moustapha Cisse, Laurens Van Der Maaten Presented by Hari Venugopalan, Zainul Abi Din Motivation: Why is this a hard problem

More information

Properties of adv 1 Adversarials of Adversarials

Properties of adv 1 Adversarials of Adversarials Properties of adv 1 Adversarials of Adversarials Nils Worzyk and Oliver Kramer University of Oldenburg - Dept. of Computing Science Oldenburg - Germany Abstract. Neural networks are very successful in

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Raquel Urtasun & Rich Zemel University of Toronto Nov 4, 2015 Urtasun & Zemel (UofT) CSC 411: 14-PCA & Autoencoders Nov 4, 2015 1 / 18

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 14-PCA & Autoencoders 1 / 18

More information

Adversarial Machine Learning An Introduction. With slides from: Binghui Wang

Adversarial Machine Learning An Introduction. With slides from: Binghui Wang Adversarial Machine Learning An Introduction With slides from: Binghui Wang Outline Machine Learning (ML) Adversarial ML Attack Taxonomy Capability Adversarial Training Conclusion Outline Machine Learning

More information

AI AND CYBERSECURITY APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN SECURITY UNDERSTANDING AND DEFENDING AGAINST ADVERSARIAL AI

AI AND CYBERSECURITY APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN SECURITY UNDERSTANDING AND DEFENDING AGAINST ADVERSARIAL AI SESSION ID: SPO2-T07 AI AND CYBERSECURITY APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN SECURITY UNDERSTANDING AND DEFENDING AGAINST ADVERSARIAL AI Sridhar Muppidi IBM Fellow and VP Technology IBM Security

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

Adversarial Examples in Deep Learning. Cho-Jui Hsieh Computer Science & Statistics UC Davis

Adversarial Examples in Deep Learning. Cho-Jui Hsieh Computer Science & Statistics UC Davis Adversarial Examples in Deep Learning Cho-Jui Hsieh Computer Science & Statistics UC Davis Adversarial Example Adversarial Example More Examples Robustness is critical in real systems More Examples Robustness

More information

Adversarial Examples and Adversarial Training. Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University,

Adversarial Examples and Adversarial Training. Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University, Adversarial Examples and Adversarial Training Ian Goodfellow, Staff Research Scientist, Google Brain CS 231n, Stanford University, 2017-05-30 Overview What are adversarial examples? Why do they happen?

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

arxiv: v4 [cs.cr] 19 Mar 2017

arxiv: v4 [cs.cr] 19 Mar 2017 arxiv:1602.02697v4 [cs.cr] 19 Mar 2017 Practical Black-Box Attacks against Machine Learning Nicolas Papernot Patrick McDaniel Pennsylvania State University ngp5056@cse.psu.edu Pennsylvania State University

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

Tutorial on Machine Learning Tools

Tutorial on Machine Learning Tools Tutorial on Machine Learning Tools Yanbing Xue Milos Hauskrecht Why do we need these tools? Widely deployed classical models No need to code from scratch Easy-to-use GUI Outline Matlab Apps Weka 3 UI TensorFlow

More information

arxiv: v1 [cs.cr] 1 Aug 2017

arxiv: v1 [cs.cr] 1 Aug 2017 ADVERSARIAL-PLAYGROUND: A Visualization Suite Showing How Adversarial Examples Fool Deep Learning Andrew P. Norton * Yanjun Qi Department of Computer Science, University of Virginia arxiv:1708.00807v1

More information

arxiv: v2 [cs.cr] 19 Feb 2016

arxiv: v2 [cs.cr] 19 Feb 2016 arxiv:1602.02697v2 [cs.cr] 19 Feb 2016 Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples Nicolas Papernot - The Pennsylvania State University Patrick McDaniel - The Pennsylvania

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

arxiv: v3 [cs.cr] 31 May 2018

arxiv: v3 [cs.cr] 31 May 2018 DARTS: Deceiving Autonomous Cars with Toxic Signs Chawin Sitawarin Princeton University Princeton, NJ, USA Arjun Nitin Bhagoji Princeton University Princeton, NJ, USA Arsalan Mosenia Princeton University

More information

ECE 285 Class Project Report

ECE 285 Class Project Report ECE 285 Class Project Report Based on Source localization in an ocean waveguide using supervised machine learning Yiwen Gong ( yig122@eng.ucsd.edu), Yu Chai( yuc385@eng.ucsd.edu ), Yifeng Bu( ybu@eng.ucsd.edu

More information

Data Science Bootcamp Curriculum. NYC Data Science Academy

Data Science Bootcamp Curriculum. NYC Data Science Academy Data Science Bootcamp Curriculum NYC Data Science Academy 100+ hours free, self-paced online course. Access to part-time in-person courses hosted at NYC campus Machine Learning with R and Python Foundations

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions CAMCOS Report Day December 9th, 2015 San Jose State University Project Theme: Classification The Kaggle Competition

More information

CAMCOS Report Day. December 9 th, 2015 San Jose State University Project Theme: Classification

CAMCOS Report Day. December 9 th, 2015 San Jose State University Project Theme: Classification CAMCOS Report Day December 9 th, 2015 San Jose State University Project Theme: Classification On Classification: An Empirical Study of Existing Algorithms based on two Kaggle Competitions Team 1 Team 2

More information

Fishy Faces: Crafting Adversarial Images to Poison Face Authentication

Fishy Faces: Crafting Adversarial Images to Poison Face Authentication Fishy Faces: Crafting Adversarial Images to Poison Face Authentication Giuseppe Garofalo, Vera Rimmer, Tim Van hamme, Davy Preuveneers and Wouter Joosen WOOT 2018, August 13-14 (Baltimore, MD, USA) Face

More information

Human Activity Recognition via Cellphone Sensor Data

Human Activity Recognition via Cellphone Sensor Data Human Activity Recognition via Cellphone Sensor Data Wei Ji, Heguang Liu, Jonathan Fisher Abstract The purpose of this project is to identify human activities while using cell phones via mobile sensor

More information

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from LECTURE 5: DUAL PROBLEMS AND KERNELS * Most of the slides in this lecture are from http://www.robots.ox.ac.uk/~az/lectures/ml Optimization Loss function Loss functions SVM review PRIMAL-DUAL PROBLEM Max-min

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 8.9 (SVMs) Goals Finish Backpropagation Support vector machines Backpropagation. Begin with randomly initialized weights 2. Apply the neural network to each training

More information

Forgotten Siblings: Unifying Attacks on Machine Learning and Digital Watermarking

Forgotten Siblings: Unifying Attacks on Machine Learning and Digital Watermarking Forgotten Siblings: Unifying Attacks on Machine Learning and Digital Watermarking Erwin Quiring, Daniel Arp and Konrad Rieck Technische Universität Braunschweig Brunswick, Germany Abstract Machine learning

More information

Practical Black-box Attacks on Deep Neural Networks using Efficient Query Mechanisms

Practical Black-box Attacks on Deep Neural Networks using Efficient Query Mechanisms Practical Black-box Attacks on Deep Neural Networks using Efficient Query Mechanisms Arjun Nitin Bhagoji 1, Warren He 2, Bo Li 3, and Dawn Song 2 1 Princeton University 2 University of California, Berkeley

More information

Shape Context Matching For Efficient OCR

Shape Context Matching For Efficient OCR Matching For Efficient OCR May 14, 2012 Matching For Efficient OCR Table of contents 1 Motivation Background 2 What is a? Matching s Simliarity Measure 3 Matching s via Pyramid Matching Matching For Efficient

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

Lecture Linear Support Vector Machines

Lecture Linear Support Vector Machines Lecture 8 In this lecture we return to the task of classification. As seen earlier, examples include spam filters, letter recognition, or text classification. In this lecture we introduce a popular method

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

Support Vector Machines + Classification for IR

Support Vector Machines + Classification for IR Support Vector Machines + Classification for IR Pierre Lison University of Oslo, Dep. of Informatics INF3800: Søketeknologi April 30, 2014 Outline of the lecture Recap of last week Support Vector Machines

More information

Understanding Adversarial Space through the lens of Attribution

Understanding Adversarial Space through the lens of Attribution Understanding Adversarial Space through the lens of Attribution Mayank Singh 1 [0000 0001 7261 6347], Nupur Kumari 1 [0000 0003 1799 1069], Abhishek Sinha 1 [0000 0002 3598 480X], and Balaji Krishnamurthy

More information

1 Case study of SVM (Rob)

1 Case study of SVM (Rob) DRAFT a final version will be posted shortly COS 424: Interacting with Data Lecturer: Rob Schapire and David Blei Lecture # 8 Scribe: Indraneel Mukherjee March 1, 2007 In the previous lecture we saw how

More information

Transductive Learning: Motivation, Model, Algorithms

Transductive Learning: Motivation, Model, Algorithms Transductive Learning: Motivation, Model, Algorithms Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, FRANCE olivier.bousquet@m4x.org University of New Mexico, January 2002 Goal

More information

Tutorials (M. Biehl)

Tutorials (M. Biehl) Tutorials 09-11-2018 (M. Biehl) Suggestions: - work in groups (as formed for the other tutorials) - all this should work in the python environments that you have been using; but you may also switch to

More information

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Lori Cillo, Attebury Honors Program Dr. Rajan Alex, Mentor West Texas A&M University Canyon, Texas 1 ABSTRACT. This work is

More information

Online Pose Classification and Walking Speed Estimation using Handheld Devices

Online Pose Classification and Walking Speed Estimation using Handheld Devices Online Pose Classification and Walking Speed Estimation using Handheld Devices Jun-geun Park MIT CSAIL Joint work with: Ami Patel (MIT EECS), Jonathan Ledlie (Nokia Research), Dorothy Curtis (MIT CSAIL),

More information

arxiv: v1 [cs.cv] 27 Dec 2017

arxiv: v1 [cs.cv] 27 Dec 2017 Adversarial Patch Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer {tombrown,dandelion,aurkor,abadi,gilmer}@google.com arxiv:1712.09665v1 [cs.cv] 27 Dec 2017 Abstract We present a method

More information

Fraud Detection using Machine Learning

Fraud Detection using Machine Learning Fraud Detection using Machine Learning Aditya Oza - aditya19@stanford.edu Abstract Recent research has shown that machine learning techniques have been applied very effectively to the problem of payments

More information

Activity recognition and energy expenditure estimation

Activity recognition and energy expenditure estimation Activity recognition and energy expenditure estimation A practical approach with Python WebValley 2015 Bojan Milosevic Scope Goal: Use wearable sensors to estimate energy expenditure during everyday activities

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples ITAT 216 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 187 194 http://ceur-ws.org/vol-1649, Series ISSN 1613-73, c 216 P. Vidnerová, R. Neruda Vulnerability of machine learning models to adversarial

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

Tensor Sparse PCA and Face Recognition: A Novel Approach

Tensor Sparse PCA and Face Recognition: A Novel Approach Tensor Sparse PCA and Face Recognition: A Novel Approach Loc Tran Laboratoire CHArt EA4004 EPHE-PSL University, France tran0398@umn.edu Linh Tran Ho Chi Minh University of Technology, Vietnam linhtran.ut@gmail.com

More information

Fast and Evasive Attacks: Highlighting the Challenges Ahead

Fast and Evasive Attacks: Highlighting the Challenges Ahead Fast and Evasive Attacks: Highlighting the Challenges Ahead Moheeb Rajab, Fabian Monrose, and Andreas Terzis Computer Science Department Johns Hopkins University Outline Background Related Work Sampling

More information

CPSC 340: Machine Learning and Data Mining. More Linear Classifiers Fall 2017

CPSC 340: Machine Learning and Data Mining. More Linear Classifiers Fall 2017 CPSC 340: Machine Learning and Data Mining More Linear Classifiers Fall 2017 Admin Assignment 3: Due Friday of next week. Midterm: Can view your exam during instructor office hours next week, or after

More information

Deep Learning for Embedded Security Evaluation

Deep Learning for Embedded Security Evaluation Deep Learning for Embedded Security Evaluation Emmanuel Prouff 1 1 Laboratoire de Sécurité des Composants, ANSSI, France April 2018, CISCO April 2018, CISCO E. Prouff 1/22 Contents 1. Context and Motivation

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please)

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please) Virginia Tech. Computer Science CS 5614 (Big) Data Management Systems Fall 2014, Prakash Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in

More information

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing feature 3 PC 3 Beate Sick Many slides are taken form Hinton s great lecture on NN: https://www.coursera.org/course/neuralnets

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

3D Object Recognition using Multiclass SVM-KNN

3D Object Recognition using Multiclass SVM-KNN 3D Object Recognition using Multiclass SVM-KNN R. Muralidharan, C. Chandradekar April 29, 2014 Presented by: Tasadduk Chowdhury Problem We address the problem of recognizing 3D objects based on various

More information

Bagging for One-Class Learning

Bagging for One-Class Learning Bagging for One-Class Learning David Kamm December 13, 2008 1 Introduction Consider the following outlier detection problem: suppose you are given an unlabeled data set and make the assumptions that one

More information

ECE 285 Final Project

ECE 285 Final Project ECE 285 Final Project Michael Threet mthreet@ucsd.edu Chenyin Liu chl586@ucsd.edu Rui Guo rug009@eng.ucsd.edu Abstract Source localization allows for range finding in underwater acoustics. Traditionally,

More information

CSE 40171: Artificial Intelligence. Learning from Data: Unsupervised Learning

CSE 40171: Artificial Intelligence. Learning from Data: Unsupervised Learning CSE 40171: Artificial Intelligence Learning from Data: Unsupervised Learning 32 Homework #6 has been released. It is due at 11:59PM on 11/7. 33 CSE Seminar: 11/1 Amy Reibman Purdue University 3:30pm DBART

More information

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio Université de Montréal 13/06/2007

More information

Support vector machines

Support vector machines Support vector machines When the data is linearly separable, which of the many possible solutions should we prefer? SVM criterion: maximize the margin, or distance between the hyperplane and the closest

More information

Artificial Neural Networks (Feedforward Nets)

Artificial Neural Networks (Feedforward Nets) Artificial Neural Networks (Feedforward Nets) y w 03-1 w 13 y 1 w 23 y 2 w 01 w 21 w 22 w 02-1 w 11 w 12-1 x 1 x 2 6.034 - Spring 1 Single Perceptron Unit y w 0 w 1 w n w 2 w 3 x 0 =1 x 1 x 2 x 3... x

More information

Static Gesture Recognition with Restricted Boltzmann Machines

Static Gesture Recognition with Restricted Boltzmann Machines Static Gesture Recognition with Restricted Boltzmann Machines Peter O Donovan Department of Computer Science, University of Toronto 6 Kings College Rd, M5S 3G4, Canada odonovan@dgp.toronto.edu Abstract

More information

In Network and Distributed Systems Security Symposium (NDSS) 2018, San Diego, February Feature Squeezing:

In Network and Distributed Systems Security Symposium (NDSS) 2018, San Diego, February Feature Squeezing: In Network and Distributed Systems Security Symposium (NDSS) 2018, San Diego, February 2018 Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks Weilin Xu, David Evans, Yanjun Qi University

More information

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Introduction to object recognition Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Overview Basic recognition tasks A statistical learning approach Traditional or shallow recognition

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators HW due on Thursday Face Recognition: Dimensionality Reduction Biometrics CSE 190 Lecture 11 CSE190, Winter 010 CSE190, Winter 010 Perceptron Revisited: Linear Separators Binary classification can be viewed

More information

Hand Written Digit Recognition Using Tensorflow and Python

Hand Written Digit Recognition Using Tensorflow and Python Hand Written Digit Recognition Using Tensorflow and Python Shekhar Shiroor Department of Computer Science College of Engineering and Computer Science California State University-Sacramento Sacramento,

More information

Imperial College London. Department of Electrical and Electronic Engineering. Final Year Project Report 2018

Imperial College London. Department of Electrical and Electronic Engineering. Final Year Project Report 2018 Imperial College London Department of Electrical and Electronic Engineering Final Year Project Report 2018 Project Title: Fooling Neural Networks using Adversarial Image Perturbations Student: Guillaume

More information

AUROR: Defending Against Poisoning Attacks in Collaborative Deep Learning Systems

AUROR: Defending Against Poisoning Attacks in Collaborative Deep Learning Systems AUROR: Defending Against Poisoning Attacks in Collaborative Deep Learning Systems Shiqi Shen Shruti Tople Prateek Saxena National University of Singapore {shiqi04, shruti90, prateeks}@comp.nus.edu.sg ABSTRACT

More information

On Learning and Recognition of Secure Patterns

On Learning and Recognition of Secure Patterns Pa#ern Recogni-on and Applica-ons Lab On Learning and Recognition of Secure Patterns BaAsta Biggio Dept. Of Electrical and Electronic Engineering University of Cagliari, Italy University of Cagliari, Italy

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Michael Tagare De Guzman May 19, 2012 Support Vector Machines Linear Learning Machines and The Maximal Margin Classifier In Supervised Learning, a learning machine is given a training

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 15 th, 2007 2005-2007 Carlos Guestrin 1 1-Nearest Neighbor Four things make a memory based learner:

More information

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition Linear Discriminant Analysis in Ottoman Alphabet Character Recognition ZEYNEB KURT, H. IREM TURKMEN, M. ELIF KARSLIGIL Department of Computer Engineering, Yildiz Technical University, 34349 Besiktas /

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Unsupervised learning Daniel Hennes 29.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Supervised learning Regression (linear

More information

Understanding Faces. Detection, Recognition, and. Transformation of Faces 12/5/17

Understanding Faces. Detection, Recognition, and. Transformation of Faces 12/5/17 Understanding Faces Detection, Recognition, and 12/5/17 Transformation of Faces Lucas by Chuck Close Chuck Close, self portrait Some slides from Amin Sadeghi, Lana Lazebnik, Silvio Savarese, Fei-Fei Li

More information

GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES

GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES Ashwin Swaminathan ashwins@umd.edu ENEE633: Statistical and Neural Pattern Recognition Instructor : Prof. Rama Chellappa Project 2, Part (a) 1. INTRODUCTION

More information

The Mathematics Behind Neural Networks

The Mathematics Behind Neural Networks The Mathematics Behind Neural Networks Pattern Recognition and Machine Learning by Christopher M. Bishop Student: Shivam Agrawal Mentor: Nathaniel Monson Courtesy of xkcd.com The Black Box Training the

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

arxiv: v1 [cs.cv] 16 Mar 2018

arxiv: v1 [cs.cv] 16 Mar 2018 Semantic Adversarial Examples Hossein Hosseini Radha Poovendran Network Security Lab (NSL) Department of Electrical Engineering, University of Washington, Seattle, WA arxiv:1804.00499v1 [cs.cv] 16 Mar

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines CS 536: Machine Learning Littman (Wu, TA) Administration Slides borrowed from Martin Law (from the web). 1 Outline History of support vector machines (SVM) Two classes,

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

Music Genre Classification

Music Genre Classification Music Genre Classification Matthew Creme, Charles Burlin, Raphael Lenain Stanford University December 15, 2016 Abstract What exactly is it that makes us, humans, able to tell apart two songs of different

More information

Discriminate Analysis

Discriminate Analysis Discriminate Analysis Outline Introduction Linear Discriminant Analysis Examples 1 Introduction What is Discriminant Analysis? Statistical technique to classify objects into mutually exclusive and exhaustive

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

Feature Visualization

Feature Visualization CreativeAI: Deep Learning for Graphics Feature Visualization Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TU Munich UCL Timetable Theory and Basics State of the Art

More information

.. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar.. Machine Learning: Support Vector Machines: Linear Kernel Support Vector Machines Extending Perceptron Classifiers. There are two ways to

More information

Facial Expression Classification with Random Filters Feature Extraction

Facial Expression Classification with Random Filters Feature Extraction Facial Expression Classification with Random Filters Feature Extraction Mengye Ren Facial Monkey mren@cs.toronto.edu Zhi Hao Luo It s Me lzh@cs.toronto.edu I. ABSTRACT In our work, we attempted to tackle

More information

Handwritten English Alphabet Recognition Using Bigram Cost Chengshu (Eric) Li Fall 2015, CS229, Stanford University

Handwritten English Alphabet Recognition Using Bigram Cost Chengshu (Eric) Li Fall 2015, CS229, Stanford University Handwritten English Alphabet Recognition Using Bigram Cost Chengshu (Eric) Li chengshu@stanford.edu Fall 2015, CS229, Stanford University Abstract: This paper describes a new approach to handwritten English

More information

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Detection Recognition Sally History Early face recognition systems: based on features and distances

More information