Computer Logic II CCE 2010

Size: px
Start display at page:

Download "Computer Logic II CCE 2010"

Transcription

1 Computer Logic II CCE 2010 Dr. Owen Casha Computer Logic II 1

2 The Processing Unit Computer Logic II 2

3 The Processing Unit In its simplest form, a computer has one unit that executes program instructions. Because of its central role, this unit is known as the central processing unit (CPU). The solution algorithm for any problem consists of a series of steps that must be carried out in a specific sequence. These steps, each of which represent one machine instruction. Each of these instructions is executed by carrying out a sequence of more rudimentary operations, known as micro instructions. Computer Logic II 3

4 Program Execution The instructions constituting a program to be executed by a computer are loaded in sequential locations in memory. To execute this program, the CPU fetches instructions, one at a time and performs the functions specified. Instructions are fetched from successive memory locations until a branch or jump instruction is executed. Computer Logic II 4

5 Program Counter The CPU keeps track of the address of the memory location containing the next instruction by using a dedicated CPU register called the program counter (PC) or instruction pointer (IP). After fetching an instruction, the contents of the PC are updated to point to the next instructions to be executed. Computer Logic II 5

6 Data Paths Computer Logic II 6

7 Processor Operations With a few exceptions, most of the operations needed to execute an instruction can be carried out by performing one or more of the following functions: Fetch the contents of a given memory location and load it into a CPU register. Store a word of data from a CPU register into a given memory location. Transfer a word of data from one CPU register to another or to the ALU. Perform an arithmetic or logic operation and store the result in a CPU register. Computer Logic II 7

8 Fetch a word from Memory Assuming, as an example, that the address of the memory location to be accessed is in register R1 and that the memory contents are to be loaded in R2: [ ] contains of Asynchronous memory (needs a reply) Computer Logic II 8

9 Synchronous and Asynchronous Transfers A data transfer in which one device initiates the transfer and waits until the other device responds is referred to as an asynchronous transfer. For example the CPU issues a Read request and waits for the MFC signal. In synchronous transfer, one of the control lines carries common timing signals from a central clock. The synchronous transfer scheme leads to simpler implementation, but however it cannot accommodate devices of widely varying speed, except by reducing the speed of all devices to that of the slowest one. Computer Logic II 9

10 Storing a word in Memory Assuming, as an example, that the address of the memory location to be accessed is in register R1 and that the contents of R2 is to be written to memory: Computer Logic II 10

11 Input and Output Gating CPU Bus Computer Logic II 11

12 Register Transfer For example let us consider the transfer of contents of register R1 to register R4: Enable the output of register R1 by setting R1 out to 1. This places the contents of R1 on the CPU bus. Enable the input of register R4 by setting R4 in to 1. This loads the data from the CPU bus into register R4. Computer Logic II 12

13 An ALU Operation Computer Logic II 13

14 A Complete Instruction As an example let us consider the instruction: Add (R3), R1 Add the contents of the memory location addressed by R3 (R3 contains the address of the memory location) to the contents of the register R1, storing the result in R1. Execution of this instruction the following actions: Fetch the instructions Fetch the memory operand Perform the addition to R1 Store the results into R1 Micro instructions 1. PC out, MAR in, Read, Clear Y, Set Carry-in, Add, Z in 2. Z out, PC in, WMFC 3. MDR out,ir in 4. R3 out, MAR in, Read 5. Clear Carry-in, R1 out, Y in, WMFC 6. MDR out, Add, Z in 7. Z out, R1 in, End Computer Logic II 14

15 Instruction fetch (Step 1) Computer Logic II 15

16 Instruction fetch (Step 2) Computer Logic II 16

17 Instruction fetch (Step 3) Computer Logic II 17

18 Operand 1 fetch (Step 4) Computer Logic II 18

19 Operand 2 load (Step 5) Computer Logic II 19

20 Perform addition (Step 6) Computer Logic II 20

21 Store Result (Step 7) Computer Logic II 21

22 Instruction Parallelism From the previous slides, it is to note that the instructions could be performed in parallel as long and they don t use the CPU bus simultaneously. Thus the CPU bus is used in mutual exclusion. Whilst waiting for memory to reply to request by the CPU, using the WMFC, other operations, which do not need the data from memory could be performed. The two factors decide the division of the instructions into steps. Computer Logic II 22

23 Branching (Jumps) Branching is accomplished by replacing the current contents of the PC with the branch address, i.e. the address of the instruction to which the program must branch. In relative addressing, the branch address is usually obtained by adding an offset X which is given in the branch instruction, to the current value of the PC. Computer Logic II 23

24 Get PC contents (Step 4a) Computer Logic II 24

25 Conditional? (Step 4b) Computer Logic II 25

26 Add Offset (Step 5) Computer Logic II 26

27 Restore PC (Step 6) Z in Computer Logic II 27

28 Hardwired Control One technique for the generating the control signal to perform the required operation steps is the Hardwired Control technique. Consider the sequence of operations needed for the ADD operation seven non-overlapping time slots are required for the execution of this instruction, each of which long enough to enable the CPU to perform all the required actions in the given step. If we assume a constant time is allotted to each step, the required control signals can be based on a counter driven by a clock signal. Computer Logic II 28

29 Control Unit Organization Computer Logic II 29

30 Encoder / Decoder * Macro-instructions Micro-instructions * Johnson Counter 100,010,001,100, Computer Logic II 30

31 Encoder Signal Example Considering the timing of Z in in the various operations considered: Occurs in T 1 of every operation since it makes part of the instruction fetch cycle. Occurs in T 6 of the ADD command. Occurs in T 5 of the JMP command. Z in = T1 + T6 ADD+ T5 JMP Computer Logic II 31

32 Encoder Logic Computer Logic II 32

33 The End Case Computer Logic II 33

34 PLA Circuit Implementation PLA Computer Logic II 34

35 Micro-programmed Control In microprogrammed control, control signals are generated by a program similar to a machine language program. A control word CW is a word whose individual bits represent the various control signals. Each of the control steps in the control sequence of an instruction defines a unique combination of 1 s and 0 s in the CW. A sequence of CWs corresponding to the control sequence of a machine instruction constitutes the micro-routine for that instruction, and the individual control words in this micro-routine are referred to as micro-instructions. Computer Logic II 35

36 Micro-instruction Example (Add) Computer Logic II 36

37 Basic Microprogrammed Control Unit Computer Logic II 37

38 Conditional Execution Conditional branching cannot be implemented using this simple system. In this case, the microinstruction set is expanded to include some conditional branch microinstructions: In addition to the branch address, these microinstructions specify which of the status flags, condition codes, or, possibly, bits of the instruction register, should be checked as a condition for branching to take place. To support micro-program branching, the organization of the control unit should be modified in a such a way that the address generator could be modified during the execution of an instruction. Computer Logic II 38

39 JPN Microroutine Computer Logic II 39

40 Modified Control Unit Computer Logic II 40

41 Micro PC loading In this control unit, the micro-program-counter is incremented every time a new microinstruction is fetched from the micro-program memory, except: When the end microinstruction is encountered, the Micro- PC is loaded with the address of the first CW in the microroutine for the instruction fetch cycle (address 0). When a new instruction is loaded into IR, the micro-pc is loaded with the starting address of the micro-routine for that instruction. When a branch microinstruction is encountered and the branch condition is satisfied, the micro-pc is loaded with the branch address. Computer Logic II 41

42 Microinstruction Format In this basic scheme we require a bit for every control signal. Thus in the basic control unit described we need: Computer Logic II 42

43 Reduced Encoding Scheme Reduction of the scheme is possible by considering the following factors: Most signals are not needed simultaneously, and many signals are mutually exclusive. For example: Only one function of the ALU can be active at one time The source for data transfer is unique Read and write memory signals are mutually exclusive. Thus all mutually exclusive signals are placed in the same group. It is then possible to use a binary coding scheme to represent signals within a group by introducing additional decoding circuits. Most fields must include a non-active code if none of the members are needed to be active. Computer Logic II 43

44 Field-encoded Microinstructions Computer Logic II 44

45 Encoding Example ADD EXAMPLE Computer Logic II 45

46 Step 1 ADD Example Computer Logic II 46

47 Further Reading Computer System Architecture: M. Morris Mano, Prentice Hall. Computer Organization: V. Carl Hamacher, Zvonko G. Vranesic, Safwat G. Zaky, McGraw-Hill International Editions Chapter 3. Computer Logic II 47

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control,

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control, UNIT - 7 Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Microprogrammed Control Page 178 UNIT - 7 BASIC PROCESSING

More information

Module 5 - CPU Design

Module 5 - CPU Design Module 5 - CPU Design Lecture 1 - Introduction to CPU The operation or task that must perform by CPU is: Fetch Instruction: The CPU reads an instruction from memory. Interpret Instruction: The instruction

More information

Part A Questions 1. What is an ISP? ISP stands for Instruction Set Processor. This unit is simply called as processor which executes machine instruction and coordinates the activities of other units..

More information

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit Lecture1: introduction Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit 1 1. History overview Computer systems have conventionally

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

Introduction to CPU Design

Introduction to CPU Design ١ Introduction to CPU Design Computer Organization & Assembly Language Programming Dr Adnan Gutub aagutub at uqu.edu.sa [Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

More information

Processing Unit. Unit II

Processing Unit. Unit II Processing Unit Unit II Execution of a complete instruction Add (R3), R1 - Adds the contents of a memory location pointed to by R3 to register R1 and store the result in R1. 1. Fetch the instruction 2.

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions Chapter 05: Basic Processing Units Control Unit Design Lesson 15: Microinstructions 1 Objective Understand that an instruction implement by sequences of control signals generated by microinstructions in

More information

MC9211Computer Organization. Unit 4 Lesson 1 Processor Design

MC9211Computer Organization. Unit 4 Lesson 1 Processor Design MC92Computer Organization Unit 4 Lesson Processor Design Basic Processing Unit Connection Between the Processor and the Memory Memory MAR PC MDR R Control IR R Processo ALU R n- n general purpose registers

More information

MICROPROGRAMMED CONTROL

MICROPROGRAMMED CONTROL MICROPROGRAMMED CONTROL Hardwired Control Unit: When the control signals are generated by hardware using conventional logic design techniques, the control unit is said to be hardwired. Micro programmed

More information

1. Fundamental Concepts

1. Fundamental Concepts 1. Fundamental Concepts 1.1 What is a computer? A computer is a data processing machine which is operated automatically under the control of a list of instructions (called a program) stored in its main

More information

Unit 8 - Week 7: Organization and Optimization of Micro-programmed Controlled Control Unit

Unit 8 - Week 7: Organization and Optimization of Micro-programmed Controlled Control Unit X reviewer2@nptel.iitm.ac.in Courses» Computer Organization and Architecture: A Pedagogical Aspect Announcements Course Ask a Question Progress Mentor Unit 8 - Week 7: Organization and Optimization of

More information

SISTEMI EMBEDDED. Computer Organization Central Processing Unit (CPU) Federico Baronti Last version:

SISTEMI EMBEDDED. Computer Organization Central Processing Unit (CPU) Federico Baronti Last version: SISTEMI EMBEDDED Computer Organization Central Processing Unit (CPU) Federico Baronti Last version: 20170516 Processing Unit A processor reads program instructions from the computer s memory and executes

More information

Chapter 3 : Control Unit

Chapter 3 : Control Unit 3.1 Control Memory Chapter 3 Control Unit The function of the control unit in a digital computer is to initiate sequences of microoperations. When the control signals are generated by hardware using conventional

More information

Blog - https://anilkumarprathipati.wordpress.com/

Blog - https://anilkumarprathipati.wordpress.com/ Control Memory 1. Introduction The function of the control unit in a digital computer is to initiate sequences of microoperations. When the control signals are generated by hardware using conventional

More information

Micro-Operations. execution of a sequence of steps, i.e., cycles

Micro-Operations. execution of a sequence of steps, i.e., cycles Micro-Operations Instruction execution execution of a sequence of steps, i.e., cycles Fetch, Indirect, Execute & Interrupt cycles Cycle - a sequence of micro-operations Micro-operations data transfer between

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

UNIT 3 - Basic Processing Unit

UNIT 3 - Basic Processing Unit UNIT 3 - Basic Processing Unit Overview Instruction Set Processor (ISP) Central Processing Unit (CPU) A typical computing task consists of a series of steps specified by a sequence of machine instructions

More information

Chapter 16. Control Unit Operation. Yonsei University

Chapter 16. Control Unit Operation. Yonsei University Chapter 16 Control Unit Operation Contents Micro-Operation Control of the Processor Hardwired Implementation 16-2 Micro-Operations Micro-Operations Micro refers to the fact that each step is very simple

More information

2 MARKS Q&A 1 KNREDDY UNIT-I

2 MARKS Q&A 1 KNREDDY UNIT-I 2 MARKS Q&A 1 KNREDDY UNIT-I 1. What is bus; list the different types of buses with its function. A group of lines that serves as a connecting path for several devices is called a bus; TYPES: ADDRESS BUS,

More information

The Processing Unit. TU-Delft. in1210/01-pds 1

The Processing Unit. TU-Delft. in1210/01-pds 1 The Processing Unit in1210/01-pds 1 Problem instruction? y Decoder a ALU y f Reg in1210/01-pds 2 Basic cycle! Assume an instruction occupies a single word in memory! Basic cycle to be implemented: 1. Fetch

More information

Basic Processing Unit (Chapter 7)

Basic Processing Unit (Chapter 7) Basic Processing Unit (Chapter 7) IN1212-PDS 1 Problem instruction? y Decoder a ALU y f Reg IN1212-PDS 2 Basic cycle Assume an instruction occupies a single word in memory Basic cycle to be implemented:

More information

Computer Architecture

Computer Architecture Computer Architecture Lecture 1: Digital logic circuits The digital computer is a digital system that performs various computational tasks. Digital computers use the binary number system, which has two

More information

Chapter 20 - Microprogrammed Control (9 th edition)

Chapter 20 - Microprogrammed Control (9 th edition) Chapter 20 - Microprogrammed Control (9 th edition) Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 20 - Microprogrammed Control 1 / 47 Table of Contents I 1 Motivation 2 Basic Concepts

More information

PROBLEMS. 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory?

PROBLEMS. 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory? 446 CHAPTER 7 BASIC PROCESSING UNIT (Corrisponde al cap. 10 - Struttura del processore) PROBLEMS 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory?

More information

Lecture 11: Control Unit and Instruction Encoding

Lecture 11: Control Unit and Instruction Encoding CSCI25 Computer Organization Lecture : Control Unit and Instruction Encoding Ming-Chang YANG mcyang@cse.cuhk.edu.hk Reading: Chap. 7.4~7.5 (5 th Ed.) Recall: Components of a Processor Register file: a

More information

The register set differs from one computer architecture to another. It is usually a combination of general-purpose and special purpose registers

The register set differs from one computer architecture to another. It is usually a combination of general-purpose and special purpose registers Part (6) CPU BASICS A typical CPU has three major components: 1- register set, 2- arithmetic logic unit (ALU), 3- control unit (CU). The figure below shows the internal structure of the CPU. The CPU fetches

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 16 Micro-programmed Control

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 16 Micro-programmed Control William Stallings Computer Organization and Architecture 8 th Edition Chapter 16 Micro-programmed Control Control Unit Organization Micro-programmed Control Use sequences of instructions (see earlier notes)

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST III Date : 21/11/2017 Max Marks : 40 Subject & Code : Computer Organization (15CS34) Semester : III (A & B) Name of the faculty: Mrs. Sharmila Banu Time : 11.30 am 1.00 pm Answer

More information

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2 Class Notes CS400 Part VI Dr.C.N.Zhang Department of Computer Science University of Regina Regina, SK, Canada, S4S 0A2 C. N. Zhang, CS400 83 VI. CENTRAL PROCESSING UNIT 1 Set 1.1 Addressing Modes and Formats

More information

Computer Architecture Lecture No.10,11

Computer Architecture Lecture No.10,11 8- DATAPATH As mentioned, the CPU can be divided into a data section and a control section. The data section, which is also called the datapath, contains the registers and the ALU. The datapath is capable

More information

Computer Architecture Programming the Basic Computer

Computer Architecture Programming the Basic Computer 4. The Execution of the EXCHANGE Instruction The EXCHANGE routine reads the operand from the effective address and places it in DR. The contents of DR and AC are interchanged in the third microinstruction.

More information

UNIT I DATA REPRESENTATION, MICRO-OPERATIONS, ORGANIZATION AND DESIGN

UNIT I DATA REPRESENTATION, MICRO-OPERATIONS, ORGANIZATION AND DESIGN UNIT I DATA REPRESENTATION, MICRO-OPERATIONS, ORGANIZATION AND DESIGN Data representation: Data types, complements, fixed point representation, floating-point representation, other binary codes, error

More information

Micro-programmed Control Ch 15

Micro-programmed Control Ch 15 Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to modify Lots of

More information

Machine Instructions vs. Micro-instructions. Micro-programmed Control Ch 15. Machine Instructions vs. Micro-instructions (2) Hardwired Control (4)

Machine Instructions vs. Micro-instructions. Micro-programmed Control Ch 15. Machine Instructions vs. Micro-instructions (2) Hardwired Control (4) Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Machine Instructions vs. Micro-instructions Memory execution unit CPU control memory

More information

Micro-programmed Control Ch 15

Micro-programmed Control Ch 15 Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to modify Lots of

More information

SCRAM Introduction. Philipp Koehn. 19 February 2018

SCRAM Introduction. Philipp Koehn. 19 February 2018 SCRAM Introduction Philipp Koehn 19 February 2018 This eek 1 Fully work through a computer circuit assembly code Simple but Complete Random Access Machine (SCRAM) every instruction is 8 bit 4 bit for op-code:

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 16 Control Unit Operations Rev. 3.2 (2009-10) by Enrico Nardelli 16-1 Execution of the Instruction Cycle It has many elementary phases,

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - Von Neumann Architecture 2 Two lessons Summary of the traditional computer architecture Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

Advanced Computer Architecture

Advanced Computer Architecture Advanced Computer Architecture Lecture No. 22 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 5 Computer Systems Design and Architecture 5.3 Summary Microprogramming Working of a General Microcoded

More information

MICROPROGRAMMED CONTROL:-

MICROPROGRAMMED CONTROL:- MICROPROGRAMMED CONTROL:- Two methods of implementing control unit are Hardwired Control & Micro-Programmed Control. Hardwired: - when the control signals are generated by hardware using conventional logic

More information

Generating the Control Unit

Generating the Control Unit CPU design: Lecture 3 The control unit This sequences and controls all the data movement and manipulation that implements the instruction set. Slide 25 Generating the Control Unit We could use random logic

More information

Micro-programmed Control Ch 17

Micro-programmed Control Ch 17 Micro-programmed Control Ch 17 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics Course Summary 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atananasoff in 1939?) Hard-wired program

More information

Hardwired Control (4) Micro-programmed Control Ch 17. Micro-programmed Control (3) Machine Instructions vs. Micro-instructions

Hardwired Control (4) Micro-programmed Control Ch 17. Micro-programmed Control (3) Machine Instructions vs. Micro-instructions Micro-programmed Control Ch 17 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics Course Summary Hardwired Control (4) Complex Fast Difficult to design Difficult to modify

More information

Chapter 5. Computer Architecture Organization and Design. Computer System Architecture Database Lab, SANGJI University

Chapter 5. Computer Architecture Organization and Design. Computer System Architecture Database Lab, SANGJI University Chapter 5. Computer Architecture Organization and Design Computer System Architecture Database Lab, SANGJI University Computer Architecture Organization and Design Instruction Codes Computer Registers

More information

Week 4: Assignment Solutions

Week 4: Assignment Solutions Week 4: Assignment Solutions 1. Which of the following statements are true for horizontal microinstruction encoding? a. If there are kcontrol signals, every control word stored in control memory (CM) consists

More information

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection Unit 1 Chapter 3 Top Level View of Computer Function and Interconnection Program Concept Hardwired systems are inflexible General purpose hardware can do different tasks, given correct control signals

More information

William Stallings Computer Organization and Architecture 8 th Edition. Micro-programmed Control

William Stallings Computer Organization and Architecture 8 th Edition. Micro-programmed Control William Stallings Computer Organization and Architecture 8 th Edition Chapter 16 Micro-programmed Control Presenters: Andres Borroto Juan Fernandez Laura Verdaguer Control Unit Organization Micro-programmed

More information

THE MICROPROCESSOR Von Neumann s Architecture Model

THE MICROPROCESSOR Von Neumann s Architecture Model THE ICROPROCESSOR Von Neumann s Architecture odel Input/Output unit Provides instructions and data emory unit Stores both instructions and data Arithmetic and logic unit Processes everything Control unit

More information

JNTUWORLD. 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15]

JNTUWORLD. 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15] Code No: 09A50402 R09 Set No. 2 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15] 2. (a) Discuss asynchronous serial transfer concept? (b) Explain in

More information

ADVANCED COMPUTER ARCHITECTURE TWO MARKS WITH ANSWERS

ADVANCED COMPUTER ARCHITECTURE TWO MARKS WITH ANSWERS ADVANCED COMPUTER ARCHITECTURE TWO MARKS WITH ANSWERS 1.Define Computer Architecture Computer Architecture Is Defined As The Functional Operation Of The Individual H/W Unit In A Computer System And The

More information

CPU Organization. Hardware design. Vs. Microprogramming

CPU Organization. Hardware design. Vs. Microprogramming CPU Organization Hardware design Vs. Microprogramming CPU Structure CPU must: Fetch instructions ti Interpret instructionsi Fetch data Process data Write data Source: Hamacher; Single-bus ORGN. CPU always

More information

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR.

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR. CS 320 Ch. 20 The Control Unit Instructions are broken down into fetch, indirect, execute, and interrupt cycles. Each of these cycles, in turn, can be broken down into microoperations where a microoperation

More information

Microprogrammed Control

Microprogrammed Control Microprogrammed Control Chapter 17 Lesson 21 Slide 1/24 From chapter 16 Implementation of the control unit: Hardwired Essentially a combinatorial circuit Microprogrammed An alternative to a hardwired implementation.

More information

CC 311- Computer Architecture. The Processor - Control

CC 311- Computer Architecture. The Processor - Control CC 311- Computer Architecture The Processor - Control Control Unit Functions: Instruction code Control Unit Control Signals Select operations to be performed (ALU, read/write, etc.) Control data flow (multiplexor

More information

csitnepal Unit 3 Basic Computer Organization and Design

csitnepal Unit 3 Basic Computer Organization and Design Unit 3 Basic Computer Organization and Design Introduction We introduce here a basic computer whose operation can be specified by the resister transfer statements. Internal organization of the computer

More information

Course Description: This course includes concepts of instruction set architecture,

Course Description: This course includes concepts of instruction set architecture, Computer Architecture Course Title: Computer Architecture Full Marks: 60+ 20+20 Course No: CSC208 Pass Marks: 24+8+8 Nature of the Course: Theory + Lab Credit Hrs: 3 Course Description: This course includes

More information

BASIC PROCESSING UNIT Control Unit has two major functions: To control the sequencing of information-processing tasks performed by machine Guiding and supervising each unit to make sure that each unit

More information

MARTHANDAM COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY TWO MARK QUESTIONS AND ANSWERS

MARTHANDAM COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY TWO MARK QUESTIONS AND ANSWERS MARTHANDAM COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY TWO MARK QUESTIONS AND ANSWERS SUB NAME: COMPUTER ORGANIZATION AND ARCHITECTTURE SUB CODE: CS 2253 YEAR/SEM:II/IV Marthandam

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

CONTROL UNIT CONTROL UNIT. CONTROL vs DATA PATH. Instruction Sequencing. Two main operations of Control Unit can be identified:

CONTROL UNIT CONTROL UNIT. CONTROL vs DATA PATH. Instruction Sequencing. Two main operations of Control Unit can be identified: CONTROL UNIT CONTROL UNIT of the Microprocessor Two main operations of Control Unit can be identified: Instruction sequencing - the methods by which instructions are selected for execution or, the manner

More information

CISC Processor Design

CISC Processor Design CISC Processor Design Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 3 SE-273: Processor Design Processor Architecture Processor Architecture CISC RISC Jan 21, 2008

More information

CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle

CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle CS 224: Computer Organization S.KHABET CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions

More information

Register-Level Design

Register-Level Design Register-Level Design A digital system can be treated at different level of abstraction or compleity. So far, we have seen it at the gate level and the transistor level. At a higher level than the gate

More information

CPU Structure and Function

CPU Structure and Function CPU Structure and Function Chapter 12 Lesson 17 Slide 1/36 Processor Organization CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data Lesson 17 Slide 2/36 CPU With Systems

More information

Chapter 3 - Top Level View of Computer Function

Chapter 3 - Top Level View of Computer Function Chapter 3 - Top Level View of Computer Function Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Top Level View 1 / 127 Table of Contents I 1 Introduction 2 Computer Components

More information

5-1 Instruction Codes

5-1 Instruction Codes Chapter 5: Lo ai Tawalbeh Basic Computer Organization and Design 5-1 Instruction Codes The Internal organization of a digital system is defined by the sequence of microoperations it performs on data stored

More information

4. MICROPROGRAMMED COMPUTERS

4. MICROPROGRAMMED COMPUTERS Structure of Computer Systems Laboratory No. 4 1 4. MICROPROGRAMMED COMPUTERS This laboratory work presents the principle of microprogrammed computers and an example of microprogrammed architecture, in

More information

CPE 335. Basic MIPS Architecture Part II

CPE 335. Basic MIPS Architecture Part II CPE 335 Computer Organization Basic MIPS Architecture Part II Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE232 Basic MIPS Architecture

More information

Fig: Computer memory with Program, data, and Stack. Blog - NEC (Autonomous) 1

Fig: Computer memory with Program, data, and Stack. Blog -   NEC (Autonomous) 1 Central Processing Unit 1. Stack Organization A useful feature that is included in the CPU of most computers is a stack or last in, first out (LIFO) list. A stack is a storage device that stores information

More information

Outcomes. Lecture 13 - Introduction to the Central Processing Unit (CPU) Central Processing UNIT (CPU) or Processor

Outcomes. Lecture 13 - Introduction to the Central Processing Unit (CPU) Central Processing UNIT (CPU) or Processor Lecture 13 - Introduction to the Central Processing Unit (CPU) Outcomes What is a CPU? How are instructions prepared by the CPU before execution? What registers and operations are involved in this preparation

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atanasoff in 1939?) Hard-wired program --

More information

Introduction to Computer Engineering. CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252 Prof. Mark D. Hill Computer Sciences Department University of Wisconsin Madison Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

Chapter 17. Microprogrammed Control. Yonsei University

Chapter 17. Microprogrammed Control. Yonsei University Chapter 17 Microprogrammed Control Contents Basic Concepts Microinstruction Sequencing Microinstruction Execution TI 8800 Applications of Microprogramming 17-2 Introduction Basic Concepts An alternative

More information

Basic Computer Organization - Designing your first computer. Acknowledgment: Most of the slides are adapted from Prof. Hyunsoo Yoon s slides.

Basic Computer Organization - Designing your first computer. Acknowledgment: Most of the slides are adapted from Prof. Hyunsoo Yoon s slides. Basic Computer Organization - Designing your first computer Acknowledgment: Most of the slides are adapted from Prof. Hyunsoo Yoon s slides. 1 This week- BASIC COMPUTER ORGANIZATION AND DESIGN Instruction

More information

101. The memory blocks are mapped on to the cache with the help of a) Hash functions b) Vectors c) Mapping functions d) None of the mentioned

101. The memory blocks are mapped on to the cache with the help of a) Hash functions b) Vectors c) Mapping functions d) None of the mentioned 101. The memory blocks are mapped on to the cache with the help of a) Hash functions b) Vectors c) Mapping functions d) None of the mentioned 102. During a write operation if the required block is not

More information

Top-Level View of Computer Organization

Top-Level View of Computer Organization Top-Level View of Computer Organization Bởi: Hoang Lan Nguyen Computer Component Contemporary computer designs are based on concepts developed by John von Neumann at the Institute for Advanced Studies

More information

AC58/AT58 COMPUTER ORGANIZATION DECEMBER Q2 (a) With the help of diagram explain the different functional units of a Computer?

AC58/AT58 COMPUTER ORGANIZATION DECEMBER Q2 (a) With the help of diagram explain the different functional units of a Computer? Q2 (a) With the help of diagram explain the different functional units of a Computer? Answer: A computer consists of five functionally independent units, namely: input, memory, arithmetic and logic (ALU)

More information

Memory General R0 Registers R1 R2. Input Register 1. Input Register 2. Program Counter. Instruction Register

Memory General R0 Registers R1 R2. Input Register 1. Input Register 2. Program Counter. Instruction Register CPU Organisation Central Processing Unit (CPU) Memory General R0 Registers R1 R2 ALU R3 Output Register Input Register 1 Input Register 2 Internal Bus Address Bus Data Bus Addr. $ 000 001 002 Program Counter

More information

Implementing the Control. Simple Questions

Implementing the Control. Simple Questions Simple Questions How many cycles will it take to execute this code? lw $t2, 0($t3) lw $t3, 4($t3) beq $t2, $t3, Label add $t5, $t2, $t3 sw $t5, 8($t3) Label:... #assume not What is going on during the

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers Chapter 4 The Von Neumann Model Original slides from Gregory Byrd, North Carolina State University Modified slides by C. Wilcox, S. Rajopadhye, Colorado State University Computing Layers Problems Algorithms

More information

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system.

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. CPU ARCHITECTURE QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. ANSWER 1 Data Bus Width the width of the data bus determines the number

More information

2. (a) Compare the characteristics of a floppy disk and a hard disk. (b) Discuss in detail memory interleaving. [8+7]

2. (a) Compare the characteristics of a floppy disk and a hard disk. (b) Discuss in detail memory interleaving. [8+7] Code No: A109211202 R09 Set No. 2 1. (a) Explain the purpose of the following registers: i. IR ii. PC iii. MDR iv. MAR. (b) Explain with an example the steps in subtraction of two n-digit unsigned numbers.

More information

BASIC COMPUTER ORGANIZATION AND DESIGN

BASIC COMPUTER ORGANIZATION AND DESIGN BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete

More information

MaanavaN.Com CS1202 COMPUTER ARCHITECHTURE

MaanavaN.Com CS1202 COMPUTER ARCHITECHTURE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK SUB CODE / SUBJECT: CS1202/COMPUTER ARCHITECHTURE YEAR / SEM: II / III UNIT I BASIC STRUCTURE OF COMPUTER 1. What is meant by the stored program

More information

Chapter 4 The Von Neumann Model

Chapter 4 The Von Neumann Model Chapter 4 The Von Neumann Model The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic computer. (or was it John V. Atanasoff in 1939?) Hard-wired program --

More information

Introduction to CPU architecture using the M6800 microprocessor

Introduction to CPU architecture using the M6800 microprocessor Introduction to CPU architecture using the M6800 microprocessor Basics Programs are written in binary object codes which could be understood (after the decoding process) by the designated target CPU. The

More information

ENGG3380: Computer Organization and Design Lab5: Microprogrammed Control

ENGG3380: Computer Organization and Design Lab5: Microprogrammed Control ENGG330: Computer Organization and Design Lab5: Microprogrammed Control School of Engineering, University of Guelph Winter 201 1 Objectives: The objectives of this lab are to: Start Date: Week #5 201 Due

More information

Practice Problems (Con t) The ALU performs operation x and puts the result in the RR The ALU operand Register B is loaded with the contents of Rx

Practice Problems (Con t) The ALU performs operation x and puts the result in the RR The ALU operand Register B is loaded with the contents of Rx Microprogram Control Practice Problems (Con t) The following microinstructions are supported by each CW in the CS: RR ALU opx RA Rx RB Rx RB IR(adr) Rx RR Rx MDR MDR RR MDR Rx MAR IR(adr) MAR Rx PC IR(adr)

More information

Q.2 a. What are basic operational concepts? Explain. (6)

Q.2 a. What are basic operational concepts? Explain. (6) Q.2 a. What are basic operational concepts? Explain. (6) Basic operational concepts-to perform a given task an appropriate program consisting of a list of instructions is stored in the memory. Individual

More information

UNIT- 5. Chapter 12 Processor Structure and Function

UNIT- 5. Chapter 12 Processor Structure and Function UNIT- 5 Chapter 12 Processor Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data CPU With Systems Bus CPU Internal Structure Registers

More information

Unit II Basic Computer Organization

Unit II Basic Computer Organization 1. Define the term. Internal Organization-The internal organization of a digital system is defined by the sequence of microoperations it performs on data stored in its registers. Program- A program is

More information

The Itanium Bit Microprocessor Report

The Itanium Bit Microprocessor Report The Itanium - 1986 8 Bit Microprocessor Report By PRIYANK JAIN (02010123) Group # 11 Under guidance of Dr. J. K. Deka & Dr. S. B. Nair Department of Computer Science & Engineering Indian Institute of Technology,

More information

C86 80C88 DS-186

C86 80C88 DS-186 MCS-86 8086 8088 80C86 80C88 Ceibo In-Circuit Emulator Supporting MCS-86: DS-186 http://ceibo.com/eng/products/ds186.shtml www.ceibo.com Chapter 1 Introduction Manual Organization 8086 Family Architecture

More information

C Functions and Pointers. C Pointers. CS270 - Fall Colorado State University. CS270 - Fall Colorado State University

C Functions and Pointers. C Pointers. CS270 - Fall Colorado State University. CS270 - Fall Colorado State University 1 C Pointers C unctions and Pointers 3 2 4 5 6 7 8 our-bit Adder Logical Completeness (Example)! Can implement ANY truth table with combo of AN, OR, NOT gates. Implementing a inite tate Machine (equential

More information

Initial Representation Finite State Diagram. Logic Representation Logic Equations

Initial Representation Finite State Diagram. Logic Representation Logic Equations Control Implementation Alternatives Control may be designed using one of several initial representations. The choice of sequence control, and how logic is represented, can then be determined independently;

More information