e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text

Size: px
Start display at page:

Download "e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text"

Transcription

1 e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text About the course : In this digital world, embedded systems are more important in day to day life. Embedded processors are even more important as key components of embedded products ranging from toys to aeroplane. Cell phone is the most important embedded device ruling our lives. So It is necessary to understand the basics behind the embedded systems. In this course basics about micro controllers, how to program them and how to make embedded products will be discussed. Learning Outcomes : To understand the hardware and software of embedded systems one must know basic concepts of digital computer design. In this lecture fundamentals of numbering system, logic gates, digital circuits, basic system architecture and working of computer will be discussed. 1.1 System You will mostly be familiar with all this - this is just a quick recap! A system is defined as a way of working, organizing or performing one or many tasks according to a fixed set of rules programs or plans (or) as an arrangement in which all units assemble and work together according to a program or plan. On the other hand, an embedded system is a system that has software embedded into computer hardware, which makes a system dedicated for an application or specific part of an application or a product, or part of a larger system. 1.2 Digital fundamentals All digital computing systems work with binary values (bits). Generation of binary values and working with bits are important in computing systems. The common number system we use is the Decimal number system(base 10 system). There are 10 distinct symbols, 0, 1, 2,,9 whereas computers use binary numbers (base 2 system).there are only two symbols 0 and 1. These two binary digits are commonly referred to as bits. Each decimal number has to be converted into binary for processing. The following are the steps to convert from decimal to binary number system, and vice-versa Steps for Decimal to Binary conversion Divide the decimal number by 2 repeatedly

2 Keep track of the remainders Continue this process until the quotient becomes zero Write the remainders in reverse order to obtain the binary number Example = Quotient Reminder 25/2 = /2 = 6 0 6/2 = 3 0 3/2 = 1 1 ½ = Steps for Binary to Decimal conversion Know the weight of each bit in a binary number according to its position Multiply each bit by its weight Add them together to get the decimal equivalent Example = 1* * * * *2 4 = Another number system generally used for compact representation is the Hexadecimal System ( base 16 system) (Fig 1.1). It is used as a convenient representation of binary numbers. Figure 1.1 Hexadecimal system Steps for Binary to Hexadecimal Conversion In the binary number system, group the binary digits, 4 bits at a time, starting from the right side (least significant bit)

3 Replace each 4-bit binary number with its hex equivalent (Fig 1.2) Logic gates Figure 1.2 Binary to Hexadecimal conversion To process these binary values logic gates - AND, OR, NOT, XOR, NAND and NOR are widely used (Fig ). Figure 1.3 Logic gates-and,or In an AND gate, the output variable is true (1) only when both the input variables A and B are true(1). It acts like a multiplier. In an OR gate, the output variable is true(1) when any one of the input variables is true(1). It acts like an adder.

4 Figure 1.4 Logic gates-not,xor In an inverter (NOT gate), the output variable is true(1) when the input variable is false(0), and the output is false(0) when the input variable is true(1). It inverts the logic sense of the binary variable. It is used in subtraction operation. In an XOR gate, the output is true(1) when any one of the inputs is true(1). It is used for comparison (Fig 1.4). Figure 1.5 Universal gates NAND and NOR gates (Fig 1.5) are the compliment of the AND and OR gates respectively. NAND and NOR gates are universal gates because using these gates we can generate any logic function. So these gates are used extensively.

5 Using the above set of gates any kind of digital operations can be done with digital circuits. The following is the example for adding two bits which is the half adder circuit using an XOR and an AND gate(fig 1.6). Figure 1.6 Half- adder circuit Flip-flops are frequently used to store data. There are many types of flip-flops - D, RS, JK etc. A clocked D flip-flop is shown in Fig Computer Hardware Figure 1.7 Clocked D flip-flop A computer hardware is made with these kind of digital circuits (Fig 2.1). A computer system has a CPU (Central Processing Unit) which executes instructions stored in memory, I/O (Input/output) devices which provide a means of communicating with CPU and Memory to store data and programs. There are different kinds of memory. They are:

6 RAM (Random Access Memory) It is a temporary storage of programs when the computer is running. The data is lost when the computer is off. ROM (Read Only Memory) It contains programs and information essential for the operation of the computer. This information cannot be changed by use, and is not lost when power is off. It is called as nonvolatile memory. Figure 2.1 Computer Hardware The internal working can be broken down into three parts namely CPU, memory and I/O devices. The function of the CPU is to execute instructions stored in memory. The function of I/O devices such as keyboard and video monitor is to provide a means of communicating with the CPU. The CPU is connected to memory and I/O through strips of wires called a bus. It carries information from place to place. Based on the usage/purpose of communication, these are named as Address bus/data bus/control bus. Address bus will communicate the address for memory locations. It is unidirectional and is used to identify the devices and memory connected to CPU - the more address lines available, the larger the number of devices that can be addressed. It determines the number of locations with which it can communicate. The number of locations is always equal to 2 x where x is the number of address lines, regardless of the size of the data bus. For example, a CPU with 16 address lines can provide a total of 65,536 or 64k bytes of addressable memory. The grouping of data lines is called data bus. It is bidirectional, since the CPU must use it either to receive or to send data. The size of data bus in CPUs normally varies between 8 and 64. Early computers such as Apple 2 use an 8 bit data bus while super-computers such as Cray use a 64 bit bus. Control bus will send control signals. 2.1 Inside CPUs

7 Figure 2.2 CPU A program stored in memory provides instruction to the CPU to perform an action (Fig 2.2). The action can simply be adding data such as payroll data, or controlling a machine as a robot. It is the function of CPU to fetch these instruction from memory and execute them. To perform the actions of fetch and execute, all CPUs are equipped with resources as explained below. 1. The CPU uses registers to store the information temporarily. The information could be two values to be processed or the address of the value needed to be fetched from memory. Depending on the CPU, registers can be 8-bits, 32-bits or even 64-bits wide. The more and bigger the registers, the better the CPU. The disadvantage of bigger registers is that it will increase the cost of that CPU. 2. The CPU has ALU (Arithmetic/Logic Unit). The ALU is used for performing arithmetic functions such as addition, subtraction, multiplication, division and logic functions such as AND, OR and NOT. 3. Every CPU has a Program Counter. The function of the Program Counter(PC) is to point to the address of the next instruction that is to be executed. As each instruction is executed, the program counter is incremented to the address of the next instruction that is to be executed. 4. The function of the instruction decoder is to interpret the instructions fetched into the CPU. The complexity of the instruction decoder depends on the type and number of instructions supported. A CPU requires more hardware (transistors in design) for understanding a large number of instructions. Hence, there is a trend towards keeping the number of instructions limited (Reduced Instruction Set Computers - RISC). In the example shown in Fig. 2.2, the CPU has registers called A, B, C and D. It has an 8-bit data bus and a 16 bit address bus. Hence the CPU can access memory from address 0000 to FFFFH. Thus, the hardware architecture gives complete inner details of the system. This hardware(system) is used for processing data in association with the software. 3. Summary

8 In this module, different definitions of system and embedded system have been outlined. Fundamentals of computing, digital processing and different number systems are discussed. Logic circuits for digital design is also discussed. An introduction to System architecture has been given. 4. References 1. The 8051 Microcontroller and Embedded Systems Using Assembly and C Second Edition Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinlay. Pearson, 2nd edition Digital design, 5th edition by M. Morris Mano and Michael, PHI.

Dec Hex Bin ORG ; ZERO. Introduction To Computing

Dec Hex Bin ORG ; ZERO. Introduction To Computing Dec Hex Bin 0 0 00000000 ORG ; ZERO Introduction To Computing OBJECTIVES this chapter enables the student to: Convert any number from base 2, base 10, or base 16 to any of the other two bases. Add and

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Use number { base 2, base 10, or base 16 }. Add and subtract binary/hex numbers. Represent any binary number in 2

More information

Microprocessors I MICROCOMPUTERS AND MICROPROCESSORS

Microprocessors I MICROCOMPUTERS AND MICROPROCESSORS Microprocessors I Outline of the Lecture Microcomputers and Microprocessors Evolution of Intel 80x86 Family Microprocessors Binary and Hexadecimal Number Systems MICROCOMPUTERS AND MICROPROCESSORS There

More information

Von Neumann Architecture

Von Neumann Architecture Von Neumann Architecture Assist lecturer Donya A. Khalid Lecture 2 2/29/27 Computer Organization Introduction In 945, just after the World War, Jon Von Neumann proposed to build a more flexible computer.

More information

ELEG3923 Microprocessor Ch.0 & Ch.1 Introduction to Microcontroller

ELEG3923 Microprocessor Ch.0 & Ch.1 Introduction to Microcontroller Department of Electrical Engineering University of Arkansas ELEG3923 Microprocessor Ch. & Ch. Introduction to Microcontroller Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 What is microcontroller? (Ch..) 85 Microcontroller

More information

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017 Lecture Objectives Introduction to Computing Chapter The AVR microcontroller and embedded systems using assembly and c Students should be able to: Convert between base and. Explain the difference between

More information

MECE336 Microprocessors I

MECE336 Microprocessors I MECE336 Microprocessors I Lecture 1 Introduction and Background Associate Prof. Dr. Klaus Werner Schmidt of Mechatronics Engineering Çankaya University Compulsory Course in Mechatronics Engineering Credits

More information

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system.

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system. Syllabus: : Introduction to, 8051 Microcontroller Architecture and an example of Microcontroller based stepper motor control system (only Block Diagram approach). (5 Hours) Introduction to A microcontroller

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

CREATED BY M BILAL & Arslan Ahmad Shaad Visit: CREATED BY M BILAL & Arslan Ahmad Shaad Visit: www.techo786.wordpress.com Q1: Define microprocessor? Short Questions Chapter No 01 Fundamental Concepts Microprocessor is a program-controlled and semiconductor

More information

Digital Logic Design Exercises. Assignment 1

Digital Logic Design Exercises. Assignment 1 Assignment 1 For Exercises 1-5, match the following numbers with their definition A Number Natural number C Integer number D Negative number E Rational number 1 A unit of an abstract mathematical system

More information

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interfacing External Devices using Embedded C Module No: CS/ES/22

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interfacing External Devices using Embedded C Module No: CS/ES/22 e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interfacing External Devices using Embedded C Module No: CS/ES/22 Quadrant 1 e-text In this lecture interfacing of external devices

More information

User. Application program. Interfaces. Operating system. Hardware

User. Application program. Interfaces. Operating system. Hardware Operating Systems Introduction to Operating Systems and Computer Hardware Introduction and Overview The operating system is a set of system software routines that interface between an application program

More information

Register Transfer and Micro-operations

Register Transfer and Micro-operations Register Transfer Language Register Transfer Bus Memory Transfer Micro-operations Some Application of Logic Micro Operations Register Transfer and Micro-operations Learning Objectives After reading this

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text In this lecture the detailed architecture of 8051 controller, register bank,

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text In this lecture, serial port communication will be discussed in

More information

THE MICROCOMPUTER SYSTEM CHAPTER - 2

THE MICROCOMPUTER SYSTEM CHAPTER - 2 THE MICROCOMPUTER SYSTEM CHAPTER - 2 20 2.1 GENERAL ASPECTS The first computer was developed using vacuum tubes. The computers thus developed were clumsy and dissipating more power. After the invention

More information

COSC 122 Computer Fluency. Computer Organization. Dr. Ramon Lawrence University of British Columbia Okanagan

COSC 122 Computer Fluency. Computer Organization. Dr. Ramon Lawrence University of British Columbia Okanagan COSC 122 Computer Fluency Computer Organization Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Key Points 1) The standard computer (von Neumann) architecture consists

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 75 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (8 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a) A

More information

Systems Programming. Lecture 2 Review of Computer Architecture I

Systems Programming.   Lecture 2 Review of Computer Architecture I Systems Programming www.atomicrhubarb.com/systems Lecture 2 Review of Computer Architecture I In The Book Patt & Patel Chapter 1,2,3 (review) Outline Binary Bit Numbering Logical operations 2's complement

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

ETGG1801 Game Programming Foundations I Andrew Holbrook Fall Lecture 0 - Introduction to Computers 1

ETGG1801 Game Programming Foundations I Andrew Holbrook Fall Lecture 0 - Introduction to Computers 1 ETGG1801 Game Programming Foundations I Andrew Holbrook Fall 2013 Lecture 0 - Introduction to Computers 1 Introduction to Computers Vacuum Tubes and Transistors Electrically-controlled switches Logic Gates

More information

Segment 1A. Introduction to Microcomputer and Microprocessor

Segment 1A. Introduction to Microcomputer and Microprocessor Segment 1A Introduction to Microcomputer and Microprocessor 1.1 General Architecture of a Microcomputer System: The term microcomputer is generally synonymous with personal computer, or a computer that

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

Microcontroller & Interfacing

Microcontroller & Interfacing Course Title Course Code Microcontroller & Interfacing EC406 Lecture : 3 Course Credit Practical : 1 Tutorial : 0 Total : 4 Course Objective At the end of the course the students will be able to Understand

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN SUBJECT: CSE 2.1.6 DIGITAL LOGIC DESIGN CLASS: 2/4 B.Tech., I SEMESTER, A.Y.2017-18 INSTRUCTOR: Sri A.M.K.KANNA

More information

Information Science 1

Information Science 1 Information Science 1 -Basic Concepts of Computers: Opera4on, Architecture, Memory- Week 02 College of Information Science and Engineering Ritsumeikan University Today s lecture outline l Recall the previous

More information

3.1 Description of Microprocessor. 3.2 History of Microprocessor

3.1 Description of Microprocessor. 3.2 History of Microprocessor 3.0 MAIN CONTENT 3.1 Description of Microprocessor The brain or engine of the PC is the processor (sometimes called microprocessor), or central processing unit (CPU). The CPU performs the system s calculating

More information

Computer Architecture and Organization:

Computer Architecture and Organization: Computer Architecture and Organization: Introductory lecture By: A. H. Abdul Hafez abdul.hafez@hku.edu.tr, ah.abdulhafez@gmail.com 1 Outlines 1. What is computer? 2. What is this course looking at? Computer

More information

UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT

UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT UNIT-III 1 KNREDDY UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT Register Transfer: Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Micro operations Logic

More information

Microprocessors/Microcontrollers

Microprocessors/Microcontrollers Microprocessors/Microcontrollers A central processing unit (CPU) fabricated on one or more chips, containing the basic arithmetic, logic, and control elements of a computer that are required for processing

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control,

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control, UNIT - 7 Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Microprogrammed Control Page 178 UNIT - 7 BASIC PROCESSING

More information

Logic design Ibn Al Haitham collage /Computer science Eng. Sameer

Logic design Ibn Al Haitham collage /Computer science Eng. Sameer DEMORGAN'S THEOREMS One of DeMorgan's theorems stated as follows: The complement of a product of variables is equal to the sum of the complements of the variables. DeMorgan's second theorem is stated as

More information

Components of a personal computer

Components of a personal computer Components of a personal computer Computer systems ranging from a controller in a microwave oven to a large supercomputer contain components providing five functions. A typical personal computer has hard,

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

More information

Chapter 1. Microprocessor architecture ECE Dr. Mohamed Mahmoud.

Chapter 1. Microprocessor architecture ECE Dr. Mohamed Mahmoud. Chapter 1 Microprocessor architecture ECE 3130 Dr. Mohamed Mahmoud The slides are copyright protected. It is not permissible to use them without a permission from Dr Mahmoud http://www.cae.tntech.edu/~mmahmoud/

More information

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital hardware modules that accomplish a specific information-processing task. Digital systems vary in

More information

CS/EE 260. Digital Computers Organization and Logical Design

CS/EE 260. Digital Computers Organization and Logical Design CS/EE 260. Digital Computers Organization and Logical Design David M. Zar Computer Science and Engineering Department Washington University dzar@cse.wustl.edu http://www.cse.wustl.edu/~dzar/class/260 Digital

More information

Arithmetic Circuits. Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak.

Arithmetic Circuits. Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak. Arithmetic Circuits Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak http://www.syssec.ethz.ch/education/digitaltechnik_14 Adapted from Digital Design and Computer Architecture, David Money

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 2, 2016 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

Introduction to Computer Science. Homework 1

Introduction to Computer Science. Homework 1 Introduction to Computer Science Homework. In each circuit below, the rectangles represent the same type of gate. Based on the input and output information given, identify whether the gate involved is

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 4 : Processors, Computers, and Controllers - 1.2 (reading assignment), 1.3-1.5 Based on slides for ECE3170 by Profs. Kieckhafer, Davis, Tan, and Cischke Outline

More information

1. Draw general diagram of computer showing different logical components (3)

1. Draw general diagram of computer showing different logical components (3) Tutorial 1 1. Draw general diagram of computer showing different logical components (3) 2. List at least three input devices (1.5) 3. List any three output devices (1.5) 4. Fill the blank cells of the

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Microcontrollers and Embedded Processors Module No: CS/ES/2 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Microcontrollers and Embedded Processors Module No: CS/ES/2 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Microcontrollers and Embedded Processors Module No: CS/ES/2 Quadrant 1 e-text In this module, microcontrollers and embedded processors

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - Von Neumann Architecture 2 Two lessons Summary of the traditional computer architecture Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

Computer Architecture: Part III. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Computer Architecture: Part III. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Computer Architecture: Part III First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline Decoders Multiplexers Registers Shift Registers Binary Counters Memory

More information

Microprocessor. Dr. Rabie A. Ramadan. Al-Azhar University Lecture 1

Microprocessor. Dr. Rabie A. Ramadan. Al-Azhar University Lecture 1 Microprocessor Dr. Rabie A. Ramadan Al-Azhar University Lecture 1 Class Materials Text book Ramesh S. Gaonkar, The Z80 Microprocessor architecture, Interfacing, Programming, and Design,. Term paper/project

More information

Computer Architecture: Part V. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Computer Architecture: Part V. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Computer Architecture: Part V First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline Addition and Subtraction Multiplication Algorithm Array Multiplier Peripheral

More information

Chapter 1 : Introduction

Chapter 1 : Introduction Chapter 1 Introduction 1.1 Introduction A Microprocessor is a multipurpose programmable, clock driven, register based electronic device that reads binary instructions from a storage device called memory,

More information

UPY14602-DIGITAL ELECTRONICS AND MICROPROCESSORS Lesson Plan

UPY14602-DIGITAL ELECTRONICS AND MICROPROCESSORS Lesson Plan UPY14602-DIGITAL ELECTRONICS AND MICROPROCESSORS Lesson Plan UNIT I - NUMBER SYSTEMS AND LOGIC GATES Introduction to decimal- Binary- Octal- Hexadecimal number systems-inter conversions-bcd code- Excess

More information

Computer Architecture Programming the Basic Computer

Computer Architecture Programming the Basic Computer 4. The Execution of the EXCHANGE Instruction The EXCHANGE routine reads the operand from the effective address and places it in DR. The contents of DR and AC are interchanged in the third microinstruction.

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 2 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Decimal Numbers The position of each digit in a weighted

More information

D I G I T A L C I R C U I T S E E

D I G I T A L C I R C U I T S E E D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,

More information

Digital Design with FPGAs. By Neeraj Kulkarni

Digital Design with FPGAs. By Neeraj Kulkarni Digital Design with FPGAs By Neeraj Kulkarni Some Basic Electronics Basic Elements: Gates: And, Or, Nor, Nand, Xor.. Memory elements: Flip Flops, Registers.. Techniques to design a circuit using basic

More information

Microcontroller Systems

Microcontroller Systems µcontroller systems 1 / 43 Microcontroller Systems Engineering Science 2nd year A2 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2co Michaelmas 2014 µcontroller

More information

ACADEMIC YEAR PLANNING - F.Y.J.C. ( ) F.Y.J.C. COMPUTER SCIENCE (Theory)

ACADEMIC YEAR PLANNING - F.Y.J.C. ( ) F.Y.J.C. COMPUTER SCIENCE (Theory) ACADEMIC YEAR PLANNING - F.Y.J.C. (2015-16) F.Y.J.C. COMPUTER SCIENCE (Theory) JULY Number Systems & Binary Arithmetic : Binary number, decimal, octal, hexadecimal numbers, BCD,conversion from one number

More information

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR STUDENT IDENTIFICATION NO MULTIMEDIA COLLEGE JALAN GURNEY KIRI 54100 KUALA LUMPUR SECOND SEMESTER FINAL EXAMINATION, 2013/2014 SESSION ITC2223 COMPUTER ORGANIZATION & ARCHITECTURE DSEW-E-F 1/13 18 FEBRUARY

More information

STRUCTURE OF DESKTOP COMPUTERS

STRUCTURE OF DESKTOP COMPUTERS Page no: 1 UNIT 1 STRUCTURE OF DESKTOP COMPUTERS The desktop computers are the computers which are usually found on a home or office desk. They consist of processing unit, storage unit, visual display

More information

IB Computer Science Topic.2-

IB Computer Science Topic.2- Topic.2- Computer Organization Designed by: Allan Lawson Sources: Online Materials, thanks for all Topic 2.1.1 Computer Architecture Outline the architecture of a central processing unit (CPU) and the

More information

Microcomputers. Outline. Number Systems and Digital Logic Review

Microcomputers. Outline. Number Systems and Digital Logic Review Microcomputers Number Systems and Digital Logic Review Lecture 1-1 Outline Number systems and formats Common number systems Base Conversion Integer representation Signed integer representation Binary coded

More information

Problem Set 1 Solutions

Problem Set 1 Solutions CSE 260 Digital Computers: Organization and Logical Design Jon Turner Problem Set 1 Solutions 1. Give a brief definition of each of the following parts of a computer system: CPU, main memory, floating

More information

TNBEDCSVIP.IN. S.No CONTEND Page No 1. NUMBER SYSTEM AND BASE CONVERSIONS TYPES OF NUMBER SYSTEM 1. Binary Number System:

TNBEDCSVIP.IN. S.No CONTEND Page No 1. NUMBER SYSTEM AND BASE CONVERSIONS TYPES OF NUMBER SYSTEM 1. Binary Number System: S.No CONTEND Page No 1. NUMBER SYSTEM AND BASE CONVERSIONS TYPES OF NUMBER SYSTEM 1. Binary Number System: 2. Octal Number System 3. Decimal Number System 4. Hexadecimal Number System 2. DIGITAL LOGIC

More information

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book BUILDING BLOCKS OF A BASIC MICROPROCESSOR Part PowerPoint Format of Lecture 3 of Book Decoder Tri-state device Full adder, full subtractor Arithmetic Logic Unit (ALU) Memories Example showing how to write

More information

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 COSC 243 Computer Architecture 1 COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 Overview Last Lecture Flip flops This Lecture Computers Next Lecture Instruction sets and addressing

More information

LOGIC DESIGN. Dr. Mahmoud Abo_elfetouh

LOGIC DESIGN. Dr. Mahmoud Abo_elfetouh LOGIC DESIGN Dr. Mahmoud Abo_elfetouh Course objectives This course provides you with a basic understanding of what digital devices are, how they operate, and how they can be designed to perform useful

More information

Computer Organization

Computer Organization INF 101 Fundamental Information Technology Computer Organization Assistant Prof. Dr. Turgay ĐBRĐKÇĐ Course slides are adapted from slides provided by Addison-Wesley Computing Fundamentals of Information

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Programming Embedded Systems in C Module No: CS/ES/9 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Programming Embedded Systems in C Module No: CS/ES/9 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Programming Embedded Systems in C Module No: CS/ES/9 Quadrant 1 e-text In this module, we will discuss about the embedded C programming

More information

2. (a) Compare the characteristics of a floppy disk and a hard disk. (b) Discuss in detail memory interleaving. [8+7]

2. (a) Compare the characteristics of a floppy disk and a hard disk. (b) Discuss in detail memory interleaving. [8+7] Code No: A109211202 R09 Set No. 2 1. (a) Explain the purpose of the following registers: i. IR ii. PC iii. MDR iv. MAR. (b) Explain with an example the steps in subtraction of two n-digit unsigned numbers.

More information

History of Computing. Ahmed Sallam 11/28/2014 1

History of Computing. Ahmed Sallam 11/28/2014 1 History of Computing Ahmed Sallam 11/28/2014 1 Outline Blast from the past Layered Perspective of Computing Why Assembly? Data Representation Base 2, 8, 10, 16 Number systems Boolean operations and algebra

More information

Fundamentals of Programming (C)

Fundamentals of Programming (C) Borrowed from lecturer notes by Omid Jafarinezhad Fundamentals of Programming (C) Group 8 Lecturer: Vahid Khodabakhshi Lecture Number Systems Department of Computer Engineering Outline Numeral Systems

More information

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U C A N A D I A N I N T E R N A T I O N A L S C H O O L O F H O N G K O N G 5.1 Introduction 5.2 Components of a Computer System Algorithm The Von Neumann architecture is based on the following three characteristics:

More information

1. Fundamental Concepts

1. Fundamental Concepts 1. Fundamental Concepts 1.1 What is a computer? A computer is a data processing machine which is operated automatically under the control of a list of instructions (called a program) stored in its main

More information

6. Binary and Hexadecimal

6. Binary and Hexadecimal COMP1917 15s2 6. Binary and Hexadecimal 1 COMP1917: Computing 1 6. Binary and Hexadecimal Reading: Moffat, Section 13.2 Outline Number Systems Binary Computation Converting between Binary and Decimal Octal

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM

SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING MICRO LESSON PLAN SUBJECT NAME : MICROPROCESSOR AND MICRO CONTROLLER SUBJECT CODE

More information

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers.

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers. Set No. 1 IV B.Tech I Semester Supplementary Examinations, March - 2017 COMPUTER ARCHITECTURE & ORGANIZATION (Common to Electronics & Communication Engineering and Electronics & Time: 3 hours Max. Marks:

More information

Binary Adders. Ripple-Carry Adder

Binary Adders. Ripple-Carry Adder Ripple-Carry Adder Binary Adders x n y n x y x y c n FA c n - c 2 FA c FA c s n MSB position Longest delay (Critical-path delay): d c(n) = n d carry = 2n gate delays d s(n-) = (n-) d carry +d sum = 2n

More information

ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010

ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Computer Organization (Autonomous)

Computer Organization (Autonomous) Computer Organization (Autonomous) UNIT I Sections - A & D Prepared by Anil Kumar Prathipati, Asst. Prof., Dept. of CSE. SYLLABUS Introduction: Types of Computers, Functional units of Basic Computer (Block

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 TOPICS TODAY Course overview Levels of machines Machine models: von Neumann & System Bus Fetch-Execute Cycle Base

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra Binary Representation Computer Systems Information is represented as a sequence of binary digits: Bits What the actual bits represent depends on the context: Seminar 3 Numerical value (integer, floating

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad AUTOMATIC CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Main reference: Christopher T. Kilian, (2001), Modern Control Technology: Components and Systems Publisher: Delmar

More information

Week 1. Introduction to Microcomputers and Microprocessors, Computer Codes, Programming, and Operating Systems

Week 1. Introduction to Microcomputers and Microprocessors, Computer Codes, Programming, and Operating Systems Week 1 Introduction to Microcomputers and Microprocessors, Computer Codes, Programming, and Operating Systems 2 Introduction to Microcomputers/ Stored Program C 3 Stored Program Concept There are three

More information

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable

More information

Bachelor of Computer Application DIGITAL TECHNIQUES. Block-1

Bachelor of Computer Application DIGITAL TECHNIQUES. Block-1 GCA S1 03 1 KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY Housefed Complex, Dispur, Guwahati - 781 006 Bachelor of Computer Application DIGITAL TECHNIQUES Block-1 Contents UNIT 1 : Introduction to Number

More information

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012 Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012 1 Digital vs Analog Digital signals are binary; analog

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 3, 2015 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

Chapter 2 Data Manipulation

Chapter 2 Data Manipulation Chapter 2 Data Manipulation Dr. Farzana Rahman Assistant Professor Department of Computer Science James Madison University 1 What the chapter is about? 2.1 Computer Architecture 2.2 Machine Language 2.3

More information

Introduction to Computers - Chapter 4

Introduction to Computers - Chapter 4 Introduction to Computers - Chapter 4 Since the invention of the transistor and the first digital computer of the 1940s, computers have been increasing in complexity and performance; however, their overall

More information

Microprocessor (COM 9323)

Microprocessor (COM 9323) Microprocessor (COM 9323) Lecture 1: Introduction Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Feb 17 th, 2016 1 Course Syllabus* o Introduction to computer architecture o Basics

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

COA. Prepared By: Dhaval R. Patel Page 1. Q.1 Define MBR.

COA. Prepared By: Dhaval R. Patel Page 1. Q.1 Define MBR. Q.1 Define MBR. MBR( Memory buffer register) A Memory Buffer Register (MBR) is the register in a computers processor that stores the data being transferred to and from the devices It allowing the processor

More information

Scheme G. Sample Test Paper-I

Scheme G. Sample Test Paper-I Sample Test Paper-I Marks : 25 Times:1 Hour 1. All questions are compulsory. 2. Illustrate your answers with neat sketches wherever necessary. 3. Figures to the right indicate full marks. 4. Assume suitable

More information