RISC Processors and Parallel Processing. Section and 3.3.6

Size: px
Start display at page:

Download "RISC Processors and Parallel Processing. Section and 3.3.6"

Transcription

1 RISC Processors and Parallel Processing Section and 3.3.6

2 The Control Unit When a program is being executed it is actually the CPU receiving and executing a sequence of machine code instructions. Here lies the responsibility of the Control Unit to make sure that each instruction is handled properly. There are two methods that the CU can make sure of this

3 The Hardwired Solution One method is to have the control unit constructed as a logic circuit. This is also known as the hardwired solution. In this method the machine code instructions are directly handled by the hardware.

4 The microprogramming approach An alternative to the hardwired approach involves a ROM component that contains a series of micro instructions which is responsible for handling the control unit These microinstructions or microprogramming is also referred to as firmware. However, the choice of either methods largely depends on the type of processor.

5 The Architecture of a Processor The 'architecture' of a processor can be defined in a number of ways. And it involves the following: The instruction set The instruction format The addressing modes The registers accessible by instructions

6 The choice of instruction set is main reason behind choosing a particular architecture. One approach places emphasis on the Hardware The one places emphasis on the Software

7 The CISC Approach Complex Instruction Set Computers This is the path that major chip makers have taken for decades. The philosophy is that the chip maker provides customers (programmers) with a rich set of fairly high level instructions with which to write code. e.g. Intel, Motorola But in order to do so, they have design some very complex hardware to decode and run that complex single instruction. For example, there might be a machine code instruction that can multiply floating point numbers in one line : MULT a,b

8 Complex hardware is not relevant to the programmer of course. However there are only a limited amount of logic gates on a chip and if the decoder takes so much room the number of registers inside the CPU is reduced, which forces more data to move about in memory.

9 The MULT Command A CISC processor would come prepared with a specific instruction (we'll call it "MULT"). When executed, this instruction loads the two values into separate registers, multiplies the operands in the execution unit, and then stores the product in the appropriate register. Thus, the entire task of multiplying two numbers can be completed with one instruction: MULT 2:3, 5:2 MULT is what is known as a "complex instruction. It closely resembles a command in a higher level language

10 Advantages of CISC One of the primary advantages of this system is that the compiler has to do very little work to translate a high-level language statement into assembly. Because the length of the code is relatively short, very little RAM is required to store instructions. The emphasis is put on building complex instructions directly into the hardware.

11 The RISC Approach Reduced Instruction Set Computer A relatively simple CPU decoder with many registers at the expense of having to write more lines of code to do the same thing. The RISC approach has some significant advantages however. For example an instruction only takes a single cycle to complete compared to the multi-cycle CISC approach.

12 CISC MULT a,b RISC LOAD a from memory into register1 LOAD b from memory into a register2 PROD Register1, Register2 (multiply) STORE Answer back into memory This means more memory is needed to store the instructions, but they may actually run faster overall because each one only takes a single cycle. Furthermore, there is less movement in and out of main memory as there are more registers to hold temporary data.

13 The downside is that the complier must convert a high level language instruction into many lines of machine code.

14

15 Pipelining One of the major driving forces for creating RISC processors was the opportunity they would provide for efficient pipelining. Pipelining is a form of parallelism applied specifically to instruction execution.

16 The underlying principle of pipelining is that the fetch - decode-execute cycle which is in face divided into the following stages. instruction fetch (IF) instruction decode (ID) operand fetch (OF) instruction execute (IE) result write back (WB)

17 For pipelining to be implemented, the construction of the processor must have five independent units, with each handling one of the five stages identified. This explains the need for a RISC processor to have many register sets; each processor unit must have access to its own set of registers.

18 Initially only the first stage of the first instruction has entered the pipeline. At clock cycle 6 the first instruction has left the pipeline, the last stage of instruction 2 is being handled and instruction 6 has just entered. It can be seen that once under way the pipeline is handling five stages of five individual instructions. In particular, at each clock cycle the complete processing of one instruction has finished. Without the pipeline the processing time would be five times long.

19 Parallel Processing Systems One computer can have multiple processors running in parallel. SISD (Single Instruction Single Data stream) SIMD (Single Instruction Multiple Data stream) MISD (Multiple Instruction Single Data stream) MIMD (Multiple Instruction Multiple Data stream).

20 SISD (Single Instruction Single Data stream) It is the typical arrangement found in early personal computers. There is a single processor so no processor parallelism. The single data stream just means one memory i.e. Pipeline

21 SIMD (Single Instruction Multiple Data stream) It describes how an array or vector processor works. The multiple processors each have their own memory. One instruction is input and each processor executes this instruction using data available in its dedicated memory. Array Processing:- Single instruction issued by control unit and applied to a number of data sets If data sets rely on each other then parallel processing cannot be applied. If A has to be processed before B then A and B cannot be processed in parallel.

22 MISD (Multiple Instruction Single Data stream) This isn't implemented in commercial products.

23 MIMD (Multiple Instruction Multiple Data stream) These are modern personal computers which are of the symmetric multiprocessor type using identical processors. In this case, each processor executes a different individual instruction. The multiple data stream can be provided by a single memory suitably partitioned. Each processor might have a dedicated cache memory.

24

25 Parallel computer systems Examples of one type of multicomputer system are cal led massively parallel computers. These are the systems used by large organisations for computations involving highly complex mathematical processing. They are the latest in an evolution of what have traditionally been called 'supercomputers'. The major difference in architecture is that instead of having a bus structure to support multiple processors there is a network infrastructure to support multiple computer units. The programs running on the different computers can communicate by passing messages using the network.

26 An alternative type of multicomputer system is cluster computing, where a very large number of PCs are networked.

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science ã Cengage Learning Objectives After studying this chapter, the student should be able to: q List the three subsystems of a computer. q Describe

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

Reduced Instruction Set Computer

Reduced Instruction Set Computer Reduced Instruction Set Computer RISC - Reduced Instruction Set Computer By reducing the number of instructions that a processor supports and thereby reducing the complexity of the chip, it is possible

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three subsystems of a computer. Describe the

More information

Computer Organization

Computer Organization Objectives 5.1 Chapter 5 Computer Organization Source: Foundations of Computer Science Cengage Learning 5.2 After studying this chapter, students should be able to: List the three subsystems of a computer.

More information

ADVANCED COMPUTER ARCHITECTURE TWO MARKS WITH ANSWERS

ADVANCED COMPUTER ARCHITECTURE TWO MARKS WITH ANSWERS ADVANCED COMPUTER ARCHITECTURE TWO MARKS WITH ANSWERS 1.Define Computer Architecture Computer Architecture Is Defined As The Functional Operation Of The Individual H/W Unit In A Computer System And The

More information

Announcement. Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Chapter 9 Objectives. 9.2 RISC Machines

Announcement. Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Chapter 9 Objectives. 9.2 RISC Machines Announcement Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Seung-Jong Park (Jay) http://wwwcsclsuedu/~sjpark 1 2 Chapter 9 Objectives 91 Introduction Learn the properties that often distinguish

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 3 Fundamentals in Computer Architecture Computer Architecture Part 3 page 1 of 55 Prof. Dr. Uwe Brinkschulte,

More information

Reader's Guide Outline of the Book A Roadmap For Readers and Instructors Why Study Computer Organization and Architecture Internet and Web Resources

Reader's Guide Outline of the Book A Roadmap For Readers and Instructors Why Study Computer Organization and Architecture Internet and Web Resources Reader's Guide Outline of the Book A Roadmap For Readers and Instructors Why Study Computer Organization and Architecture Internet and Web Resources Overview Introduction Organization and Architecture

More information

Chapter 13 Reduced Instruction Set Computers

Chapter 13 Reduced Instruction Set Computers Chapter 13 Reduced Instruction Set Computers Contents Instruction execution characteristics Use of a large register file Compiler-based register optimization Reduced instruction set architecture RISC pipelining

More information

2 MARKS Q&A 1 KNREDDY UNIT-I

2 MARKS Q&A 1 KNREDDY UNIT-I 2 MARKS Q&A 1 KNREDDY UNIT-I 1. What is bus; list the different types of buses with its function. A group of lines that serves as a connecting path for several devices is called a bus; TYPES: ADDRESS BUS,

More information

Introduction. CSCI 4850/5850 High-Performance Computing Spring 2018

Introduction. CSCI 4850/5850 High-Performance Computing Spring 2018 Introduction CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University What is Parallel

More information

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit Lecture1: introduction Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit 1 1. History overview Computer systems have conventionally

More information

Parallel Processors. Session 1 Introduction

Parallel Processors. Session 1 Introduction Parallel Processors Session 1 Introduction Applications of Parallel Processors Structural Analysis Weather Forecasting Petroleum Exploration Fusion Energy Research Medical Diagnosis Aerodynamics Simulations

More information

3.3 Hardware Parallel processing

3.3 Hardware Parallel processing Parallel processing is the simultaneous use of more than one CPU to execute a program. Ideally, parallel processing makes a program run faster because there are more CPUs running it. In practice, it is

More information

Instruction Register. Instruction Decoder. Control Unit (Combinational Circuit) Control Signals (These signals go to register) The bus and the ALU

Instruction Register. Instruction Decoder. Control Unit (Combinational Circuit) Control Signals (These signals go to register) The bus and the ALU Hardwired and Microprogrammed Control For each instruction, the control unit causes the CPU to execute a sequence of steps correctly. In reality, there must be control signals to assert lines on various

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

CISC Attributes. E.g. Pentium is considered a modern CISC processor

CISC Attributes. E.g. Pentium is considered a modern CISC processor What is CISC? CISC means Complex Instruction Set Computer chips that are easy to program and which make efficient use of memory. Since the earliest machines were programmed in assembly language and memory

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

CS 5803 Introduction to High Performance Computer Architecture: RISC vs. CISC. A.R. Hurson 323 Computer Science Building, Missouri S&T

CS 5803 Introduction to High Performance Computer Architecture: RISC vs. CISC. A.R. Hurson 323 Computer Science Building, Missouri S&T CS 5803 Introduction to High Performance Computer Architecture: RISC vs. CISC A.R. Hurson 323 Computer Science Building, Missouri S&T hurson@mst.edu 1 Outline How to improve CPU time? Complex Instruction

More information

Chapter 2 Lecture 1 Computer Systems Organization

Chapter 2 Lecture 1 Computer Systems Organization Chapter 2 Lecture 1 Computer Systems Organization This chapter provides an introduction to the components Processors: Primary Memory: Secondary Memory: Input/Output: Busses The Central Processing Unit

More information

Micro-programmed Control Ch 15

Micro-programmed Control Ch 15 Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to modify Lots of

More information

Machine Instructions vs. Micro-instructions. Micro-programmed Control Ch 15. Machine Instructions vs. Micro-instructions (2) Hardwired Control (4)

Machine Instructions vs. Micro-instructions. Micro-programmed Control Ch 15. Machine Instructions vs. Micro-instructions (2) Hardwired Control (4) Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Machine Instructions vs. Micro-instructions Memory execution unit CPU control memory

More information

Chapter 05: Basic Processing Units Control Unit Design Organization. Lesson 14: Microprogrammed Control

Chapter 05: Basic Processing Units Control Unit Design Organization. Lesson 14: Microprogrammed Control Chapter 05: Basic Processing Units Control Unit Design Organization Lesson 14: Microprogrammed Control Objective Understand the design of microprogrammed control unit to generate all sequences of the control

More information

instruction set computer or RISC.

instruction set computer or RISC. (RISC and SISC) An important aspect of computer architecture is the design of the instruction set for the processor. In the early 1980s, a number of computer designer recommended that computers use fewer

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

Micro-programmed Control Ch 15

Micro-programmed Control Ch 15 Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to modify Lots of

More information

Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A

Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A 1.Define Computer Architecture Computer Architecture Is Defined As The Functional Operation

More information

Chapter 06: Instruction Pipelining and Parallel Processing. Lesson 14: Example of the Pipelined CISC and RISC Processors

Chapter 06: Instruction Pipelining and Parallel Processing. Lesson 14: Example of the Pipelined CISC and RISC Processors Chapter 06: Instruction Pipelining and Parallel Processing Lesson 14: Example of the Pipelined CISC and RISC Processors 1 Objective To understand pipelines and parallel pipelines in CISC and RISC Processors

More information

omputer Design Concept adao Nakamura

omputer Design Concept adao Nakamura omputer Design Concept adao Nakamura akamura@archi.is.tohoku.ac.jp akamura@umunhum.stanford.edu 1 1 Pascal s Calculator Leibniz s Calculator Babbage s Calculator Von Neumann Computer Flynn s Classification

More information

Von Neumann architecture. The first computers used a single fixed program (like a numeric calculator).

Von Neumann architecture. The first computers used a single fixed program (like a numeric calculator). Microprocessors Von Neumann architecture The first computers used a single fixed program (like a numeric calculator). To change the program, one has to re-wire, re-structure, or re-design the computer.

More information

Lecture 8: RISC & Parallel Computers. Parallel computers

Lecture 8: RISC & Parallel Computers. Parallel computers Lecture 8: RISC & Parallel Computers RISC vs CISC computers Parallel computers Final remarks Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) is an important innovation in computer

More information

Unit 9 : Fundamentals of Parallel Processing

Unit 9 : Fundamentals of Parallel Processing Unit 9 : Fundamentals of Parallel Processing Lesson 1 : Types of Parallel Processing 1.1. Learning Objectives On completion of this lesson you will be able to : classify different types of parallel processing

More information

Parallel Computing: Parallel Architectures Jin, Hai

Parallel Computing: Parallel Architectures Jin, Hai Parallel Computing: Parallel Architectures Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology Peripherals Computer Central Processing Unit Main Memory Computer

More information

BASIC PROCESSING UNIT Control Unit has two major functions: To control the sequencing of information-processing tasks performed by machine Guiding and supervising each unit to make sure that each unit

More information

Micro-programmed Control Ch 17

Micro-programmed Control Ch 17 Micro-programmed Control Ch 17 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics Course Summary 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to

More information

Dr. Joe Zhang PDC-3: Parallel Platforms

Dr. Joe Zhang PDC-3: Parallel Platforms CSC630/CSC730: arallel & Distributed Computing arallel Computing latforms Chapter 2 (2.3) 1 Content Communication models of Logical organization (a programmer s view) Control structure Communication model

More information

Hardwired Control (4) Micro-programmed Control Ch 17. Micro-programmed Control (3) Machine Instructions vs. Micro-instructions

Hardwired Control (4) Micro-programmed Control Ch 17. Micro-programmed Control (3) Machine Instructions vs. Micro-instructions Micro-programmed Control Ch 17 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics Course Summary Hardwired Control (4) Complex Fast Difficult to design Difficult to modify

More information

ELC4438: Embedded System Design Embedded Processor

ELC4438: Embedded System Design Embedded Processor ELC4438: Embedded System Design Embedded Processor Liang Dong Electrical and Computer Engineering Baylor University 1. Processor Architecture General PC Von Neumann Architecture a.k.a. Princeton Architecture

More information

Chapter 2: Data Manipulation

Chapter 2: Data Manipulation Chapter 2 Data Manipulation Computer Science An Overview Tenth Edition by J. Glenn Brookshear Presentation files modified by Farn Wang Chapter 2 Data Manipulation 2.1 Computer Architecture 2.2 Machine

More information

Introduction to parallel computing

Introduction to parallel computing Introduction to parallel computing 2. Parallel Hardware Zhiao Shi (modifications by Will French) Advanced Computing Center for Education & Research Vanderbilt University Motherboard Processor https://sites.google.com/

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 Data representation: (CHAPTER-3) 1. Discuss in brief about Data types, (8marks)

More information

Parallel Computing Ideas

Parallel Computing Ideas Parallel Computing Ideas K. 1 1 Department of Mathematics 2018 Why When to go for speed Historically: Production code Code takes a long time to run Code runs many times Code is not end in itself 2010:

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor Slide 1 Microprocessor A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device That reads binary instructions from a storage device

More information

Module 5 Introduction to Parallel Processing Systems

Module 5 Introduction to Parallel Processing Systems Module 5 Introduction to Parallel Processing Systems 1. What is the difference between pipelining and parallelism? In general, parallelism is simply multiple operations being done at the same time.this

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - Von Neumann Architecture 2 Two lessons Summary of the traditional computer architecture Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

Microprogrammed Control

Microprogrammed Control Microprogrammed Control Chapter 17 Lesson 21 Slide 1/24 From chapter 16 Implementation of the control unit: Hardwired Essentially a combinatorial circuit Microprogrammed An alternative to a hardwired implementation.

More information

COMPUTER STRUCTURE AND ORGANIZATION

COMPUTER STRUCTURE AND ORGANIZATION COMPUTER STRUCTURE AND ORGANIZATION Course titular: DUMITRAŞCU Eugen Chapter 4 COMPUTER ORGANIZATION FUNDAMENTAL CONCEPTS CONTENT The scheme of 5 units von Neumann principles Functioning of a von Neumann

More information

Computer Organization and Design, 5th Edition: The Hardware/Software Interface

Computer Organization and Design, 5th Edition: The Hardware/Software Interface Computer Organization and Design, 5th Edition: The Hardware/Software Interface 1 Computer Abstractions and Technology 1.1 Introduction 1.2 Eight Great Ideas in Computer Architecture 1.3 Below Your Program

More information

Lecture 4: RISC Computers

Lecture 4: RISC Computers Lecture 4: RISC Computers Introduction Program execution features RISC characteristics RISC vs. CICS Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) is an important innovation

More information

Computer organization by G. Naveen kumar, Asst Prof, C.S.E Department 1

Computer organization by G. Naveen kumar, Asst Prof, C.S.E Department 1 Pipelining and Vector Processing Parallel Processing: The term parallel processing indicates that the system is able to perform several operations in a single time. Now we will elaborate the scenario,

More information

Part A Questions 1. What is an ISP? ISP stands for Instruction Set Processor. This unit is simply called as processor which executes machine instruction and coordinates the activities of other units..

More information

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I UNIT-I 1. List and explain the functional units of a computer with a neat diagram 2. Explain the computer levels of programming languages 3. a) Explain about instruction formats b) Evaluate the arithmetic

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

Computer System Architecture

Computer System Architecture CSC 203 1.5 Computer System Architecture Budditha Hettige Department of Statistics and Computer Science University of Sri Jayewardenepura Microprocessors 2011 Budditha Hettige 2 Processor Instructions

More information

RISC Principles. Introduction

RISC Principles. Introduction 3 RISC Principles In the last chapter, we presented many details on the processor design space as well as the CISC and RISC architectures. It is time we consolidated our discussion to give details of RISC

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter IT 3123 Hardware and Software Concepts Notice: This session is being recorded. CPU and Memory June 11 Copyright 2005 by Bob Brown Latches Can store one bit of data Can be ganged together to store more

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 7 Parallel Processing 1 Parallelism Instruction-level parallelism (Ch.6) pipeline superscalar latency issues hazards Processor-level parallelism (Ch.7) array/vector of processors

More information

Embedded Systems Architecture. Computer Architectures

Embedded Systems Architecture. Computer Architectures Embedded Systems Architecture Computer Architectures M. Eng. Mariusz Rudnicki 1/18 A taxonomy of computer architectures There are many different types of architectures, and it is worth considering some

More information

Reduced Instruction Set Computers

Reduced Instruction Set Computers Reduced Instruction Set Computers The acronym RISC stands for Reduced Instruction Set Computer. RISC represents a design philosophy for the ISA (Instruction Set Architecture) and the CPU microarchitecture

More information

PIPELINE AND VECTOR PROCESSING

PIPELINE AND VECTOR PROCESSING PIPELINE AND VECTOR PROCESSING PIPELINING: Pipelining is a technique of decomposing a sequential process into sub operations, with each sub process being executed in a special dedicated segment that operates

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Introduction to Microcontrollers Embedded Controller Simply an embedded controller is a controller that is embedded in a greater system. One can define an embedded controller as a controller (or computer)

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers.

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers. Set No. 1 IV B.Tech I Semester Supplementary Examinations, March - 2017 COMPUTER ARCHITECTURE & ORGANIZATION (Common to Electronics & Communication Engineering and Electronics & Time: 3 hours Max. Marks:

More information

Computer Organization CS 206 T Lec# 2: Instruction Sets

Computer Organization CS 206 T Lec# 2: Instruction Sets Computer Organization CS 206 T Lec# 2: Instruction Sets Topics What is an instruction set Elements of instruction Instruction Format Instruction types Types of operations Types of operand Addressing mode

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Complex Pipelining: Superscalar Prof. Michel A. Kinsy Summary Concepts Von Neumann architecture = stored-program computer architecture Self-Modifying Code Princeton architecture

More information

William Stallings Computer Organization and Architecture. Chapter 12 Reduced Instruction Set Computers

William Stallings Computer Organization and Architecture. Chapter 12 Reduced Instruction Set Computers William Stallings Computer Organization and Architecture Chapter 12 Reduced Instruction Set Computers Major Advances in Computers(1) The family concept IBM System/360 1964 DEC PDP-8 Separates architecture

More information

Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations.

Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations. CS 320 Ch. 21 Microprogrammed Control Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations. Microprogramming was invented by Maurice

More information

CISC / RISC. Complex / Reduced Instruction Set Computers

CISC / RISC. Complex / Reduced Instruction Set Computers Systems Architecture CISC / RISC Complex / Reduced Instruction Set Computers CISC / RISC p. 1/12 Instruction Usage Instruction Group Average Usage 1 Data Movement 45.28% 2 Flow Control 28.73% 3 Arithmetic

More information

Course Description: This course includes concepts of instruction set architecture,

Course Description: This course includes concepts of instruction set architecture, Computer Architecture Course Title: Computer Architecture Full Marks: 60+ 20+20 Course No: CSC208 Pass Marks: 24+8+8 Nature of the Course: Theory + Lab Credit Hrs: 3 Course Description: This course includes

More information

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Lecture (4) Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1 Lecture Outline:

More information

RISC & Superscalar. COMP 212 Computer Organization & Architecture. COMP 212 Fall Lecture 12. Instruction Pipeline no hazard.

RISC & Superscalar. COMP 212 Computer Organization & Architecture. COMP 212 Fall Lecture 12. Instruction Pipeline no hazard. COMP 212 Computer Organization & Architecture Pipeline Re-Cap Pipeline is ILP -Instruction Level Parallelism COMP 212 Fall 2008 Lecture 12 RISC & Superscalar Divide instruction cycles into stages, overlapped

More information

More advanced CPUs. August 4, Howard Huang 1

More advanced CPUs. August 4, Howard Huang 1 More advanced CPUs In the last two weeks we presented the design of a basic processor. The datapath performs operations on register and memory data. A control unit translates program instructions into

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

CS 101, Mock Computer Architecture

CS 101, Mock Computer Architecture CS 101, Mock Computer Architecture Computer organization and architecture refers to the actual hardware used to construct the computer, and the way that the hardware operates both physically and logically

More information

Parallel Computer Architectures. Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam

Parallel Computer Architectures. Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam Parallel Computer Architectures Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam Outline Flynn s Taxonomy Classification of Parallel Computers Based on Architectures Flynn s Taxonomy Based on notions of

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *7825200973* COMPUTER SCIENCE 9608/32 Paper 3 Advanced Theory October/November 2018 1 hour 30 minutes

More information

Introduction II. Overview

Introduction II. Overview Introduction II Overview Today we will introduce multicore hardware (we will introduce many-core hardware prior to learning OpenCL) We will also consider the relationship between computer hardware and

More information

Chapter 2: Data Manipulation

Chapter 2: Data Manipulation Chapter 2: Data Manipulation Computer Science: An Overview Eleventh Edition by J. Glenn Brookshear Copyright 2012 Pearson Education, Inc. Chapter 2: Data Manipulation 2.1 Computer Architecture 2.2 Machine

More information

A taxonomy of computer architectures

A taxonomy of computer architectures A taxonomy of computer architectures 53 We have considered different types of architectures, and it is worth considering some way to classify them. Indeed, there exists a famous taxonomy of the various

More information

Chapter 3 : Control Unit

Chapter 3 : Control Unit 3.1 Control Memory Chapter 3 Control Unit The function of the control unit in a digital computer is to initiate sequences of microoperations. When the control signals are generated by hardware using conventional

More information

Chapter 2: Data Manipulation

Chapter 2: Data Manipulation Chapter 2: Data Manipulation Computer Science: An Overview Eleventh Edition by J. Glenn Brookshear Copyright 2012 Pearson Education, Inc. Chapter 2: Data Manipulation 2.1 Computer Architecture 2.2 Machine

More information

Micro-Operations. execution of a sequence of steps, i.e., cycles

Micro-Operations. execution of a sequence of steps, i.e., cycles Micro-Operations Instruction execution execution of a sequence of steps, i.e., cycles Fetch, Indirect, Execute & Interrupt cycles Cycle - a sequence of micro-operations Micro-operations data transfer between

More information

SYLLABUS. osmania university CHAPTER - 1 : REGISTER TRANSFER LANGUAGE AND MICRO OPERATION CHAPTER - 2 : BASIC COMPUTER

SYLLABUS. osmania university CHAPTER - 1 : REGISTER TRANSFER LANGUAGE AND MICRO OPERATION CHAPTER - 2 : BASIC COMPUTER Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : REGISTER TRANSFER LANGUAGE AND MICRO OPERATION Difference between Computer Organization and Architecture, RTL Notation, Common Bus System using

More information

CC312: Computer Organization

CC312: Computer Organization CC312: Computer Organization 1 Chapter 1 Introduction Chapter 1 Objectives Know the difference between computer organization and computer architecture. Understand units of measure common to computer systems.

More information

Chapter 4. MARIE: An Introduction to a Simple Computer 4.8 MARIE 4.8 MARIE A Discussion on Decoding

Chapter 4. MARIE: An Introduction to a Simple Computer 4.8 MARIE 4.8 MARIE A Discussion on Decoding 4.8 MARIE This is the MARIE architecture shown graphically. Chapter 4 MARIE: An Introduction to a Simple Computer 2 4.8 MARIE MARIE s Full Instruction Set A computer s control unit keeps things synchronized,

More information

General Purpose Signal Processors

General Purpose Signal Processors General Purpose Signal Processors First announced in 1978 (AMD) for peripheral computation such as in printers, matured in early 80 s (TMS320 series). General purpose vs. dedicated architectures: Pros:

More information

THE MICROPROCESSOR Von Neumann s Architecture Model

THE MICROPROCESSOR Von Neumann s Architecture Model THE ICROPROCESSOR Von Neumann s Architecture odel Input/Output unit Provides instructions and data emory unit Stores both instructions and data Arithmetic and logic unit Processes everything Control unit

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT-I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT-I SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : CO (16MC802) Year & Sem: I-MCA & I-Sem Course & Branch: MCA Regulation:

More information

Chapter 04: Instruction Sets and the Processor organizations. Lesson 20: RISC and converged Architecture

Chapter 04: Instruction Sets and the Processor organizations. Lesson 20: RISC and converged Architecture Chapter 04: Instruction Sets and the Processor organizations Lesson 20: RISC and converged Architecture 1 Objective Learn the RISC architecture Learn the Converged Architecture 2 Reduced Instruction Set

More information

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics Computer and Hardware Architecture I Benny Thörnberg Associate Professor in Electronics Hardware architecture Computer architecture The functionality of a modern computer is so complex that no human can

More information

3.3.3 Computer Architecture

3.3.3 Computer Architecture 3.3.3 Computer Architecture VON NEUMANN ARCHITECTURE (SISD) 1 FLYNN S TAXONOMY 1 THE COMPONENTS OF THE CPU 2 CONTROL UNIT - CU 3 ARITHMETIC AND LOGIC UNIT - ALU 3 INCREMENTER 3 THE REGISTERS OF THE CPU

More information

CISC 360. Computer Architecture. Seth Morecraft Course Web Site:

CISC 360. Computer Architecture. Seth Morecraft Course Web Site: CISC 360 Computer Architecture Seth Morecraft (morecraf@udel.edu) Course Web Site: http://www.eecis.udel.edu/~morecraf/cisc360 Overview Intro to Computer Architecture About the Course Organization

More information

Computer Architecture Programming Languages and Operating System

Computer Architecture Programming Languages and Operating System Computer Architecture Programming Languages and Operating System Tassadaq Hussain Riphah International University Islamabad Pakistan Microsoft Barcelona Supercomputing Center Universitat Politécnica de

More information

Instruction Set Architectures. Part 1

Instruction Set Architectures. Part 1 Instruction Set Architectures Part 1 Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture Digital Design Circuit Design 1/9/02 Some ancient history Earliest (1940

More information

New Advances in Micro-Processors and computer architectures

New Advances in Micro-Processors and computer architectures New Advances in Micro-Processors and computer architectures Prof. (Dr.) K.R. Chowdhary, Director SETG Email: kr.chowdhary@jietjodhpur.com Jodhpur Institute of Engineering and Technology, SETG August 27,

More information

Lecture 26: Parallel Processing. Spring 2018 Jason Tang

Lecture 26: Parallel Processing. Spring 2018 Jason Tang Lecture 26: Parallel Processing Spring 2018 Jason Tang 1 Topics Static multiple issue pipelines Dynamic multiple issue pipelines Hardware multithreading 2 Taxonomy of Parallel Architectures Flynn categories:

More information