4. Hardware Platform: Real-Time Requirements

Size: px
Start display at page:

Download "4. Hardware Platform: Real-Time Requirements"

Transcription

1 4. Hardware Platform: Real-Time Requirements Contents: 4.1 Evolution of Microprocessor Architecture 4.2 Performance-Increasing Concepts 4.3 Influences on System Architecture 4.4 A Real-Time Hardware Architecture K. H. Ecker, T.U. Clausthal. Sept Hardware Platform: Real-Time Requirements 4-1

2 Obviously, processors have to fulfill the time constraints of the technical process Microprocessors are often integrated in technical processes "embedded systems" r-t systems are the most innovative application areas for today's microprocessors Question: architectural concepts of microprocessors; relevance for r-t systems? Silicon technology: driving force in processor development increase of integration density; price reduction 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

3 4.1 Evolution of Microprocessor Architecture CISC versus RISC RISC characteristics: almost all instruction need one clock cycle arithmetical and logical operations are confined to registers; load/store operation for accessing memory large number of general purpose registers on chip reduced instruction set: about 40 or less instructions as compared to over 120 in CISC instruction format has fixed length Register organization performance of procedure calls stack-, code-, data-cache register windows (for enhancing program branches) 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

4 Interrupt system are very important in r-t systems because of time-related interaction with the environment conventional interrupt systems of microprocessors: software-programmed interrupt controllers more recent developments: interrupt controllers are integrated in the processor Hardware support for multitasking and multi-user environments - virtual memory management mapping of virtual addresses to physical addresses: = segmentation (Motorola 68010, Intel 80286) = paging (Motorola 68030, Intel 80386) = segmentation and paging (Motorola 88000, Intel 80386, AMD 29000) 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

5 - memory protection reasons for memory protection: = support for simplified debugging and testing by run-time checks and exception handling = protection of operating system from erroneous application programs = protection of operating system and application programs against illegal access - realization = access to main memory pages is checked by the MMU = introduction of privilege levels with different access rights is used to protect different system components against each other Trend: integration of memory protection into processor chips; two privilege levels: user mode/supervisor mode 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

6 Multitasking support Operating systems are significantly determined by their multitasking capabilities New microprocessors offer more and more multitasking support integrated in VLSI technology Today, we find two levels of on-chip support: - some processors offer the notion of tasks and explicit context switches implemented in hardware (Intel 80386, Weitek 32100) - other processors have even implemented complete scheduling algorithms in hardware (Inmos T800) In typical r-t systems: large number of concurrently running tasks; high rate of context switches 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

7 Debugging and monitoring Tools for software development: - single stepping, breakpointing - event trigger logic - breakpointing and tracing based in different types of events - logical and time related event combination - and others In typical r-t systems: Increasing complexity of software, the integration of these features into the processor chip is very important 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

8 4.2 Performance-Increasing Concepts In MIPS, performance of microprocessors has increasing by a factor of 2.25 each year in the past improvements in silicon technology, in architectural concepts; integration of cache, and on-chip pipelining Pipelining Multiple phases of different instructions are executed in parallel; jumps, branches, procedure calls/returns, interrupts and context switches... cause a pipeline "flush" Pipeline flushes can be reduced by - code reorganization (delayed execution of jumps, delayed branches) - doubling of the first pipeline 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

9 - prediction of probability of branches based on heuristics (branch prediction) - adequate register allocation to avoid pipeline flushes New trends in processor design: more sophisticated concepts such as: superpipelined, superscalar, long instruction word (LIW), very long instruction word (VLIW) In typical r-t systems: the high interrupt rates and context switches decrease the performance of pipelines substantially 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

10 4.2.2 Cache memories... used to avoid memory-access latency In addition: cache memories are a precondition for enhancing branch prediction Cache efficiency is measured in hit rates: Code cache: byte cache: approx. 80% hit rate - 2-Kbyte cache: approx. 95% hit rate Data cache: - 4-Kbyte cache: approx. 80% hit rate In typical r-t systems: - high interrupt and context switch rates cause useless entries in the cache and consequently a low hit rate + very important routines of real-time programs may fit completely into onchip caches: execution without misses "freezing the cache" 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

11 4.2.3 Modular design to reduce and manage the complexity of new microprocessors Modularity of new designs: structure the processor design into well-defined reusable modules - submodules are independent and can be developed separately - new processors may be combined easily from already existing modules - processor can be distributed among several chips - modules can be tuned independently of each other with respect to different requirements - application-specific or special-purpose modules can be added easily Adequate definitions of interfaces between modules r-t systems: future "real-time" processors are modifications of "standard" microprocessor families integration of microprocessor cores in application-specific integrated circuits (ASICs) 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

12 4.2.4 Testability Higher integration and complexity of microprocessors require new ways of chip testing - complete testing not possible due to the huge number of required test patterns - pin limitations: increasingly complicated to access internal structures from outside - testing at the board level becomes more difficult because of higher board integration, technique of surface-mounted-devices On-chip test circuits: tests are initiated from the outside via additional pins 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

13 4.3 Influences on System Architecture Relationship between processor and major components: Processor bus interface between processor and memory: bottleneck - separate instruction and data buses - burst mode operation; pipelined transmissions - 64 or 128 bit buses Multiprocessors architectures Three classes of available multiprocessor architectures: - homogeneous parallel computers based on identical microprocessors in each processor node and non-bus-based interconnection networks e.g. hypercube, tree, array - tightly coupled processors with specific buses and global shared memory - loosely coupled processors based on standard bus systems Ebus; Multibus I, II, Futurebus 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

14 Coprocessors... for special purposes Coprocessors enhance system performance by off-loading the CPU Types of coprocessors: - network coprocessors - direct memory access controllers - I/O processors - graphics coprocessors - floating point arithmetic coprocessors Interface between processor and coprocessor: tightly coupled (CPU specific) or loosely coupled (CPU independent) 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

15 Reliability and fault tolerance Reliability and availability of microprocessor systems decreases with increasing number of components Solution: integration of fault tolerant concepts Example: integration of master/checker circuits in CPUs r-t systems: very important in case of security-sensitive applications 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

16 4.4 A Real-Time Hardware Architecture A Basic Architectural Concept Early days of real-time processing: - conventional von Neumann computers - adaptation to the real time application by including process peripherals and externally available interrupt lines - all other real time requirements were met by software operating system, carefully programming In this chapter: development of a concept of a hardware platform on which predictably behaving real-time systems may be based 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

17 General hardware requirements: - known time for each machine instruction - hardware must not introduce unpredictably long delays - fail-safe hardware: support of fault detection; predictable graceful degradation; recover within predictable intervals Consequences: - simple, well-defined architecture, - comprehensive instruction set, - no features like pipelining, caches, virtual memory or general DMA 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

18 Proposed solution: task-oriented hierarchical storage administration scheme, DMA without cycle stealing explicit timing of I/O facilities two-processor architecture: general task processor for user tasks and OS tasks that interfere with user tasks mainly supervisor shell services, e.g. data exchange with peripherals file management, as initiated by the user tasks co-processor for the OS kernel firmware: responsible for system functions events, time and task management, communication, synchronization 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

19 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

20 4.4.2 Layered Structure of R-T Operating Systems Basic architectural concepts: processors for task execution separate co-processor for the os-kernel and firmware interrupt handling task management communication synchronization time administration I/O routines operator interface distinction between operating system nucleus OS processes of the first kind by interrupts and the operating system shell OS processes of the second kind handled as used tasks 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

21 Advantages: normal program flow is only interrupted when required by the scheduling algorithm no unnecessary context switches event-driven tasks are executed in a way that disturbs other active tasks as little as possible operating system overhead becomes predictable no task preemption due to occurring events event: immediate reaction required the co-processor provides an independently working event recognition mechanism 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

22 Three layer structure of a co-processor 1. Hardware layer accurate r-t management based on high resolution clock exact timing of operations separate programmable interrupt generator for software simulation event representation by storage element and latch for time of occurrence synchronizer representation shared variable representation 2. Primary reaction layer recognition of events (interrupts, signals, time events, status transfer of synchronizers, value changes of shared variables) initiation of secondary reactions recording of events for error tracking management of time schedules and critical instants 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

23 3. Secondary reaction layer deadline-driven processor scheduling with overload handling task oriented hierarchical storage management execution of (secondary) event reactions (tasks) synchronizer management shared variable management acceptance of requests initiation of processor activities 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

24 Realization of communication between general processor and co-processor communication operations require: first-in-first-out buffers shared variables, system internal data: e.g. task control blocks common memory area directly accessible by all system components 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

25 4.4.3 Predictable Storage Management Situation: task software... usually rather small pieces of software "paging elements" for fast and predictable reaction times: entire task segment should be loaded into main memory each time it is needed Task-oriented hierarchical storage administration: main storage is divided into an area for the supervisor (no paging) shared data structures (no paging) K 2 page frames (paging) frame size: should keep the code of a single task 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

26 Influence of number of page frames: (T 1,..., Tn t )... list of ready tasks at time t, in EDF order loading into main memory: subset B = {T i i = 1,..., min{k, n t }} (K 2) T 1 B is running each task of B is assigned a free frame If a task with earlier deadline as some task in B arrives: task replacement During execution of T 1 : next task (T 2 ) can be "paged in" code of T 2 should latest be available as soon as T 1 terminates Actual choice of K depends on: number of I/O channels available for paging transfer time average execution time of tasks frequency of suspension of the running task due to I/O and synchronization when other tasks are processed while the task is suspended 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

27 4.4.4 Direct Memory Access Cycle stealing: slows down other activities in the system indirectly and unpredictably on the other hand: DMA speeds up I/O transfers of large blocks of data but reaction times in control applications cannot be guaranteed in the presence of DMA DMA without cycle stealing: main storage is organized in several independent modules processor operates on one module, DMA on another module dynamic bus subdivision 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

28 temporary (and programmed) separations of bus sections bus accesses in isolated sections only 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

29 dynamic RAMs refreshing can be connected with DMA 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

30 4.4.5 Precise Timing Requirement: formulation of the following conditions: data transmission from the r-t system to the environment at specified times data entering the r-t system: time instant must be recorded to ascertain reaction times Low-level statements for timing: TAKE variable FROM source AT clock_expression SEND expression TO sink AT clock_expression... for precisely timed program initiated I/O Externally triggered input operation with time stamp: TAKE variable FROM source RECEIVED clock_variable 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

31 Summary of Chapter 4 Performance increasing concepts for microprocessors: RISC architecture on-chip interrupt controllers operating system support multitasking support pipelining cache memories testing Not all these concepts are necessarily well suited for real-time systems On the level of system architecture, enhancement concepts concern the processor bus co-processors, multiprocessors, integration of fault tolerant solutions 2003 K. H. Ecker, T.U. Clausthal. 4. Hardware Platform

ARM Processors for Embedded Applications

ARM Processors for Embedded Applications ARM Processors for Embedded Applications Roadmap for ARM Processors ARM Architecture Basics ARM Families AMBA Architecture 1 Current ARM Core Families ARM7: Hard cores and Soft cores Cache with MPU or

More information

CISC RISC. Compiler. Compiler. Processor. Processor

CISC RISC. Compiler. Compiler. Processor. Processor Q1. Explain briefly the RISC design philosophy. Answer: RISC is a design philosophy aimed at delivering simple but powerful instructions that execute within a single cycle at a high clock speed. The RISC

More information

The Nios II Family of Configurable Soft-core Processors

The Nios II Family of Configurable Soft-core Processors The Nios II Family of Configurable Soft-core Processors James Ball August 16, 2005 2005 Altera Corporation Agenda Nios II Introduction Configuring your CPU FPGA vs. ASIC CPU Design Instruction Set Architecture

More information

Chapter 5. Introduction ARM Cortex series

Chapter 5. Introduction ARM Cortex series Chapter 5 Introduction ARM Cortex series 5.1 ARM Cortex series variants 5.2 ARM Cortex A series 5.3 ARM Cortex R series 5.4 ARM Cortex M series 5.5 Comparison of Cortex M series with 8/16 bit MCUs 51 5.1

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009 Digital Signal Processing 8 December 24, 2009 VIII. DSP Processors 2007 Syllabus: Introduction to programmable DSPs: Multiplier and Multiplier-Accumulator (MAC), Modified bus structures and memory access

More information

3. Which of the following is volatile? [ ] A) Bubble memory B) RAM C) ROM D) Magneticdisk

3. Which of the following is volatile? [ ] A) Bubble memory B) RAM C) ROM D) Magneticdisk Code No: 05210505 Set No. 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD III B.Tech. II Sem. II Mid-Term Examinations, April 2009 COMPUTER ORGANIZATION Objective Exam Name: Hall Ticket No. Answer

More information

Following are a few basic questions that cover the essentials of OS:

Following are a few basic questions that cover the essentials of OS: Operating Systems Following are a few basic questions that cover the essentials of OS: 1. Explain the concept of Reentrancy. It is a useful, memory-saving technique for multiprogrammed timesharing systems.

More information

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 13 Virtual memory and memory management unit In the last class, we had discussed

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Introduction to Microcontrollers Embedded Controller Simply an embedded controller is a controller that is embedded in a greater system. One can define an embedded controller as a controller (or computer)

More information

Parallel Computing: Parallel Architectures Jin, Hai

Parallel Computing: Parallel Architectures Jin, Hai Parallel Computing: Parallel Architectures Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology Peripherals Computer Central Processing Unit Main Memory Computer

More information

Multimedia Systems 2011/2012

Multimedia Systems 2011/2012 Multimedia Systems 2011/2012 System Architecture Prof. Dr. Paul Müller University of Kaiserslautern Department of Computer Science Integrated Communication Systems ICSY http://www.icsy.de Sitemap 2 Hardware

More information

Computer-System Organization (cont.)

Computer-System Organization (cont.) Computer-System Organization (cont.) Interrupt time line for a single process doing output. Interrupts are an important part of a computer architecture. Each computer design has its own interrupt mechanism,

More information

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter IT 3123 Hardware and Software Concepts Notice: This session is being recorded. CPU and Memory June 11 Copyright 2005 by Bob Brown Latches Can store one bit of data Can be ganged together to store more

More information

Lecture 2: September 9

Lecture 2: September 9 CMPSCI 377 Operating Systems Fall 2010 Lecture 2: September 9 Lecturer: Prashant Shenoy TA: Antony Partensky & Tim Wood 2.1 OS & Computer Architecture The operating system is the interface between a user

More information

Computer Organization and Microprocessors SYLLABUS CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS CHAPTER - 3 : THE MEMORY SYSTEM

Computer Organization and Microprocessors SYLLABUS CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS CHAPTER - 3 : THE MEMORY SYSTEM i SYLLABUS UNIT - 1 CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS Computer Types, Functional Units, Basic Operational Concepts, Bus Structures, Software, Performance, Multiprocessors and Multicomputers, Historical

More information

1. Microprocessor Architectures. 1.1 Intel 1.2 Motorola

1. Microprocessor Architectures. 1.1 Intel 1.2 Motorola 1. Microprocessor Architectures 1.1 Intel 1.2 Motorola 1.1 Intel The Early Intel Microprocessors The first microprocessor to appear in the market was the Intel 4004, a 4-bit data bus device. This device

More information

15CS44: MICROPROCESSORS AND MICROCONTROLLERS. QUESTION BANK with SOLUTIONS MODULE-4

15CS44: MICROPROCESSORS AND MICROCONTROLLERS. QUESTION BANK with SOLUTIONS MODULE-4 15CS44: MICROPROCESSORS AND MICROCONTROLLERS QUESTION BANK with SOLUTIONS MODULE-4 1) Differentiate CISC and RISC architectures. 2) Explain the important design rules of RISC philosophy. The RISC philosophy

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Seventh Edition By William Stallings Objectives of Chapter To provide a grand tour of the major computer system components:

More information

CS2253 COMPUTER ORGANIZATION AND ARCHITECTURE 1 KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY

CS2253 COMPUTER ORGANIZATION AND ARCHITECTURE 1 KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY CS2253 COMPUTER ORGANIZATION AND ARCHITECTURE 1 KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Sub. Code & Name: CS2253 Computer organization and architecture Year/Sem

More information

The control of I/O devices is a major concern for OS designers

The control of I/O devices is a major concern for OS designers Lecture Overview I/O devices I/O hardware Interrupts Direct memory access Device dimensions Device drivers Kernel I/O subsystem Operating Systems - June 26, 2001 I/O Device Issues The control of I/O devices

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 10 Thread and Task Level Parallelism Computer Architecture Part 10 page 1 of 36 Prof. Dr. Uwe Brinkschulte,

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 System I/O System I/O (Chap 13) Central

More information

New Advances in Micro-Processors and computer architectures

New Advances in Micro-Processors and computer architectures New Advances in Micro-Processors and computer architectures Prof. (Dr.) K.R. Chowdhary, Director SETG Email: kr.chowdhary@jietjodhpur.com Jodhpur Institute of Engineering and Technology, SETG August 27,

More information

Accessing I/O Devices Interface to CPU and Memory Interface to one or more peripherals Generic Model of IO Module Interface for an IO Device: CPU checks I/O module device status I/O module returns status

More information

Last 2 Classes: Introduction to Operating Systems & C++ tutorial. Today: OS and Computer Architecture

Last 2 Classes: Introduction to Operating Systems & C++ tutorial. Today: OS and Computer Architecture Last 2 Classes: Introduction to Operating Systems & C++ tutorial User apps OS Virtual machine interface hardware physical machine interface An operating system is the interface between the user and the

More information

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics Computer and Hardware Architecture I Benny Thörnberg Associate Professor in Electronics Hardware architecture Computer architecture The functionality of a modern computer is so complex that no human can

More information

CISC / RISC. Complex / Reduced Instruction Set Computers

CISC / RISC. Complex / Reduced Instruction Set Computers Systems Architecture CISC / RISC Complex / Reduced Instruction Set Computers CISC / RISC p. 1/12 Instruction Usage Instruction Group Average Usage 1 Data Movement 45.28% 2 Flow Control 28.73% 3 Arithmetic

More information

Chapter 13 Reduced Instruction Set Computers

Chapter 13 Reduced Instruction Set Computers Chapter 13 Reduced Instruction Set Computers Contents Instruction execution characteristics Use of a large register file Compiler-based register optimization Reduced instruction set architecture RISC pipelining

More information

Introduction to Operating Systems. Chapter Chapter

Introduction to Operating Systems. Chapter Chapter Introduction to Operating Systems Chapter 1 1.3 Chapter 1.5 1.9 Learning Outcomes High-level understand what is an operating system and the role it plays A high-level understanding of the structure of

More information

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware.

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware. Department of Computer Science, Institute for System Architecture, Operating Systems Group Real-Time Systems '08 / '09 Hardware Marcus Völp Outlook Hardware is Source of Unpredictability Caches Pipeline

More information

Efficiency and memory footprint of Xilkernel for the Microblaze soft processor

Efficiency and memory footprint of Xilkernel for the Microblaze soft processor Efficiency and memory footprint of Xilkernel for the Microblaze soft processor Dariusz Caban, Institute of Informatics, Gliwice, Poland - June 18, 2014 The use of a real-time multitasking kernel simplifies

More information

In examining performance Interested in several things Exact times if computable Bounded times if exact not computable Can be measured

In examining performance Interested in several things Exact times if computable Bounded times if exact not computable Can be measured System Performance Analysis Introduction Performance Means many things to many people Important in any design Critical in real time systems 1 ns can mean the difference between system Doing job expected

More information

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University A.R. Hurson Computer Science and Engineering The Pennsylvania State University 1 Large-scale multiprocessor systems have long held the promise of substantially higher performance than traditional uniprocessor

More information

ARM ARCHITECTURE. Contents at a glance:

ARM ARCHITECTURE. Contents at a glance: UNIT-III ARM ARCHITECTURE Contents at a glance: RISC Design Philosophy ARM Design Philosophy Registers Current Program Status Register(CPSR) Instruction Pipeline Interrupts and Vector Table Architecture

More information

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş Evolution of Computers & Microprocessors Dr. Cahit Karakuş Evolution of Computers First generation (1939-1954) - vacuum tube IBM 650, 1954 Evolution of Computers Second generation (1954-1959) - transistor

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 What is an Operating System? What is

More information

Embedded Systems. 7. System Components

Embedded Systems. 7. System Components Embedded Systems 7. System Components Lothar Thiele 7-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

SAE5C Computer Organization and Architecture. Unit : I - V

SAE5C Computer Organization and Architecture. Unit : I - V SAE5C Computer Organization and Architecture Unit : I - V UNIT-I Evolution of Pentium and Power PC Evolution of Computer Components functions Interconnection Bus Basics of PCI Memory:Characteristics,Hierarchy

More information

I) The Question paper contains 40 multiple choice questions with four choices and student will have

I) The Question paper contains 40 multiple choice questions with four choices and student will have Time: 3 Hrs. Model Paper I Examination-2016 BCA III Advanced Computer Architecture MM:50 I) The Question paper contains 40 multiple choice questions with four choices and student will have to pick the

More information

INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 ELEC : Computer Architecture and Design

INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 ELEC : Computer Architecture and Design INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 GBI0001@AUBURN.EDU ELEC 6200-001: Computer Architecture and Design Silicon Technology Moore s law Moore's Law describes a long-term trend in the history

More information

EC EMBEDDED AND REAL TIME SYSTEMS

EC EMBEDDED AND REAL TIME SYSTEMS EC6703 - EMBEDDED AND REAL TIME SYSTEMS Unit I -I INTRODUCTION TO EMBEDDED COMPUTING Part-A (2 Marks) 1. What is an embedded system? An embedded system employs a combination of hardware & software (a computational

More information

Computer Organization ECE514. Chapter 5 Input/Output (9hrs)

Computer Organization ECE514. Chapter 5 Input/Output (9hrs) Computer Organization ECE514 Chapter 5 Input/Output (9hrs) Learning Outcomes Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge

More information

MICROPROCESSOR MEMORY ORGANIZATION

MICROPROCESSOR MEMORY ORGANIZATION MICROPROCESSOR MEMORY ORGANIZATION 1 3.1 Introduction 3.2 Main memory 3.3 Microprocessor on-chip memory management unit and cache 2 A memory unit is an integral part of any microcomputer, and its primary

More information

Interconnecting Components

Interconnecting Components Interconnecting Components Need interconnections between CPU, memory, controllers Bus: shared communication channel Parallel set of wires for data and synchronization of data transfer Can become a bottleneck

More information

Introduction to Operating Systems. Chapter Chapter

Introduction to Operating Systems. Chapter Chapter Introduction to Operating Systems Chapter 1 1.3 Chapter 1.5 1.9 Learning Outcomes High-level understand what is an operating system and the role it plays A high-level understanding of the structure of

More information

In this tutorial, we will discuss the architecture, pin diagram and other key concepts of microprocessors.

In this tutorial, we will discuss the architecture, pin diagram and other key concepts of microprocessors. About the Tutorial A microprocessor is a controlling unit of a micro-computer, fabricated on a small chip capable of performing Arithmetic Logical Unit (ALU) operations and communicating with the other

More information

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic)

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic) I/O Systems Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 1 / 57 Motivation Amir H. Payberah (Tehran

More information

What is Computer Architecture?

What is Computer Architecture? What is Computer Architecture? Architecture abstraction of the hardware for the programmer instruction set architecture instructions: operations operands, addressing the operands how instructions are encoded

More information

Superscalar Processors

Superscalar Processors Superscalar Processors Increasing pipeline length eventually leads to diminishing returns longer pipelines take longer to re-fill data and control hazards lead to increased overheads, removing any a performance

More information

Final Lecture. A few minutes to wrap up and add some perspective

Final Lecture. A few minutes to wrap up and add some perspective Final Lecture A few minutes to wrap up and add some perspective 1 2 Instant replay The quarter was split into roughly three parts and a coda. The 1st part covered instruction set architectures the connection

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 11 CPU Structure and Function Rev. 3.2.1 (2005-06) by Enrico Nardelli 11-1 CPU Functions CPU must: Fetch instructions Decode instructions

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor Slide 1 Microprocessor A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device That reads binary instructions from a storage device

More information

CS510 Operating System Foundations. Jonathan Walpole

CS510 Operating System Foundations. Jonathan Walpole CS510 Operating System Foundations Jonathan Walpole OS-Related Hardware & Software 2 Lecture 2 Overview OS-Related Hardware & Software - complications in real systems - brief introduction to memory protection,

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

Environment: dictates timeliness requirements, to which the internal system has to react on time.

Environment: dictates timeliness requirements, to which the internal system has to react on time. 1. Introduction 1.1 What is a Real-Time System? Environment: dictates timeliness requirements, to which the internal system has to react on time. Internal system: contains many processes that are executed

More information

ECE 1160/2160 Embedded Systems Design. Midterm Review. Wei Gao. ECE 1160/2160 Embedded Systems Design

ECE 1160/2160 Embedded Systems Design. Midterm Review. Wei Gao. ECE 1160/2160 Embedded Systems Design ECE 1160/2160 Embedded Systems Design Midterm Review Wei Gao ECE 1160/2160 Embedded Systems Design 1 Midterm Exam When: next Monday (10/16) 4:30-5:45pm Where: Benedum G26 15% of your final grade What about:

More information

Chapter 12. CPU Structure and Function. Yonsei University

Chapter 12. CPU Structure and Function. Yonsei University Chapter 12 CPU Structure and Function Contents Processor organization Register organization Instruction cycle Instruction pipelining The Pentium processor The PowerPC processor 12-2 CPU Structures Processor

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

3.1 Description of Microprocessor. 3.2 History of Microprocessor

3.1 Description of Microprocessor. 3.2 History of Microprocessor 3.0 MAIN CONTENT 3.1 Description of Microprocessor The brain or engine of the PC is the processor (sometimes called microprocessor), or central processing unit (CPU). The CPU performs the system s calculating

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst Last Class: Intro to OS An operating system is the interface between the user and the architecture. User-level Applications

More information

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Lecture (4) Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1 Lecture Outline:

More information

systems such as Linux (real time application interface Linux included). The unified 32-

systems such as Linux (real time application interface Linux included). The unified 32- 1.0 INTRODUCTION The TC1130 is a highly integrated controller combining a Memory Management Unit (MMU) and a Floating Point Unit (FPU) on one chip. Thanks to the MMU, this member of the 32-bit TriCoreTM

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

COMPUTER ORGANISATION CHAPTER 1 BASIC STRUCTURE OF COMPUTERS

COMPUTER ORGANISATION CHAPTER 1 BASIC STRUCTURE OF COMPUTERS Computer types: - COMPUTER ORGANISATION CHAPTER 1 BASIC STRUCTURE OF COMPUTERS A computer can be defined as a fast electronic calculating machine that accepts the (data) digitized input information process

More information

Reduced Instruction Set Computer

Reduced Instruction Set Computer Reduced Instruction Set Computer RISC - Reduced Instruction Set Computer By reducing the number of instructions that a processor supports and thereby reducing the complexity of the chip, it is possible

More information

2 MARKS Q&A 1 KNREDDY UNIT-I

2 MARKS Q&A 1 KNREDDY UNIT-I 2 MARKS Q&A 1 KNREDDY UNIT-I 1. What is bus; list the different types of buses with its function. A group of lines that serves as a connecting path for several devices is called a bus; TYPES: ADDRESS BUS,

More information

CPU Structure and Function. Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition

CPU Structure and Function. Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition CPU Structure and Function Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition CPU must: CPU Function Fetch instructions Interpret/decode instructions Fetch data Process data

More information

DSP/BIOS Kernel Scalable, Real-Time Kernel TM. for TMS320 DSPs. Product Bulletin

DSP/BIOS Kernel Scalable, Real-Time Kernel TM. for TMS320 DSPs. Product Bulletin Product Bulletin TM DSP/BIOS Kernel Scalable, Real-Time Kernel TM for TMS320 DSPs Key Features: Fast, deterministic real-time kernel Scalable to very small footprint Tight integration with Code Composer

More information

Microelectronics. Moore s Law. Initially, only a few gates or memory cells could be reliably manufactured and packaged together.

Microelectronics. Moore s Law. Initially, only a few gates or memory cells could be reliably manufactured and packaged together. Microelectronics Initially, only a few gates or memory cells could be reliably manufactured and packaged together. These early integrated circuits are referred to as small-scale integration (SSI). As time

More information

High-Performance 32-bit

High-Performance 32-bit High-Performance 32-bit Microcontroller with Built-in 11-Channel Serial Interface and Two High-Speed A/D Converter Units A 32-bit microcontroller optimal for digital home appliances that integrates various

More information

ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7

ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7 ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7 Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2018 Trends of 32-bit microcontrollers

More information

Topic & Scope. Content: The course gives

Topic & Scope. Content: The course gives Topic & Scope Content: The course gives an overview of network processor cards (architectures and use) an introduction of how to program Intel IXP network processors some ideas of how to use network processors

More information

MARIE: An Introduction to a Simple Computer

MARIE: An Introduction to a Simple Computer MARIE: An Introduction to a Simple Computer 4.2 CPU Basics The computer s CPU fetches, decodes, and executes program instructions. The two principal parts of the CPU are the datapath and the control unit.

More information

SMD149 - Operating Systems - Multiprocessing

SMD149 - Operating Systems - Multiprocessing SMD149 - Operating Systems - Multiprocessing Roland Parviainen December 1, 2005 1 / 55 Overview Introduction Multiprocessor systems Multiprocessor, operating system and memory organizations 2 / 55 Introduction

More information

Overview. SMD149 - Operating Systems - Multiprocessing. Multiprocessing architecture. Introduction SISD. Flynn s taxonomy

Overview. SMD149 - Operating Systems - Multiprocessing. Multiprocessing architecture. Introduction SISD. Flynn s taxonomy Overview SMD149 - Operating Systems - Multiprocessing Roland Parviainen Multiprocessor systems Multiprocessor, operating system and memory organizations December 1, 2005 1/55 2/55 Multiprocessor system

More information

Novel Intelligent I/O Architecture Eliminating the Bus Bottleneck

Novel Intelligent I/O Architecture Eliminating the Bus Bottleneck Novel Intelligent I/O Architecture Eliminating the Bus Bottleneck Volker Lindenstruth; lindenstruth@computer.org The continued increase in Internet throughput and the emergence of broadband access networks

More information

Architectural Support for Operating Systems

Architectural Support for Operating Systems OS and Architectures Architectural Support for Operating Systems Emin Gun Sirer What an OS can do is dictated, at least in part, by the architecture. Architecture support can greatly simplify (or complicate)

More information

Operating Systems. Introduction & Overview. Outline for today s lecture. Administrivia. ITS 225: Operating Systems. Lecture 1

Operating Systems. Introduction & Overview. Outline for today s lecture. Administrivia. ITS 225: Operating Systems. Lecture 1 ITS 225: Operating Systems Operating Systems Lecture 1 Introduction & Overview Jan 15, 2004 Dr. Matthew Dailey Information Technology Program Sirindhorn International Institute of Technology Thammasat

More information

The MC68000 family and distributed processing

The MC68000 family and distributed processing The MC68000 family and distributed processing by JOHN F. STOCKTON Motorola Semiconductor Inc. Austin, Texas ABSTRACT The key philosophy today is to build parts that will be upward compatible with multiple

More information

Lecture 14: Cache Innovations and DRAM. Today: cache access basics and innovations, DRAM (Sections )

Lecture 14: Cache Innovations and DRAM. Today: cache access basics and innovations, DRAM (Sections ) Lecture 14: Cache Innovations and DRAM Today: cache access basics and innovations, DRAM (Sections 5.1-5.3) 1 Reducing Miss Rate Large block size reduces compulsory misses, reduces miss penalty in case

More information

Superscalar Machines. Characteristics of superscalar processors

Superscalar Machines. Characteristics of superscalar processors Superscalar Machines Increasing pipeline length eventually leads to diminishing returns longer pipelines take longer to re-fill data and control hazards lead to increased overheads, removing any performance

More information

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory Commercial Real-time Operating Systems An Introduction Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory swamis@iastate.edu Outline Introduction RTOS Issues and functionalities LynxOS

More information

Modes of Transfer. Interface. Data Register. Status Register. F= Flag Bit. Fig. (1) Data transfer from I/O to CPU

Modes of Transfer. Interface. Data Register. Status Register. F= Flag Bit. Fig. (1) Data transfer from I/O to CPU Modes of Transfer Data transfer to and from peripherals may be handled in one of three possible modes: A. Programmed I/O B. Interrupt-initiated I/O C. Direct memory access (DMA) A) Programmed I/O Programmed

More information

CS Computer Architecture

CS Computer Architecture CS 35101 Computer Architecture Section 600 Dr. Angela Guercio Fall 2010 Computer Systems Organization The CPU (Central Processing Unit) is the brain of the computer. Fetches instructions from main memory.

More information

RISC & Superscalar. COMP 212 Computer Organization & Architecture. COMP 212 Fall Lecture 12. Instruction Pipeline no hazard.

RISC & Superscalar. COMP 212 Computer Organization & Architecture. COMP 212 Fall Lecture 12. Instruction Pipeline no hazard. COMP 212 Computer Organization & Architecture Pipeline Re-Cap Pipeline is ILP -Instruction Level Parallelism COMP 212 Fall 2008 Lecture 12 RISC & Superscalar Divide instruction cycles into stages, overlapped

More information

Generic Model of I/O Module Interface to CPU and Memory Interface to one or more peripherals

Generic Model of I/O Module Interface to CPU and Memory Interface to one or more peripherals William Stallings Computer Organization and Architecture 7 th Edition Chapter 7 Input/Output Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In

More information

Computer Organization

Computer Organization INF 101 Fundamental Information Technology Computer Organization Assistant Prof. Dr. Turgay ĐBRĐKÇĐ Course slides are adapted from slides provided by Addison-Wesley Computing Fundamentals of Information

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems ELCT 912: Advanced Embedded Systems Lecture 2-3: Embedded System Hardware Dr. Mohamed Abd El Ghany, Department of Electronics and Electrical Engineering Embedded System Hardware Used for processing of

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Exceptions 1 17: Exceptions Computer Architecture

More information

TRANSPUTER ARCHITECTURE

TRANSPUTER ARCHITECTURE TRANSPUTER ARCHITECTURE What is Transputer? The first single chip computer designed for message-passing parallel systems, in 1980s, by the company INMOS Transistor Computer. Goal was produce low cost low

More information

Introduction to Operating. Chapter Chapter

Introduction to Operating. Chapter Chapter Introduction to Operating Systems Chapter 1 1.3 Chapter 1.5 1.9 Learning Outcomes High-level understand what is an operating system and the role it plays A high-level understanding of the structure of

More information

Control Hazards. Branch Prediction

Control Hazards. Branch Prediction Control Hazards The nub of the problem: In what pipeline stage does the processor fetch the next instruction? If that instruction is a conditional branch, when does the processor know whether the conditional

More information

OPERATING SYSTEMS UNIT - 1

OPERATING SYSTEMS UNIT - 1 OPERATING SYSTEMS UNIT - 1 Syllabus UNIT I FUNDAMENTALS Introduction: Mainframe systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered Systems Real Time Systems Handheld Systems -

More information

Operating Systems: Internals and Design Principles, 7/E William Stallings. Chapter 1 Computer System Overview

Operating Systems: Internals and Design Principles, 7/E William Stallings. Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles, 7/E William Stallings Chapter 1 Computer System Overview What is an Operating System? Operating system goals: Use the computer hardware in an efficient

More information

omputer Design Concept adao Nakamura

omputer Design Concept adao Nakamura omputer Design Concept adao Nakamura akamura@archi.is.tohoku.ac.jp akamura@umunhum.stanford.edu 1 1 Pascal s Calculator Leibniz s Calculator Babbage s Calculator Von Neumann Computer Flynn s Classification

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 177 4.2 CPU Basics and Organization 177 4.2.1 The Registers 178 4.2.2 The ALU 179 4.2.3 The Control Unit 179 4.3 The Bus 179 4.4 Clocks

More information

Operating system Dr. Shroouq J.

Operating system Dr. Shroouq J. 2.2.2 DMA Structure In a simple terminal-input driver, when a line is to be read from the terminal, the first character typed is sent to the computer. When that character is received, the asynchronous-communication

More information

Universität Dortmund. ARM Architecture

Universität Dortmund. ARM Architecture ARM Architecture The RISC Philosophy Original RISC design (e.g. MIPS) aims for high performance through o reduced number of instruction classes o large general-purpose register set o load-store architecture

More information

Last class: Today: Course administration OS definition, some history. Background on Computer Architecture

Last class: Today: Course administration OS definition, some history. Background on Computer Architecture 1 Last class: Course administration OS definition, some history Today: Background on Computer Architecture 2 Canonical System Hardware CPU: Processor to perform computations Memory: Programs and data I/O

More information