CS101 Lecture 25: The Machinery of Computation: Computer Architecture. John Magee 29 July 2013 Some material copyright Jones and Bartlett

Size: px
Start display at page:

Download "CS101 Lecture 25: The Machinery of Computation: Computer Architecture. John Magee 29 July 2013 Some material copyright Jones and Bartlett"

Transcription

1 CS101 Lecture 25: The Machinery of Computation: Computer Architecture John Magee 29 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? Can we relate this circuit stuff to something we know something about? How can we combine these elements to do more complicated tasks? 2 1

2 What did we talk about last time? Circuits control the flow of electricity. Gates are simple logical systems. By combining several gates, we create logic-computing circuits. Logic-computing circuits can do binary number addition. 3 Integrated Circuits Integrated circuit (also called a chip) A piece of silicon on which multiple (many) gates have been embedded. Silicon pieces are mounted on a plastic or ceramic package with pins along the edges that can be soldered onto circuit boards or inserted into appropriate sockets 4 2

3 Integrated Circuits 5 Central Processor Units The most important integrated circuit in any computer is the Central Processing Unit, or CPU. The Intel Duo Core 2 processor has more than 1.9 billion (1.9 * 10 9 ) gate transistors on one chip. The CPU combines many gates, to enable a small number of instructions. Examples: Add/subtract 2 binary inputs Load a value from memory Store a value into memory 6 3

4 Recall Binary Number Addition Adding two 1-bit numbers together produces A sum bit A carry bit 7 Recall: The Full Adder The full adder takes 3 inputs: A, B, and a carry-in value Figure 4.10 A full adder 8 4

5 Here is the Full Adder, with its internal details hidden (an abstraction). The Full Adder What matters now are: inputs are A, B, and CI. outputs are S and CO 9 An 8-bit Adder To add two 8-bit numbers together, we need an 8-bit adder: Notice how the carry out from one bit s adder becomes the carry-in to the next adder. 10 5

6 An 8-bit Adder We can abstract away the 1-bit adders, And summarize with this diagram: Notice the inputs and outputs. 11 Output from the Adder The adder produces 2 outputs: Sum (multi-bit), Carry Out (1-bit) Where does the output go from here? Accumulator A circuit connected to an adder, which stores the adder s result. 12 6

7 Putting it Together The accumulator is a memory circuit, and is wired as both an output from the adder and an input back into the adder. 13 Accumulator Example Suppose we want to add 3 numbers: 1) Clear the accumulator (set to all 0s) 2) Load the first input into the adder 3) Compute the sum of accumulator + input 4) Result flows back into accumulator 5) Go to step 2 with next input 14 7

8 Input to the Adder The adder takes inputs A, B are two binary numbers (Carry-in should be 0) How do we feed numbers into the adder? Random Access Memory A large memory unit which stores data before/after processing. 15 Random Access Memory Memory cells are circuits which each hold a 1 bit value, grouped into 8-bit bytes. Each byte of memory has a unique address corresponding to its location within the circuit, so that it can be located. 8

9 Memory Memory Address A physical location in the computer s memory. Addressability The number of bits stored in each addressable location in memory. (A byte in our example.) Word Size The number of bits used in each memory address. This dictates how much physical memory can be addressed. Example: A 32-bit machine has 2 32 = 4,294,967,296 possible memory addresses. 17 Putting it together Input to the adder now comes from RAM. One issue we ll need to deal with: how to specify which data to fetch from RAM. 18 9

10 Putting it together Here s a more complete version, which takes another input for a memory address: 19 What about Subtraction? 2s complement Recall that binary subtraction is accomplished by adding the 2s complement of a number. Inverter A circuit built using NOT gates, which inverts all bits turning 1s into 0s and 0s into 1s. The inverter creates a 1s complement of its input. Adding 1 to this gives a 2s complement number, suitable for doing subtraction. (How could we add 1 to the inverted number?) 20 10

11 Putting it together Using an inverter, we can do addition and subtraction. Now we need a way to control the inverter. 21 From Adding Machine What we ve got is an machine that can do addition/subtraction in circuitry. It can read data from memory, and write data back to memory. We haven t dealt with how to: Specify from which address memory to read. Specify which operation to perform (add/subtract). Specify to which address to write

12 to Automatic Computer We need a way to tell the machine to: Load some data from memory (by address) into the adder. Perform Add or Subtract Store data from the accumulator into the memory (by address) What we need is a a way to program it. 23 Computer Programming, 0.X The earliest digital computers were programmed by wiring them up to perform some specific logic. Pictured: Harvard Mark I 24 12

13 Computer Programming, 0.X Later, instructions were programmed by flipping switches. Pictured: Digital Equipment PDP-8 Demo: 25 Stored Program Computer John von Neumann (a mathematician who worked on the atomic bomb) Described a computer architecture in which instructions are read from the memory space (RAM), just like data. This design enables programmability, by making it relatively easy to provide new instructions to the computer s hardware

14 Stored Program Computer (Von Neumann Architecture) Figure 5.1 The von Neumann architecture 27 Central Processing Unit Central Processing Unit (CPU) Refers to the combination of the Arithmetic/Logic Unit and the Control Unit. The ALU performs basic arithmetic operations and logic operations. Examples: Arithmetic: addition, subtraction, multiplication Logical operations: AND, OR, NOT, XOR 28 14

15 Central Processing Unit Central Processing Unit (CPU) Refers to the combination of the Arithmetic/Logic Unit and the Control Unit. The control unit coordinates the flow of operations and data in the computer. coordinates the ALU and memory Keeps track of which instruction to do in a Program Counter (PC) 29 Adder Inverter Accumulator Instructions Take-Away Points Von Neumann Architecture CPU: ALU/CU 30 15

16 Student To Dos Readings: Reed ch 7, pp HW posted on course schedule. Ask for help / visit TF hours. Wednesday Lab: Bring a headset or microphone if you have one. Most laptops have built-in microphones as well. Warning: Homework assignments can be very time consuming! 31 16

CS140 Lecture 03: The Machinery of Computation: Combinational Logic

CS140 Lecture 03: The Machinery of Computation: Combinational Logic CS140 Lecture 03: The Machinery of Computation: Combinational Logic John Magee 25 January 2017 Some material copyright Jones and Bartlett Some slides credit Aaron Stevens 1 Overview/Questions What did

More information

Von Neumann Architecture

Von Neumann Architecture Von Neumann Architecture Assist lecturer Donya A. Khalid Lecture 2 2/29/27 Computer Organization Introduction In 945, just after the World War, Jon Von Neumann proposed to build a more flexible computer.

More information

Dec Hex Bin ORG ; ZERO. Introduction To Computing

Dec Hex Bin ORG ; ZERO. Introduction To Computing Dec Hex Bin 0 0 00000000 ORG ; ZERO Introduction To Computing OBJECTIVES this chapter enables the student to: Convert any number from base 2, base 10, or base 16 to any of the other two bases. Add and

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements PS8 Due today PS9 Due July 22 Sound Lab tonight bring machines and headphones! Binary Search Today Review of binary floating point notation

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements Today: PS 7 Lab 8: Sound Lab tonight bring machines and headphones! PA 7 Tomorrow: Lab 9 Friday: PS8 Today (Short) Floating point review Boolean

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 3, 2015 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 2, 2016 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

Electricity: Voltage. Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal.

Electricity: Voltage. Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal. Hardware CSCE 101 Electricity: Voltage Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal. The signals voltage will either be between

More information

Introduction to Computer Science. Homework 1

Introduction to Computer Science. Homework 1 Introduction to Computer Science Homework. In each circuit below, the rectangles represent the same type of gate. Based on the input and output information given, identify whether the gate involved is

More information

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 COSC 243 Computer Architecture 1 COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 Overview Last Lecture Flip flops This Lecture Computers Next Lecture Instruction sets and addressing

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

Chapter 5 12/2/2013. Objectives. Computer Systems Organization. Objectives. Objectives (continued) Introduction. INVITATION TO Computer Science 1

Chapter 5 12/2/2013. Objectives. Computer Systems Organization. Objectives. Objectives (continued) Introduction. INVITATION TO Computer Science 1 Chapter 5 Computer Systems Organization Objectives In this chapter, you will learn about: The components of a computer system Putting all the pieces together the Von Neumann architecture The future: non-von

More information

COSC 122 Computer Fluency. Computer Organization. Dr. Ramon Lawrence University of British Columbia Okanagan

COSC 122 Computer Fluency. Computer Organization. Dr. Ramon Lawrence University of British Columbia Okanagan COSC 122 Computer Fluency Computer Organization Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Key Points 1) The standard computer (von Neumann) architecture consists

More information

Software and Hardware

Software and Hardware Software and Hardware Numbers At the most fundamental level, a computer manipulates electricity according to specific rules To make those rules produce something useful, we need to associate the electrical

More information

CS 101, Mock Computer Architecture

CS 101, Mock Computer Architecture CS 101, Mock Computer Architecture Computer organization and architecture refers to the actual hardware used to construct the computer, and the way that the hardware operates both physically and logically

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Use number { base 2, base 10, or base 16 }. Add and subtract binary/hex numbers. Represent any binary number in 2

More information

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book BUILDING BLOCKS OF A BASIC MICROPROCESSOR Part PowerPoint Format of Lecture 3 of Book Decoder Tri-state device Full adder, full subtractor Arithmetic Logic Unit (ALU) Memories Example showing how to write

More information

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra Binary Representation Computer Systems Information is represented as a sequence of binary digits: Bits What the actual bits represent depends on the context: Seminar 3 Numerical value (integer, floating

More information

Show how to connect three Full Adders to implement a 3-bit ripple-carry adder

Show how to connect three Full Adders to implement a 3-bit ripple-carry adder Show how to connect three Full Adders to implement a 3-bit ripple-carry adder 1 Reg. A Reg. B Reg. Sum 2 Chapter 5 Computing Components Yet another layer of abstraction! Components Circuits Gates Transistors

More information

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems Computer Architecture Review ICS332 - Spring 2016 Operating Systems ENIAC (1946) Electronic Numerical Integrator and Calculator Stored-Program Computer (instead of Fixed-Program) Vacuum tubes, punch cards

More information

Arithmetic Circuits. Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak.

Arithmetic Circuits. Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak. Arithmetic Circuits Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak http://www.syssec.ethz.ch/education/digitaltechnik_14 Adapted from Digital Design and Computer Architecture, David Money

More information

Lecture 21: Combinational Circuits. Integrated Circuits. Integrated Circuits, cont. Integrated Circuits Combinational Circuits

Lecture 21: Combinational Circuits. Integrated Circuits. Integrated Circuits, cont. Integrated Circuits Combinational Circuits Lecture 21: Combinational Circuits Integrated Circuits Combinational Circuits Multiplexer Demultiplexer Decoder Adders ALU Integrated Circuits Circuits use modules that contain multiple gates packaged

More information

CS 261 Fall Mike Lam, Professor. Combinational Circuits

CS 261 Fall Mike Lam, Professor. Combinational Circuits CS 261 Fall 2017 Mike Lam, Professor Combinational Circuits The final frontier Java programs running on Java VM C programs compiled on Linux Assembly / machine code on CPU + memory??? Switches and electric

More information

address ALU the operation opcode ACC Acc memory address

address ALU the operation opcode ACC Acc memory address In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in which we will examine how a microprocessor actually works

More information

CS1004: Intro to CS in Java, Spring 2005

CS1004: Intro to CS in Java, Spring 2005 CS1004: Intro to CS in Java, Spring 2005 Lecture #10: Computer architecture Janak J Parekh janak@cs.columbia.edu HW#2 due Tuesday Administrivia Mass Storage RAM is volatile Not useful for permanent storage,

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 9

CO Computer Architecture and Programming Languages CAPL. Lecture 9 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 9 Dr. Kinga Lipskoch Fall 2017 A Four-bit Number Circle CAPL Fall 2017 2 / 38 Functional Parts of an ALU CAPL Fall 2017 3 / 38 Addition

More information

EXPERIMENT #8: BINARY ARITHMETIC OPERATIONS

EXPERIMENT #8: BINARY ARITHMETIC OPERATIONS EE 2 Lab Manual, EE Department, KFUPM EXPERIMENT #8: BINARY ARITHMETIC OPERATIONS OBJECTIVES: Design and implement a circuit that performs basic binary arithmetic operations such as addition, subtraction,

More information

Arithmetic-logic units

Arithmetic-logic units Arithmetic-logic units An arithmetic-logic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the heart of a processor you could say that everything else in the CPU is there

More information

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017 Lecture Objectives Introduction to Computing Chapter The AVR microcontroller and embedded systems using assembly and c Students should be able to: Convert between base and. Explain the difference between

More information

CSCI170 Lecture 1: Analysis of Programming Languages. John Magee 1 September 2011 Some material copyright Jones and Bartlett

CSCI170 Lecture 1: Analysis of Programming Languages. John Magee 1 September 2011 Some material copyright Jones and Bartlett CSCI170 Lecture 1: Analysis of Programming Languages John Magee 1 September 2011 Some material copyright Jones and Bartlett 1 Overview/Questions How can we control the computer s circuits? How does the

More information

In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in

In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in which we will examine how a microprocessor actually works

More information

Digital Systems. John SUM Institute of Technology Management National Chung Hsing University Taichung, ROC. December 6, 2012

Digital Systems. John SUM Institute of Technology Management National Chung Hsing University Taichung, ROC. December 6, 2012 Digital Systems John SUM Institute of Technology Management National Chung Hsing University Taichung, ROC December 6, 2012 Contents 1 Logic Gates 3 1.1 Logic Gate............................. 3 1.2 Truth

More information

CS 140 Introduction to Computing & Computer Technology. Computing Components

CS 140 Introduction to Computing & Computer Technology. Computing Components CS 140 Introduction to Computing & Computer Technology Computing Components We ve looked at the elementary building blocks of computers transistors, gates, and circuits OK, but how do computers really

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

CS 31: Intro to Systems Digital Logic

CS 31: Intro to Systems Digital Logic CS 3: Intro to Systems Digital Logic Martin Gagné Swarthmore College January 3, 27 You re going to want scratch papr today borrow some if needed. Quick nnouncements Late Policy Reminder 3 late days total

More information

von Neumann Architecture Basic Computer System Early Computers Microprocessor Reading Assignment An Introduction to Computer Architecture

von Neumann Architecture Basic Computer System Early Computers Microprocessor Reading Assignment An Introduction to Computer Architecture Reading Assignment EEL 4744C: Microprocessor Applications Lecture 1 Part 1 An Introduction to Computer Architecture Microcontrollers and Microcomputers: Chapter 1, Appendix A, Chapter 2 Software and Hardware

More information

Basic Computer System. von Neumann Architecture. Reading Assignment. An Introduction to Computer Architecture. EEL 4744C: Microprocessor Applications

Basic Computer System. von Neumann Architecture. Reading Assignment. An Introduction to Computer Architecture. EEL 4744C: Microprocessor Applications Reading Assignment EEL 4744C: Microprocessor Applications Lecture 1 Part 1 An Introduction to Computer Architecture Microcontrollers and Microcomputers: Chapter 1, Appendix A, Chapter 2 Software and Hardware

More information

COS 116 The Computational Universe Laboratory 7: Digital Logic I

COS 116 The Computational Universe Laboratory 7: Digital Logic I COS 116 The Computational Universe Laboratory 7: Digital Logic I In this lab you ll construct simple combinational circuits in software, using a simulator, and also in hardware, with a breadboard and silicon

More information

Level 2: The Hardware World Chapters 4 and 5 (topics of other cs courses)

Level 2: The Hardware World Chapters 4 and 5 (topics of other cs courses) Level 2: The Hardware World Chapters 4 and 5 (topics of other cs courses) Invitation to Computer Science, Java Version, Third Edition Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and

More information

8086 INTERNAL ARCHITECTURE

8086 INTERNAL ARCHITECTURE 8086 INTERNAL ARCHITECTURE Segment 2 Intel 8086 Microprocessor The 8086 CPU is divided into two independent functional parts: a) The Bus interface unit (BIU) b) Execution Unit (EU) Dividing the work between

More information

EET 1131 Lab #7 Arithmetic Circuits

EET 1131 Lab #7 Arithmetic Circuits Name Equipment and Components Safety glasses ETS-7000 Digital-Analog Training System Integrated Circuits: 7483, 74181 Quartus II software and Altera DE2-115 board Multisim simulation software EET 1131

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

Segment 1A. Introduction to Microcomputer and Microprocessor

Segment 1A. Introduction to Microcomputer and Microprocessor Segment 1A Introduction to Microcomputer and Microprocessor 1.1 General Architecture of a Microcomputer System: The term microcomputer is generally synonymous with personal computer, or a computer that

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 75 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (8 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a) A

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 4 : Processors, Computers, and Controllers - 1.2 (reading assignment), 1.3-1.5 Based on slides for ECE3170 by Profs. Kieckhafer, Davis, Tan, and Cischke Outline

More information

CSC 220: Computer Organization Unit 10 Arithmetic-logic units

CSC 220: Computer Organization Unit 10 Arithmetic-logic units College of Computer and Information Sciences Department of Computer Science CSC 220: Computer Organization Unit 10 Arithmetic-logic units 1 Remember: 2 Arithmetic-logic units An arithmetic-logic unit,

More information

Processor: Faster and Faster

Processor: Faster and Faster Chapter 4 Processor: Faster and Faster Most of the computers, no matter how it looks, can be cut into five parts: Input/Output brings things in and, once done, sends out the result; a memory remembers

More information

2. Computer Evolution and Performance

2. Computer Evolution and Performance 2. Computer Evolution and Performance Spring 2016 Spring 2016 CS430 - Computer Architecture 1 Chapter 2: Computer Evolution and Performance Reading: pp. 16-49 Good Problems to Work: 2.1, 2.3, 2.4, 2.8,

More information

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U C A N A D I A N I N T E R N A T I O N A L S C H O O L O F H O N G K O N G 5.1 Introduction 5.2 Components of a Computer System Algorithm The Von Neumann architecture is based on the following three characteristics:

More information

Chapter 5: Computer Systems Organization

Chapter 5: Computer Systems Organization Objectives Chapter 5: Computer Systems Organization Invitation to Computer Science, C++ Version, Third Edition In this chapter, you will learn about: The components of a computer system Putting all the

More information

Chapter 5: Computer Systems Organization. Invitation to Computer Science, C++ Version, Third Edition

Chapter 5: Computer Systems Organization. Invitation to Computer Science, C++ Version, Third Edition Chapter 5: Computer Systems Organization Invitation to Computer Science, C++ Version, Third Edition Objectives In this chapter, you will learn about: The components of a computer system Putting all the

More information

Register Transfer and Micro-operations

Register Transfer and Micro-operations Register Transfer Language Register Transfer Bus Memory Transfer Micro-operations Some Application of Logic Micro Operations Register Transfer and Micro-operations Learning Objectives After reading this

More information

CS140 Lecture 09a: Brief History of Computing

CS140 Lecture 09a: Brief History of Computing CS140 Lecture 09a: Brief History of Computing "There is no reason anyone would want a computer in their home." -- Ken Olson, founder and CEO of Digital Equipment Corp., 1977 John Magee 17 February 2017

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text About the course : In this digital world, embedded systems are more

More information

CSE 141L Computer Architecture Lab Fall Lecture 3

CSE 141L Computer Architecture Lab Fall Lecture 3 CSE 141L Computer Architecture Lab Fall 2005 Lecture 3 Pramod V. Argade November 1, 2005 Fall 2005 CSE 141L Course Schedule Lecture # Date Day Lecture Topic Lab Due 1 9/27 Tuesday No Class 2 10/4 Tuesday

More information

Processors. Nils Jansen and Kasper Brink. (based on slides from Jeroen Keiren, Marc Seutter and David N. Jansen)

Processors. Nils Jansen and Kasper Brink. (based on slides from Jeroen Keiren, Marc Seutter and David N. Jansen) Processors Nils Jansen and Kasper Brink (based on slides from Jeroen Keiren, Marc Seutter and David N. Jansen) https://ocw.cs.ru.nl/nwi-ipc006 Student Assistants Jordi Riemens Jasper Haasdijk Niek Janssen

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Introduction to Microcontrollers Embedded Controller Simply an embedded controller is a controller that is embedded in a greater system. One can define an embedded controller as a controller (or computer)

More information

Binary Addition. Add the binary numbers and and show the equivalent decimal addition.

Binary Addition. Add the binary numbers and and show the equivalent decimal addition. Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous

More information

UC Berkeley College of Engineering, EECS Department CS61C: Combinational Logic Blocks

UC Berkeley College of Engineering, EECS Department CS61C: Combinational Logic Blocks 2 Wawrzynek, Garcia 2004 c UCB UC Berkeley College of Engineering, EECS Department CS61C: Combinational Logic Blocks 1 Introduction Original document by J. Wawrzynek (2003-11-15) Revised by Chris Sears

More information

UC Berkeley College of Engineering, EECS Department CS61C: Combinational Logic Blocks

UC Berkeley College of Engineering, EECS Department CS61C: Combinational Logic Blocks UC Berkeley College of Engineering, EECS Department CS61C: Combinational Logic Blocks Original document by J. Wawrzynek (2003-11-15) Revised by Chris Sears and Dan Garcia (2004-04-26) 1 Introduction Last

More information

Week 6: Processor Components

Week 6: Processor Components Week 6: Processor Components Microprocessors So far, we ve been about making devices, such such as adders, counters and registers. The ultimate goal is to make a microprocessor, which is a digital device

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. CS 265 Midterm #1 Monday, Oct 18, 12:00pm-1:45pm, SCI 163 Questions on essential terms and concepts of Computer Architecture Mathematical questions on

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

CPU Architecture system clock

CPU Architecture system clock CPU Architecture system clock Memory 64-bit adder Every CPU architecture is implemented using digital logic. In each cycle of the system clock, logic is executed and results are saved. System designers

More information

Digital Circuits. Page 1 of 5. I. Before coming to lab. II. Learning Objectives. III. Materials

Digital Circuits. Page 1 of 5. I. Before coming to lab. II. Learning Objectives. III. Materials I. Before coming to lab Read this handout and the supplemental. Also read the handout on Digital Electronics found on the course website. II. Learning Objectives Using transistors and resistors, you'll

More information

Concept of Memory. The memory of computer is broadly categories into two categories:

Concept of Memory. The memory of computer is broadly categories into two categories: Concept of Memory We have already mentioned that digital computer works on stored programmed concept introduced by Von Neumann. We use memory to store the information, which includes both program and data.

More information

Systems Architecture

Systems Architecture Systems Architecture Friday, 27 April 2018 Systems Architecture Today s Objectives: 1. To be able to explain the purposes and uses of embedded systems. 2. To be able to describe how the CPU executes instructions

More information

COMS 1003 Fall Introduction to Computer Programming in C. History & Computer Organization. September 15 th

COMS 1003 Fall Introduction to Computer Programming in C. History & Computer Organization. September 15 th COMS 1003 Fall 2005 Introduction to Computer Programming in C History & Computer Organization September 15 th What's Ahead Some computer history Introduction to major players in the development of hardware

More information

Lecture (01) Introducing Embedded Systems and the Microcontrollers By: Dr. Ahmed ElShafee

Lecture (01) Introducing Embedded Systems and the Microcontrollers By: Dr. Ahmed ElShafee Lecture (01) Introducing Embedded Systems and the Microcontrollers By: Dr. Ahmed ElShafee ١ Agenda What is microprocessor system? What is Microcontroller/embedded system? Definition of Embedded Systems

More information

A Review of Chapter 5 and. CSc 2010 Spring 2012 Instructor: Qian Hu

A Review of Chapter 5 and. CSc 2010 Spring 2012 Instructor: Qian Hu A Review of Chapter 5 and Chapter 6 Chapter 5 Computer Systems Organization Von Neumann Architecture 4 Components Memory Input/output ALU Control Unit Two major features Stored program concept Sequential

More information

Wednesday, February 4, Chapter 4

Wednesday, February 4, Chapter 4 Wednesday, February 4, 2015 Topics for today Introduction to Computer Systems Static overview Operation Cycle Introduction to Pep/8 Features of the system Operational cycle Program trace Categories of

More information

Machine Architecture. or what s in the box? Lectures 2 & 3. Prof Leslie Smith. ITNP23 - Autumn 2014 Lectures 2&3, Slide 1

Machine Architecture. or what s in the box? Lectures 2 & 3. Prof Leslie Smith. ITNP23 - Autumn 2014 Lectures 2&3, Slide 1 Machine Architecture Prof Leslie Smith or what s in the box? Lectures 2 & 3 ITNP23 - Autumn 2014 Lectures 2&3, Slide 1 Basic Machine Architecture In these lectures we aim to: understand the basic architecture

More information

Computer Architecture

Computer Architecture Computer Architecture Topics: Machine Organization Machine Cycle Program Execution Machine Language Types of Memory & Access Von Neumann Design 1) Two key ideas 1) The stored program concept 1) instructions

More information

Basic Arithmetic (adding and subtracting)

Basic Arithmetic (adding and subtracting) Basic Arithmetic (adding and subtracting) Digital logic to show add/subtract Boolean algebra abstraction of physical, analog circuit behavior 1 0 CPU components ALU logic circuits logic gates transistors

More information

Computers: Inside and Out

Computers: Inside and Out Computers: Inside and Out Computer Components To store binary information the most basic components of a computer must exist in two states State # 1 = 1 State # 2 = 0 1 Transistors Computers use transistors

More information

Computer Architecture Review CS 595

Computer Architecture Review CS 595 Computer Architecture Review CS 595 1 The von Neumann Model Von Neumann (1946) proposed that a fundamental model of a computer should include 5 primary components: Memory Processing Unit Input Device(s)

More information

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital hardware modules that accomplish a specific information-processing task. Digital systems vary in

More information

Microcontroller Systems

Microcontroller Systems µcontroller systems 1 / 43 Microcontroller Systems Engineering Science 2nd year A2 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2co Michaelmas 2014 µcontroller

More information

TUTORIAL Describe the circumstances that would prompt you to use a microprocessorbased design solution instead of a hard-wired IC logic design.

TUTORIAL Describe the circumstances that would prompt you to use a microprocessorbased design solution instead of a hard-wired IC logic design. TUTORIAL 1 1. Make a list of 10 products containing microprocessors that we use everyday. Personal computer Television Calculator Elevator Mobile phones MP3 players Microwave ovens DVD players Engine Control

More information

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture Points ddressed in this Lecture Lecture 6: Signed Numbers rithmetic Circuits Professor Peter Cheung Department of EEE, Imperial College London (Floyd 2.5-2.7, 6.1-6.7) (Tocci 6.1-6.11, 9.1-9.2, 9.4) Representing

More information

ELEC 326: Class project

ELEC 326: Class project ELEC 326: Class project Kartik Mohanram 1 Introduction For this project you will design and test a three-digit binary-coded-decimal (BCD) adder capable of adding positive and negative BCD numbers. In the

More information

Building a Virtual Computer

Building a Virtual Computer uilding a Virtual Computer From Gates to Operating System Student Researcher: Elisa Elshamy Faculty Mentor: Dr. Victoria Gitman bstract modern computer can carry a plethora of multifaceted computations.

More information

ECE Lab 8. Logic Design for a Direct-Mapped Cache. To understand the function and design of a direct-mapped memory cache.

ECE Lab 8. Logic Design for a Direct-Mapped Cache. To understand the function and design of a direct-mapped memory cache. ECE 201 - Lab 8 Logic Design for a Direct-Mapped Cache PURPOSE To understand the function and design of a direct-mapped memory cache. EQUIPMENT Simulation Software REQUIREMENTS Electronic copy of your

More information

CS 261 Fall Mike Lam, Professor. Logic Gates

CS 261 Fall Mike Lam, Professor. Logic Gates CS 261 Fall 2016 Mike Lam, Professor Logic Gates The final frontier Java programs running on Java VM C programs compiled on Linux Assembly / machine code on CPU + memory??? Switches and electric signals

More information

Topics. Computer Organization CS Exam 2 Review. Infix Notation. Reverse Polish Notation (RPN)

Topics. Computer Organization CS Exam 2 Review. Infix Notation. Reverse Polish Notation (RPN) Computer Organization CS 231-01 Exam 2 Review Dr. William H. Robinson October 11, 2004 http://eecs.vanderbilt.edu/courses/cs231/ Topics Education is a progressive discovery of our own ignorance. Will Durant

More information

Dr. Chuck Cartledge. 10 June 2015

Dr. Chuck Cartledge. 10 June 2015 Miscellanea Exam #1 Break Exam review 2.1 2.2 2.3 2.4 Break 3 4 Conclusion References CSC-205 Computer Organization Lecture #003 Chapter 2, Sections 2.1 through 4 Dr. Chuck Cartledge 10 June 2015 1/30

More information

Many ways to build logic out of MOSFETs

Many ways to build logic out of MOSFETs Many ways to build logic out of MOSFETs pass transistor logic (most similar to the first switch logic we saw) static CMOS logic (what we saw last time) dynamic CMOS logic Clock=0 precharges X through the

More information

Information Science 1

Information Science 1 Information Science 1 -Basic Concepts of Computers: Opera4on, Architecture, Memory- Week 02 College of Information Science and Engineering Ritsumeikan University Today s lecture outline l Recall the previous

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Guoping Qiu School of Computer Science The University of Nottingham http://www.cs.nott.ac.uk/~qiu 1 The World of Computers Computers are everywhere Cell phones Game consoles

More information

16.1. Unit 16. Computer Organization Design of a Simple Processor

16.1. Unit 16. Computer Organization Design of a Simple Processor 6. Unit 6 Computer Organization Design of a Simple Processor HW SW 6.2 You Can Do That Cloud & Distributed Computing (CyberPhysical, Databases, Data Mining,etc.) Applications (AI, Robotics, Graphics, Mobile)

More information

CS311 Lecture: The Architecture of a Simple Computer

CS311 Lecture: The Architecture of a Simple Computer CS311 Lecture: The Architecture of a Simple Computer Objectives: July 30, 2003 1. To introduce the MARIE architecture developed in Null ch. 4 2. To introduce writing programs in assembly language Materials:

More information

CS101 Lecture 29: Brief History of Computing

CS101 Lecture 29: Brief History of Computing CS101 Lecture 29: Brief History of Computing "There is no reason anyone would want a computer in their home." -- Ken Olson, founder and CEO of Digital Equipment Corp., 1977 John Magee 1 August 2013 Some

More information

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to access them. Contents at a Glance About the Author...xi

More information

Behind the Curtain. Introduce TA Friday 1 st lab! (1:30-3:30) (Do Prelab before) 1 st Problem set on Thurs. Comp 411 Fall /16/13

Behind the Curtain. Introduce TA Friday 1 st lab! (1:30-3:30) (Do Prelab before) 1 st Problem set on Thurs. Comp 411 Fall /16/13 Behind the Curtain 1. Number representations 2. Computer organization 2. Computer Instructions 3. Memory concepts 4. Where should code go? 5. Computers as systems Introduce TA Friday 1 st lab! (1:30-3:30)

More information

Microprocessors/Microcontrollers

Microprocessors/Microcontrollers Microprocessors/Microcontrollers A central processing unit (CPU) fabricated on one or more chips, containing the basic arithmetic, logic, and control elements of a computer that are required for processing

More information

Computer Organization and Programming

Computer Organization and Programming Sep 2006 Prof. Antônio Augusto Fröhlich (http://www.lisha.ufsc.br) 8 Computer Organization and Programming Prof. Dr. Antônio Augusto Fröhlich guto@lisha.ufsc.br http://www.lisha.ufsc.br/~guto Sep 2006

More information

CS6303 COMPUTER ARCHITECTURE LESSION NOTES UNIT II ARITHMETIC OPERATIONS ALU In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations. The ALU is

More information

CS 31: Intro to Systems Caching. Martin Gagne Swarthmore College March 23, 2017

CS 31: Intro to Systems Caching. Martin Gagne Swarthmore College March 23, 2017 CS 1: Intro to Systems Caching Martin Gagne Swarthmore College March 2, 2017 Recall A cache is a smaller, faster memory, that holds a subset of a larger (slower) memory We take advantage of locality to

More information

Lecture 1. Course Overview and The 8051 Architecture

Lecture 1. Course Overview and The 8051 Architecture Lecture 1 Course Overview and The 8051 Architecture MCUniversity Program Lectures 8051 architecture t System overview of C8051F020 8051 instruction set System clock, crossbar and GPIO Assembler directives

More information