+1 (479)

Size: px
Start display at page:

Download "+1 (479)"

Transcription

1 Memory Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr (479)

2 Memory Arrays Memory Arrays Random Access Memory Serial Access Memory Content Addressable Memory (CAM) Read/Write Memory (RAM) (Volatile) Read Only Memory (ROM) (Nonvolatile) Shift Registers Queues Static RAM (SRAM) Dynamic RAM (DRAM) Serial In Parallel Out (SIPO) Parallel In Serial Out (PISO) First In First Out (FIFO) Last In First Out (LIFO) Mask ROM Programmable ROM (PROM) Erasable Programmable ROM (EPROM) Electrically Erasable Programmable ROM (EEPROM) Flash ROM 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 2

3 Array Architecture 2 n words of 2 m bits each If n >> m, fold by 2 k into fewer rows of more columns Good regularity easy to design Very high density if good cells are used 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 3

4 12T SRAM Cell Basic building block: SRAM Cell Holds one bit of information, like a latch Must be read and written 12-transistor (12T) SRAM cell Use a simple latch connected to bitline 46 x 75 l unit cell write bit write_b read read_b 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 4

5 6T SRAM Cell Cell size accounts for most of array size Reduce cell size at expense of complexity 6T SRAM Cell Used in most commercial chips Data stored in cross-coupled inverters Read: Precharge bit, bit_b Raise wordline Write: Drive data onto bit, bit_b Raise wordline word bit bit_b 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 5

6 SRAM Read Precharge both bitlines high word bit bit_b Then turn on wordline One of the two bitlines will be pulled down N2 A P1 N1 P2 N3 A_b N4 Ex: A = 0, A_b = 1 bit discharges, bit_b stays high But A bumps up slightly 1.5 A_b bit_b Read stability A must not flip N1 >> N word bit A time (ps) 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 6

7 SRAM Write Drive one bitline high, the other low Then turn on wordline Bitlines overpower cell with new value Ex: A = 0, A_b = 1, bit = 1, bit_b = 0 Force A_b low, then A rises high Writability Must overpower feedback inverter N2 >> P bit_b word A_b bit N2 A A P1 N1 P2 N3 A_b bit_b N4 0.5 word time (ps) 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 7

8 SRAM Sizing High bitlines must not overpower inverters during reads But low bitlines must write new value into cell word bit med weak bit_b med A strong A_b 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 8

9 SRAM Layout Cell size is critical: 26 x 45 l (even smaller in industry) Tile cells sharing V DD, GND, bitline contacts GND BIT BIT_B GND VDD WORD Cell boundary 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 9

10 Commercial SRAMs Five generations of Intel SRAM cell micrographs Steady scaling of cell area => Cheaper storage 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 10

11 Decoder n:2 n decoder consists of 2 n n-input AND gates One needed for each row of memory Build AND from NAND or NOR gates A1 A0 Decoders must be pitch-matched to SRAM cell Requires very skinny gates word0 word1 word2 word3 A3 A3 A2 A2 A1 A1 A0 A0 VDD word GND NAND gate buffer inverter 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 11

12 Bitline Conditioning Pre-charge bitlines high before reads bit bit_b Equalize bitlines to minimize voltage difference when using sense amplifiers bit bit_b 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 12

13 Sense Amplifiers Bitlines have many cells attached Ex: 32-kbit SRAM has 128 rows x 256 cols 128 cells on each bitline t pd (C/I) DV Even with shared diffusion contacts, 64C of diffusion capacitance (big C) Discharged slowly through small transistors (small I) Sense amplifiers are triggered on small voltage swing (reduce DV) 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 13

14 Twisted Bitlines Sense amplifiers also amplify noise Coupling noise is severe in modern processes Try to couple equally onto bit and bit_b Done by twisting bitlines b0 b0_b b1 b1_b b2 b2_b b3 b3_b 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 14

15 Column Multiplexing Recall that array may be folded for good aspect ratio Ex: 2 kword x 16 folded into 256 rows x 128 columns Must select 16 output bits from the 128 columns Requires 16 8:1 column multiplexers 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 15

16 Tree Decoder Mux Column mux can use pass transistors Use nmos only, precharge outputs One design is to use k series transistors for 2 k :1 mux No external decoder logic needed A0 A0 B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7 A1 A1 A2 A2 Y to sense amps and write circuits Y 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 16

17 Large SRAMs Large SRAMs are split into subarrays for speed Ex: UltraSparc 512KB cache KB subarrays Each have 16 8KB banks 256 rows x 256 cols / bank 60% subarray area efficiency Also space for tags & control [Shin05] 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 17

18 DRAM Uses capacitor to store data C is charged => Logic 1 C is discharged => Logic 0 Uses a single access transistor Bit line precharged to VDD/2 Needs to be regularly refreshed Data can be kept for only ms Charge is lost because of leakage Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

19 DRAM Cell 1T1C Structure Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

20 DRAM Array Much denser (>10x) than SRAM, but slower Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

21 Read-Only Memories Read-Only Memories are nonvolatile Retain their contents when power is removed Mask-programmed ROMs use one transistor per bit Presence or absence determines 1 or 0 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 21

22 ROM Example 4-word x 6-bit ROM Represented with dot diagram Dots indicate 1 s in ROM A1 A0 weak pseudo-nmos pullups Word 0: Word 1: Word 2: Word 3: :4 DEC ROM Array Y5 Y4 Y3 Y2 Y1 Y0 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 22

23 ROM Array Layout Unit cell is 12 x 8 l (about 1/10 size of SRAM) Unit Cell 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 23

24 Complete ROM Layout Address Invertors Bitline PMOS Decoder ROM Array Output Buffer 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 24

25 PROMs and EPROMs Programmable ROMs Build array with transistors at every site Burn out fuses to disable unwanted transistors Electrically Programmable ROMs Use floating gate to turn off unwanted transistors EPROM, EEPROM, Flash Source Gate Drain Polysilicon Floating Gate Thin Gate Oxide (SiO 2) n+ n+ p bulk Si 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 25

26 Flash Programming Charge on floating gate determines V t Logic 1: negative V t Logic 0: positive V t Cells erased to 1 by applying a high body voltage so that electrons tunnel off floating gate into substrate Programmed to 0 by applying high gate voltage 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 26

27 NAND Flash High density, low cost / bit Programmed one page at a time Erased one block at a time Example: 4096-bit pages 16 pages / 8 KB block Many blocks / memory 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 27

28 64 Gb NAND Flash 64K cells / page 4 bits / cell (multiple V t ) 64 cells / string 256 pages / block 2K blocks / plane 2 planes [Trinh09] 10/31/2017 CSCE/ELEG 4914: Advnaced Digital Design 28

Memory. Outline. ECEN454 Digital Integrated Circuit Design. Memory Arrays. SRAM Architecture DRAM. Serial Access Memories ROM

Memory. Outline. ECEN454 Digital Integrated Circuit Design. Memory Arrays. SRAM Architecture DRAM. Serial Access Memories ROM ECEN454 Digital Integrated Circuit Design Memory ECEN 454 Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports DRAM Outline Serial Access Memories ROM ECEN 454 12.2 1 Memory

More information

Lecture 13: SRAM. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed.

Lecture 13: SRAM. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed. Lecture 13: SRAM Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports

More information

Lecture 11 SRAM Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 11 SRAM Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 11 SRAM Zhuo Feng 11.1 Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitryit Multiple Ports Outline Serial Access Memories 11.2 Memory Arrays

More information

SRAM. Introduction. Digital IC

SRAM. Introduction. Digital IC SRAM Introduction Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports Serial Access Memories Memory Arrays Memory Arrays Random Access Memory Serial Access Memory

More information

Introduction to SRAM. Jasur Hanbaba

Introduction to SRAM. Jasur Hanbaba Introduction to SRAM Jasur Hanbaba Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Non-volatile Memory Manufacturing Flow Memory Arrays Memory Arrays Random Access Memory Serial

More information

Introduction to CMOS VLSI Design Lecture 13: SRAM

Introduction to CMOS VLSI Design Lecture 13: SRAM Introduction to CMOS VLSI Design Lecture 13: SRAM David Harris Harvey Mudd College Spring 2004 1 Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports Serial Access

More information

CENG 4480 L09 Memory 2

CENG 4480 L09 Memory 2 CENG 4480 L09 Memory 2 Bei Yu Reference: Chapter 11 Memories CMOS VLSI Design A Circuits and Systems Perspective by H.E.Weste and D.M.Harris 1 v.s. CENG3420 CENG3420: architecture perspective memory coherent

More information

Digital Integrated Circuits Lecture 13: SRAM

Digital Integrated Circuits Lecture 13: SRAM Digital Integrated Circuits Lecture 13: SRAM Chih-Wei Liu VLSI Signal Processing LAB National Chiao Tung University cwliu@twins.ee.nctu.edu.tw DIC-Lec13 cwliu@twins.ee.nctu.edu.tw 1 Outline Memory Arrays

More information

Memory Arrays. Array Architecture. Chapter 16 Memory Circuits and Chapter 12 Array Subsystems from CMOS VLSI Design by Weste and Harris, 4 th Edition

Memory Arrays. Array Architecture. Chapter 16 Memory Circuits and Chapter 12 Array Subsystems from CMOS VLSI Design by Weste and Harris, 4 th Edition Chapter 6 Memory Circuits and Chapter rray Subsystems from CMOS VLSI Design by Weste and Harris, th Edition E E 80 Introduction to nalog and Digital VLSI Paul M. Furth New Mexico State University Static

More information

CHAPTER 8. Array Subsystems. VLSI Design. Chih-Cheng Hsieh

CHAPTER 8. Array Subsystems. VLSI Design. Chih-Cheng Hsieh CHAPTER 8 Array Subsystems Outline 2 1. SRAM 2. DRAM 3. Read-Only Memory (ROM) 4. Serial Access Memory 5. Content-Addressable Memory 6. Programmable Logic Array Memory Arrays 3 Memory Arrays Random Access

More information

Semiconductor Memory Classification

Semiconductor Memory Classification ESE37: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: November, 7 Memory Overview Today! Memory " Classification " Architecture " Memory core " Periphery (time permitting)!

More information

CENG 4480 L09 Memory 3

CENG 4480 L09 Memory 3 CENG 4480 L09 Memory 3 Bei Yu Chapter 11 Memories Reference: CMOS VLSI Design A Circuits and Systems Perspective by H.E.Weste and D.M.Harris 1 Memory Arrays Memory Arrays Random Access Memory Serial Access

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 8 Dr. Ahmed H. Madian ah_madian@hotmail.com Content Array Subsystems Introduction General memory array architecture SRAM (6-T cell) CAM Read only memory Introduction

More information

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy.

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 4, 7 Memory Overview, Memory Core Cells Today! Memory " Classification " ROM Memories " RAM Memory " Architecture " Memory core " SRAM

More information

! Memory Overview. ! ROM Memories. ! RAM Memory " SRAM " DRAM. ! This is done because we can build. " large, slow memories OR

! Memory Overview. ! ROM Memories. ! RAM Memory  SRAM  DRAM. ! This is done because we can build.  large, slow memories OR ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 2: April 5, 26 Memory Overview, Memory Core Cells Lecture Outline! Memory Overview! ROM Memories! RAM Memory " SRAM " DRAM 2 Memory Overview

More information

Lecture 20: CAMs, ROMs, PLAs

Lecture 20: CAMs, ROMs, PLAs Lecture 2: CAMs, ROMs, PLAs Outline Content-Addressable Memories Read-Only Memories Programmable Logic Arrays 2: CAMs, ROMs, and PLAs CMOS VLSI Design 4th Ed. 2 CAMs Extension of ordinary memory (e.g.

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 26: November 9, 2018 Memory Overview Dynamic OR4! Precharge time?! Driving input " With R 0 /2 inverter! Driving inverter

More information

Based on slides/material by. Topic 7-4. Memory and Array Circuits. Outline. Semiconductor Memory Classification

Based on slides/material by. Topic 7-4. Memory and Array Circuits. Outline. Semiconductor Memory Classification Based on slides/material by Topic 7 Memory and Array Circuits K. Masselos http://cas.ee.ic.ac.uk/~kostas J. Rabaey http://bwrc.eecs.berkeley.edu/classes/icbook/instructors.html Digital Integrated Circuits:

More information

! Memory. " RAM Memory. " Serial Access Memories. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

! Memory.  RAM Memory.  Serial Access Memories. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell.  Used in most commercial chips ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 5, 8 Memory: Periphery circuits Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery " Serial Access Memories

More information

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE.

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE. Memory Design I Professor Chris H. Kim University of Minnesota Dept. of ECE chriskim@ece.umn.edu Array-Structured Memory Architecture 2 1 Semiconductor Memory Classification Read-Write Wi Memory Non-Volatile

More information

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI CHAPTER 2 ARRAY SUBSYSTEMS [2.4-2.9] MANJARI S. KULKARNI OVERVIEW Array classification Non volatile memory Design and Layout Read-Only Memory (ROM) Pseudo nmos and NAND ROMs Programmable ROMS PROMS, EPROMs,

More information

Chapter 3 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 3 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 3 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction Random Access Memories Content Addressable Memories Read

More information

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend Array-Structured Memory Architecture Memory Design I Professor hris H. Kim University of Minnesota Dept. of EE chriskim@ece.umn.edu 2 Semiconductor Memory lassification Read-Write Memory Non-Volatile Read-Write

More information

Introduction to CMOS VLSI Design. Semiconductor Memory Harris and Weste, Chapter October 2018

Introduction to CMOS VLSI Design. Semiconductor Memory Harris and Weste, Chapter October 2018 Introduction to CMOS VLSI Design Semiconductor Memory Harris and Weste, Chapter 12 25 October 2018 J. J. Nahas and P. M. Kogge Modified from slides by Jay Brockman 2008 [Including slides from Harris &

More information

Lecture 14: CAMs, ROMs, and PLAs

Lecture 14: CAMs, ROMs, and PLAs Introduction to CMOS VLSI Design Lecture 4: CAMs, ROMs, and PLAs David Harris Harvey Mudd College Spring 24 Outline Content-Addressable Memories Read-Only Memories Programmable Logic Arrays 4: CAMs, ROMs,

More information

Lecture 11: MOS Memory

Lecture 11: MOS Memory Lecture 11: MOS Memory MAH, AEN EE271 Lecture 11 1 Memory Reading W&E 8.3.1-8.3.2 - Memory Design Introduction Memories are one of the most useful VLSI building blocks. One reason for their utility is

More information

MEMORIES. Memories. EEC 116, B. Baas 3

MEMORIES. Memories. EEC 116, B. Baas 3 MEMORIES Memories VLSI memories can be classified as belonging to one of two major categories: Individual registers, single bit, or foreground memories Clocked: Transparent latches and Flip-flops Unclocked:

More information

Magnetic core memory (1951) cm 2 ( bit)

Magnetic core memory (1951) cm 2 ( bit) Magnetic core memory (1951) 16 16 cm 2 (128 128 bit) Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 23-1 guntzel@inf.ufsc.br Semiconductor Memory Classification

More information

Introduction to Semiconductor Memory Dr. Lynn Fuller Webpage:

Introduction to Semiconductor Memory Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to Semiconductor Memory Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems Advanced Embedded Systems Lecture 2: Memory and Programmable Logic Dr. Mohamed Abd El Ghany, Memory Random Access Memory (RAM) Can be read and written Static Random Access Memory (SRAM) Data stored so

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 28: DRAM & Flash Memories Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Review of Last Lecture

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 22: Memery, ROM

CMPEN 411 VLSI Digital Circuits Spring Lecture 22: Memery, ROM CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 22: Memery, ROM [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L22 S.1

More information

Memories. Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu.

Memories. Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu. Memories Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu http://www.syssec.ethz.ch/education/digitaltechnik_17 Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah

More information

Memory in Digital Systems

Memory in Digital Systems MEMORIES Memory in Digital Systems Three primary components of digital systems Datapath (does the work) Control (manager) Memory (storage) Single bit ( foround ) Clockless latches e.g., SR latch Clocked

More information

EE141-Fall 2007 Digital Integrated Circuits. ROM and Flash. Announcements. Read-Only Memory Cells. Class Material. Semiconductor Memory Classification

EE141-Fall 2007 Digital Integrated Circuits. ROM and Flash. Announcements. Read-Only Memory Cells. Class Material. Semiconductor Memory Classification EE4-Fall 2007 igital Integrated Circuits Lecture 29 ROM, Flash, and RAM ROM and Flash 4 4 Announcements Final ec. 20 th Room TBA Final review sessions: Mon. ec. 7 th 3:30pm, 550 Cory Tues. ec. 7 th 3:30pm,

More information

Digital Integrated Circuits (83-313) Lecture 7: SRAM. Semester B, Lecturer: Dr. Adam Teman Itamar Levi, Robert Giterman.

Digital Integrated Circuits (83-313) Lecture 7: SRAM. Semester B, Lecturer: Dr. Adam Teman Itamar Levi, Robert Giterman. Digital Integrated Circuits (83-313) Lecture 7: SRAM Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 16 May 2017 Disclaimer: This course was prepared, in its entirety, by

More information

Sense Amplifiers 6 T Cell. M PC is the precharge transistor whose purpose is to force the latch to operate at the unstable point.

Sense Amplifiers 6 T Cell. M PC is the precharge transistor whose purpose is to force the latch to operate at the unstable point. Announcements (Crude) notes for switching speed example from lecture last week posted. Schedule Final Project demo with TAs. Written project report to include written evaluation section. Send me suggestions

More information

! Serial Access Memories. ! Multiported SRAM ! 5T SRAM ! DRAM. ! Shift registers store and delay data. ! Simple design: cascade of registers

! Serial Access Memories. ! Multiported SRAM ! 5T SRAM ! DRAM. ! Shift registers store and delay data. ! Simple design: cascade of registers ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 28: November 16, 2016 RAM Core Pt 2 Outline! Serial Access Memories! Multiported SRAM! 5T SRAM! DRAM Penn ESE 370 Fall 2016

More information

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I)

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I) COMP3221: Microprocessors and Embedded Systems Lecture 23: Memory Systems (I) Overview Memory System Hierarchy RAM, ROM, EPROM, EEPROM and FLASH http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session

More information

Concept of Memory. The memory of computer is broadly categories into two categories:

Concept of Memory. The memory of computer is broadly categories into two categories: Concept of Memory We have already mentioned that digital computer works on stored programmed concept introduced by Von Neumann. We use memory to store the information, which includes both program and data.

More information

Chapter 5 Internal Memory

Chapter 5 Internal Memory Chapter 5 Internal Memory Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM) Read-write memory Electrically, byte-level Electrically Volatile Read-only memory (ROM) Read-only

More information

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved.

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved. Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Internal Memory http://www.yildiz.edu.tr/~naydin 1 2 Outline Semiconductor main memory Random Access Memory

More information

CMOS Logic Circuit Design Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計

CMOS Logic Circuit Design   Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計 CMOS Logic Circuit Design http://www.rcns.hiroshima-u.ac.jp Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計 Memory Circuits (Part 1) Overview of Memory Types Memory with Address-Based Access Principle of Data Access

More information

Digital Systems. Semiconductor memories. Departamentul de Bazele Electronicii

Digital Systems. Semiconductor memories. Departamentul de Bazele Electronicii Digital Systems Semiconductor memories Departamentul de Bazele Electronicii Outline ROM memories ROM memories PROM memories EPROM memories EEPROM, Flash, MLC memories Applications with ROM memories extending

More information

Memory Classification revisited. Slide 3

Memory Classification revisited. Slide 3 Slide 1 Topics q Introduction to memory q SRAM : Basic memory element q Operations and modes of failure q Cell optimization q SRAM peripherals q Memory architecture and folding Slide 2 Memory Classification

More information

CSEE 3827: Fundamentals of Computer Systems. Storage

CSEE 3827: Fundamentals of Computer Systems. Storage CSEE 387: Fundamentals of Computer Systems Storage The big picture General purpose processor (e.g., Power PC, Pentium, MIPS) Internet router (intrusion detection, pacet routing, etc.) WIreless transceiver

More information

Read and Write Cycles

Read and Write Cycles Read and Write Cycles The read cycle is shown. Figure 41.1a. The RAS and CAS signals are activated one after the other to latch the multiplexed row and column addresses respectively applied at the multiplexed

More information

Memory and Programmable Logic

Memory and Programmable Logic Digital Circuit Design and Language Memory and Programmable Logic Chang, Ik Joon Kyunghee University Memory Classification based on functionality ROM : Read-Only Memory RWM : Read-Write Memory RWM NVRWM

More information

Memory in Digital Systems

Memory in Digital Systems MEMORIES Memory in Digital Systems Three primary components of digital systems Datapath (does the work) Control (manager) Memory (storage) Single bit ( foround ) Clockless latches e.g., SR latch Clocked

More information

ECEN 449 Microprocessor System Design. Memories. Texas A&M University

ECEN 449 Microprocessor System Design. Memories. Texas A&M University ECEN 449 Microprocessor System Design Memories 1 Objectives of this Lecture Unit Learn about different types of memories SRAM/DRAM/CAM Flash 2 SRAM Static Random Access Memory 3 SRAM Static Random Access

More information

Embedded Systems Design: A Unified Hardware/Software Introduction. Outline. Chapter 5 Memory. Introduction. Memory: basic concepts

Embedded Systems Design: A Unified Hardware/Software Introduction. Outline. Chapter 5 Memory. Introduction. Memory: basic concepts Hardware/Software Introduction Chapter 5 Memory Outline Memory Write Ability and Storage Permanence Common Memory Types Composing Memory Memory Hierarchy and Cache Advanced RAM 1 2 Introduction Memory:

More information

Embedded Systems Design: A Unified Hardware/Software Introduction. Chapter 5 Memory. Outline. Introduction

Embedded Systems Design: A Unified Hardware/Software Introduction. Chapter 5 Memory. Outline. Introduction Hardware/Software Introduction Chapter 5 Memory 1 Outline Memory Write Ability and Storage Permanence Common Memory Types Composing Memory Memory Hierarchy and Cache Advanced RAM 2 Introduction Embedded

More information

Stability and Static Noise Margin Analysis of Static Random Access Memory

Stability and Static Noise Margin Analysis of Static Random Access Memory Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2007 Stability and Static Noise Margin Analysis of Static Random Access Memory Rajasekhar Keerthi Wright

More information

The Memory Hierarchy. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1

The Memory Hierarchy. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1 The Memory Hierarchy Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1 Memory Technologies Technologies have vastly different tradeoffs between capacity, latency,

More information

ECEN 449 Microprocessor System Design. Memories

ECEN 449 Microprocessor System Design. Memories ECEN 449 Microprocessor System Design Memories 1 Objectives of this Lecture Unit Learn about different types of memories SRAM/DRAM/CAM /C Flash 2 1 SRAM Static Random Access Memory 3 SRAM Static Random

More information

Spiral 2-9. Tri-State Gates Memories DMA

Spiral 2-9. Tri-State Gates Memories DMA 2-9.1 Spiral 2-9 Tri-State Gates Memories DMA 2-9.2 Learning Outcomes I understand how a tri-state works and the rules for using them to share a bus I understand how SRAM and DRAM cells perform reads and

More information

CS 320 February 2, 2018 Ch 5 Memory

CS 320 February 2, 2018 Ch 5 Memory CS 320 February 2, 2018 Ch 5 Memory Main memory often referred to as core by the older generation because core memory was a mainstay of computers until the advent of cheap semi-conductor memory in the

More information

Column decoder using PTL for memory

Column decoder using PTL for memory IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735. Volume 5, Issue 4 (Mar. - Apr. 2013), PP 07-14 Column decoder using PTL for memory M.Manimaraboopathy

More information

CS311 Lecture 21: SRAM/DRAM/FLASH

CS311 Lecture 21: SRAM/DRAM/FLASH S 14 L21-1 2014 CS311 Lecture 21: SRAM/DRAM/FLASH DARM part based on ISCA 2002 tutorial DRAM: Architectures, Interfaces, and Systems by Bruce Jacob and David Wang Jangwoo Kim (POSTECH) Thomas Wenisch (University

More information

RTL Design (2) Memory Components (RAMs & ROMs)

RTL Design (2) Memory Components (RAMs & ROMs) RTL Design (2) Memory Components (RAMs & ROMs) Memory Components All sequential circuit have a form of memory Register, latches, etc However, the term memory is generally reserved for bits that are stored

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 201 Memories Lecture 14: 1 Announcements HW6 will be posted tonight Lab 4b next week: Debug your design before the in-lab exercise Lecture 14: 2 Review:

More information

Computer Organization. 8th Edition. Chapter 5 Internal Memory

Computer Organization. 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory Types Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM)

More information

Address connections Data connections Selection connections

Address connections Data connections Selection connections Interface (cont..) We have four common types of memory: Read only memory ( ROM ) Flash memory ( EEPROM ) Static Random access memory ( SARAM ) Dynamic Random access memory ( DRAM ). Pin connections common

More information

ECSE-2610 Computer Components & Operations (COCO)

ECSE-2610 Computer Components & Operations (COCO) ECSE-2610 Computer Components & Operations (COCO) Part 18: Random Access Memory 1 Read-Only Memories 2 Why ROM? Program storage Boot ROM for personal computers Complete application storage for embedded

More information

ENEE 759H, Spring 2005 Memory Systems: Architecture and

ENEE 759H, Spring 2005 Memory Systems: Architecture and SLIDE, Memory Systems: DRAM Device Circuits and Architecture Credit where credit is due: Slides contain original artwork ( Jacob, Wang 005) Overview Processor Processor System Controller Memory Controller

More information

Cell-phone ASIC complexity and cost

Cell-phone ASIC complexity and cost Memories Cell-phone ASIC compleity and cost Viktor Öwall Dept. of Electrical and Information Technology Lund University Parts of this material was adapted from the instructor material to Jan M. Rabaey,

More information

ECE 152 Introduction to Computer Architecture

ECE 152 Introduction to Computer Architecture Introduction to Computer Architecture Main Memory and Virtual Memory Copyright 2009 Daniel J. Sorin Duke University Slides are derived from work by Amir Roth (Penn) Spring 2009 1 Where We Are in This Course

More information

CS250 VLSI Systems Design Lecture 9: Memory

CS250 VLSI Systems Design Lecture 9: Memory CS250 VLSI Systems esign Lecture 9: Memory John Wawrzynek, Jonathan Bachrach, with Krste Asanovic, John Lazzaro and Rimas Avizienis (TA) UC Berkeley Fall 2012 CMOS Bistable Flip State 1 0 0 1 Cross-coupled

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 4: Memory Hierarchy Memory Taxonomy SRAM Basics Memory Organization DRAM Basics Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering

More information

Embedded System Application

Embedded System Application Laboratory Embedded System Application 4190.303C 2010 Spring Semester ROMs, Non-volatile and Flash Memories ELPL Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@snu.ac.kr Revisit Previous

More information

FPGA Programming Technology

FPGA Programming Technology FPGA Programming Technology Static RAM: This Xilinx SRAM configuration cell is constructed from two cross-coupled inverters and uses a standard CMOS process. The configuration cell drives the gates of

More information

The Memory Hierarchy. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

The Memory Hierarchy. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. The Memory Hierarchy Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L13-1 Memory Technologies Technologies have vastly different tradeoffs between capacity, latency, bandwidth,

More information

Memory and Programmable Logic

Memory and Programmable Logic Memory and Programmable Logic Memory units allow us to store and/or retrieve information Essentially look-up tables Good for storing data, not for function implementation Programmable logic device (PLD),

More information

The Memory Hierarchy 1

The Memory Hierarchy 1 The Memory Hierarchy 1 What is a cache? 2 What problem do caches solve? 3 Memory CPU Abstraction: Big array of bytes Memory memory 4 Performance vs 1980 Processor vs Memory Performance Memory is very slow

More information

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory Semiconductor Memory Types Semiconductor Memory RAM Misnamed as all semiconductor memory is random access

More information

Hardware Design with VHDL PLDs I ECE 443. FPGAs can be configured at least once, many are reprogrammable.

Hardware Design with VHDL PLDs I ECE 443. FPGAs can be configured at least once, many are reprogrammable. PLDs, ASICs and FPGAs FPGA definition: Digital integrated circuit that contains configurable blocks of logic and configurable interconnects between these blocks. Key points: Manufacturer does NOT determine

More information

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University Memory Overview Curtis Nelson Walla Walla University Overview - Memory Types n n n Magnetic tape (used primarily for long term archive) Magnetic disk n Hard disk (File, Directory, Folder) n Floppy disks

More information

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory The basic element of a semiconductor memory is the memory cell. Although a variety of

More information

P-2 Digital Design & Applications

P-2 Digital Design & Applications P-2 Digital Design & Applications Semiconductor Memory (Unit-V) By: A K Verma SOS in Electronics & Photonics Pt. Ravishankar Shukla University, Raipur (C.G.) 1 What is Memory? In computing, memory refers

More information

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types CSCI 4717/5717 Computer Architecture Topic: Internal Memory Details Reading: Stallings, Sections 5.1 & 5.3 Basic Organization Memory Cell Operation Represent two stable/semi-stable states representing

More information

Design and Implementation of an AHB SRAM Memory Controller

Design and Implementation of an AHB SRAM Memory Controller Design and Implementation of an AHB SRAM Memory Controller 1 Module Overview Learn the basics of Computer Memory; Design and implement an AHB SRAM memory controller, which replaces the previous on-chip

More information

Silicon Memories. Why store things in silicon? It s fast!!! Compatible with logic devices (mostly)

Silicon Memories. Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) Memories and SRAM 1 Silicon Memories Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) The main goal is to be cheap Dense -- The smaller the bits, the less area you need,

More information

Learning Outcomes. Spiral 2-9. Typical Logic Gate TRI-STATE GATES

Learning Outcomes. Spiral 2-9. Typical Logic Gate TRI-STATE GATES 2-9.1 Learning Outcomes 2-9.2 Spiral 2-9 Tri-State Gates Memories DMA I understand how a tri-state works and the rules for using them to share a bus I understand how SRAM and DRAM cells perform reads and

More information

Memory classification:- Topics covered:- types,organization and working

Memory classification:- Topics covered:- types,organization and working Memory classification:- Topics covered:- types,organization and working 1 Contents What is Memory? Cache Memory PC Memory Organisation Types 2 Memory what is it? Usually we consider this to be RAM, ROM

More information

Lecture-14 (Memory Hierarchy) CS422-Spring

Lecture-14 (Memory Hierarchy) CS422-Spring Lecture-14 (Memory Hierarchy) CS422-Spring 2018 Biswa@CSE-IITK The Ideal World Instruction Supply Pipeline (Instruction execution) Data Supply - Zero-cycle latency - Infinite capacity - Zero cost - Perfect

More information

Memory in Digital Systems

Memory in Digital Systems MEMORIES Memory in Digital Systems Three primary components of digital systems Datapath (does the work) Control (manager) Memory (storage) Single bit ( foround ) Clockless latches e.g., SR latch Clocked

More information

Z-RAM Ultra-Dense Memory for 90nm and Below. Hot Chips David E. Fisch, Anant Singh, Greg Popov Innovative Silicon Inc.

Z-RAM Ultra-Dense Memory for 90nm and Below. Hot Chips David E. Fisch, Anant Singh, Greg Popov Innovative Silicon Inc. Z-RAM Ultra-Dense Memory for 90nm and Below Hot Chips 2006 David E. Fisch, Anant Singh, Greg Popov Innovative Silicon Inc. Outline Device Overview Operation Architecture Features Challenges Z-RAM Performance

More information

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory 5.1 Semiconductor Main Memory 5.2 Error Correction 5.3 Advanced DRAM Organization 5.1 Semiconductor Main Memory

More information

ENGR 303 Introduction to Logic Design Lecture 7. Dr. Chuck Brown Engineering and Computer Information Science Folsom Lake College

ENGR 303 Introduction to Logic Design Lecture 7. Dr. Chuck Brown Engineering and Computer Information Science Folsom Lake College Introduction to Logic Design Lecture 7 Dr. Chuck Brown Engineering and Computer Information Science Folsom Lake College Outline for Todays Lecture Shifter Multiplier / Divider Memory Shifters Logical

More information

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing Microcontroller Systems ELET 3232 Topic 11: General Memory Interfacing 1 Objectives To become familiar with the concepts of memory expansion and the data and address bus To design embedded systems circuits

More information

Lecture 13: Memory and Programmable Logic

Lecture 13: Memory and Programmable Logic Lecture 13: Memory and Programmable Logic Syed M. Mahmud, Ph.D ECE Department Wayne State University Aby K George, ECE Department, Wayne State University Contents Introduction Random Access Memory Memory

More information

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness EE 352 Unit 10 Memory System Overview SRAM vs. DRAM DMA & Endian-ness The Memory Wall Problem: The Memory Wall Processor speeds have been increasing much faster than memory access speeds (Memory technology

More information

Module 6 : Semiconductor Memories Lecture 30 : SRAM and DRAM Peripherals

Module 6 : Semiconductor Memories Lecture 30 : SRAM and DRAM Peripherals Module 6 : Semiconductor Memories Lecture 30 : SRAM and DRAM Peripherals Objectives In this lecture you will learn the following Introduction SRAM and its Peripherals DRAM and its Peripherals 30.1 Introduction

More information

Dual Port SRAM. Research Article. Rajeshwari Mathapati a*, Geetanjali Kamble a and S.K.Shirakol a

Dual Port SRAM. Research Article. Rajeshwari Mathapati a*, Geetanjali Kamble a and S.K.Shirakol a International Journal of Current Engineering and Technology ISSN 2277 4106 2013 INPRESSCO. All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Dual Port SRAM Rajeshwari

More information

Semiconductor Memories: RAMs and ROMs

Semiconductor Memories: RAMs and ROMs Semiconductor Memories: RAMs and ROMs Lesson Objectives: In this lesson you will be introduced to: Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc. Different terms like: read, write,

More information

8051 INTERFACING TO EXTERNAL MEMORY

8051 INTERFACING TO EXTERNAL MEMORY 8051 INTERFACING TO EXTERNAL MEMORY Memory Capacity The number of bits that a semiconductor memory chip can store Called chip capacity It can be in units of Kbits (kilobits), Mbits (megabits), and so on

More information

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017 Lecture Objectives Introduction to Computing Chapter The AVR microcontroller and embedded systems using assembly and c Students should be able to: Convert between base and. Explain the difference between

More information

ELE 455/555 Computer System Engineering. Section 1 Review and Foundations Class 3 Technology

ELE 455/555 Computer System Engineering. Section 1 Review and Foundations Class 3 Technology ELE 455/555 Computer System Engineering Section 1 Review and Foundations Class 3 MOSFETs MOSFET Terminology Metal Oxide Semiconductor Field Effect Transistor 4 terminal device Source, Gate, Drain, Body

More information

Unit 7: Memory. Dynamic shift register: Circuit diagram: Refer to unit 4(ch 6.5.4)

Unit 7: Memory. Dynamic shift register: Circuit diagram: Refer to unit 4(ch 6.5.4) Unit 7: Memory Objectives: At the end of this unit we will be able to understand System timing consideration Storage / Memory Elements dynamic shift register 1T and 3T dynamic memory 4T dynamic and 6T

More information