NAME top display top CPU processes. SYNOPSIS top [ ] [d delay] [p pid] [q] [c] [C] [S] [s] [i] [n iter] [b]

Size: px
Start display at page:

Download "NAME top display top CPU processes. SYNOPSIS top [ ] [d delay] [p pid] [q] [c] [C] [S] [s] [i] [n iter] [b]"

Transcription

1 NAME top display top CPU processes SYNOPSIS top [ ] [d delay] [p pid] [q] [c] [C] [S] [s] [i] [n iter] [b] DESCRIPTION top provides an ongoing look at processor activity in real time. It displays a listing of the most CPU-intensive tasks on the system, and can provide an interactive interface for manipulating processes. It can sort the tasks by CPU usage, memory usage and runtime. can be better configured than the standard top from the procps suite. Most features can either be selected by an interactive command or by specifying the feature in the personal or system-wide configuration file. See below for more information. COMMAND LINE OPTIONS d Specifies the delay between screen updates. You can change this with the s interactive command. p q S s i C c n b Monitor only processes with given process id. This flag can be given up to twenty times. This option is neither available interactively nor can it be put into the configuration file. This causes top to refresh without any delay. If the caller has superuser priviledges, top runs with the highest possible priority. Specifies cumulative mode, where each process is listed with the CPU time that it as well as its dead children has spent. This is like the -S flag to ps(1). See the discussion below of the S interactive command. Tells top to run in secure mode. This disables the potentially dangerous of the interactive commands (see below). A secure top is a nifty thing to leave running on a spare terminal. Start top ignoring any idle or zombie processes. See the interactive command i below. display total CPU states in addition to individual CPUs. This option only affects SMP systems. display command line instead of the command name only. The default behaviour has been changed as this seems to be more useful. Number of iterations. Update the display this number of times and then exit. Batch mode. Useful for sending output from top to other programs or to a file. In this mode, top will not accept command line input. It runs until it produces the number of iterations requested with the n option or until killed. Output is plain text suitable for display on a dumb terminal. FIELD DESCRIPTIONS top displays a variety of information about the processor state. The display is updated every 5 seconds by default, but you can change that with the d command-line option or the s interactive command. uptime This line displays the time the system has been up, and the three load averages for the system. The load averages are the average number of process ready to run during the last 1, 5 and 15 minutes. This line is just like the output of uptime(1). The uptime display may be toggled by the interactive l command. processes The total number of processes running at the time of the last update. This is also broken down into the number of tasks which are running, sleeping, stopped, or undead. The processes and states display may be toggled by the t interactive command. CPU states Shows the percentage of CPU time in user mode, system mode, niced tasks, and idle. (Niced tasks are only those whose nice value is negative.) Time spent in niced tasks will also be counted in system and user time, so the total will be more than 100%. The processes and states display may be toggled by the t interactive command. Mem Statistics on memory usage, including total available memory, free memory, used memory, shared memory, and memory used for buffers. The display of memory information may be toggled by the Linux Feb

2 m interactive command. Swap Statistics on swap space, including total swap space, available swap space, and used swap space. This and Mem are just like the output of free(1). PID The process ID of each task. PPID The parent process ID each task. UID The user ID of the task s owner. USER The user name of the task s owner. PRI The priority of the task. NI The nice value of the task. Negative nice values are higher priority. SIZE The size of the task s code plus data plus stack space, in kilobytes, is shown here. TSIZE The code size of the task. This gives strange values for kernel processes and is broken for ELF processes. DSIZE Data + Stack size. This is broken for ELF processes. TRS Te xt resident size. SWAP Size of the swapped out part of the task. D Size of pages marked dirty. LC Last used processor. (That this changes from time to time is not a bug; Linux intentionally uses weak affinity. Also notice that the very act of running top may break weak affinity and cause more processes to change current CPU more often because of the extra demand for CPU time.) RSS The total amount of physical memory used by the task, in kilobytes, is shown here. For ELF processes used library pages are counted here, for a.out processes not. SHARE The amount of shared memory used by the task is shown in this column. STAT The state of the task is shown here. The state is either S for sleeping, D for uninterruptible sleep, R for running, Z for zombies, or T for stopped or traced. These states are modified by trailing < for a process with negative nice value, N for a process with positive nice value, W for a swapped out process (this does not work correctly for kernel processes). WCHAN depending on the availablity of either /boot/psdatabase or the kernel link map /boot/system.map this shows the address or the name of the kernel function the task currently is sleeping in. TIME Total CPU time the task has used since it started. If cumulative mode is on, this also includes the CPU time used by the process s children which have died. You can set cumulative mode with the S command line option or toggle it with the interactive command S. The header line will then be changed to CTIME. %CPU The task s share of the CPU time since the last screen update, expressed as a percentage of total CPU time per processor. %MEM The task s share of the physical memory. COMMAND The task s command name, which will be truncated if it is too long to be displayed on one line. Tasks in memory will have a full command line, but swapped-out tasks will only have the name of the program in parentheses (for example, "(getty)"). A,WP these fields from the kmem top are not supported. Linux Feb

3 INTERACTIVE COMMANDS Several single-key commands are recognized while top is running. Some are disabled if the s option has been given on the command line. space Immediately updates the display. ˆL Erases and redraws the screen. h or? k i I n or # q r S s f or F o or O l m t c N A P M T W Displays a help screen giving a brief summary of commands, and the status of secure and cumulative modes. Kill a process. You will be prompted for the PID of the task, and the signal to send to it. For a normal kill, send signal 15. For a sure, but rather abrupt, kill, send signal 9. The default signal, as with kill(1), is 15, SIGTERM. This command is not available in secure mode. Ignore idle and zombie processes. This is a toggle switch. Toggle between Solaris (CPU percentage divided by total number of CPUs) and Irix (CPU percentage calculated solely by amount of time) views. This is a toggle switch that affects only SMP systems. Change the number of processes to show. You will be prompted to enter the number. This overrides automatic determination of the number of processes to show, which is based on window size measurement. If 0 is specified, then top will show as many processes as will fit on the screen; this is the default. Quit. Re-nice a process. You will be prompted for the PID of the task, and the value to nice it to. Entering a positve value will cause a process to be niced to negative values, and lose priority. If root is running top, a neg ative value can be entered, causing a process to get a higher than normal priority. The default renice value is 10. This command is not available in secure mode. This toggles cumulative mode, the equivalent of ps -S, i.e., that CPU times will include a process s defunct children. For some programs, such as compilers, which work by forking into many seperate tasks, normal mode will make them appear less demanding than they actually are. For others, however, such as shells and init, this behavior is correct. In any case, try cumulative mode for an alternative view of CPU use. Change the delay between updates. You will be prompted to enter the delay time, in seconds, between updates. Fractional values are recognized down to microseconds. Entering 0 causes continuous updates. The default value is 5 seconds. Note that low values cause nearly unreadably fast displays, and greatly raise the load. This command is not available in secure mode. Add fields to display or remove fields from the display. See below for more information. Change order of displayed fields. See below for more information. toggle display of load average and uptime information. toggle display of memory information. toggle display of processes and CPU states information. toggle display of command name or full command line. sort tasks by pid (numerically). sort tasks by age (newest first). sort tasks by CPU usage (default). sort tasks by resident memory usage. sort tasks by time / cumulative time. Write current setup to /.toprc. This is the recommended way to write a top configuration file. Linux Feb

4 The Field and Order Screens After pressing f, F, o or O you will be shown a screen specifying the field order on the top line and short descriptions of the field contents. The field order string uses the following syntax: If the letter in the filed string corresponding to a field is upper case, the field will be displayed. This is furthermore indicated by an asterisk in front of the field description. The order of the fields corresponds to the order of the letters in the string. From the field select screen you can toggle the display of a field by pressing the corresponding letter. From the order screen you may move a field to the left by pressing the corresponding upper case letter resp. to the right by pressing the lower case one. Configuration Files Top reads it s default configuration from two files, /etc/toprc and /.toprc. The global configuration file may be used to restrict the usage of top to the secure mode for non-priviledged users. If this is desired, the file should contain a s to specify secure mode and a digit d (2<=d<=9) for the default delay (in seconds) on a single line. The personal configuration file contains two lines. The first line contains lower and upper letters to specify which fields in what order are to be displayed. The letters correspond to the letters in the Fields or Order screens from top. As this is not very instructive, it is recommended to select fields and order in a running top process and to save this using the W interactive command. The second line is more interesting (and important). It contains information on the other options. Most important, if you have sav ed a configuration in secure mode, you will not get an insecure top without removing the lower s from the second line of your /.toprc. A digit specifies the delay time between updates, a capital S cumulative mode, a lower i no-idle mode, a capital I Irix view. As in interactive mode, a lower m, l, and t suppresses the display of memory, uptime resp. process and CPU state information. Currently changing the default sorting order (by CPU usage) is not supported. NOTES This proc-based top works by reading the files in the proc filesystem, mounted on /proc. If /proc is not mounted, top will not work. %CPU shows the cputime/realtime percentage in the period of time between updates. For the first update, a short delay is used, and top itself dominates the CPU usage. After that, top will drop back, and a more reliable estimate of CPU usage is available. The SIZE and RSS fields don t count the page tables and the task_struct of a process; this is at least 12K of memory that is always resident. SIZE is the virtual size of the process (code+data+stack). Keep in mind that a process must die for its time to be recorded on its parent by cumulative mode. Perhaps more useful behavior would be to follow each process upwards, adding time, but that would be more expensive, possibly prohibitively so. In any case, that would make top s behavior incompatible with ps. FILES /etc/toprc The global configuration file. /.toprc The personal configuration file. SEE ALSO ps(1), free(1), uptime(1), kill(1), renice(1). BUGS If the window is less than about 70x7, top will not format information correctly. Many fields still have problems with ELF processes. the help screens are not yet optimized for windows with less than 25 lines AUTHOR top was originally written by Roger Binns, based on Branko Lankester s <lankeste@fwi.uva.nl> ps program. Robert Nation <nation@rocket.sanders.lockheed.com> re-wrote it significantly to use the proc filesystem, based on Michael K. Johnson s <johnsonm@redhat.com> proc-based ps program. Michael Shields <mjshield@nyx.cs.du.edu> made many changes, including secure and cumulative modes and a general cleanup. Tim Janik <timj@gtk.org> added age sorting and the ability to monitor specific processes through their ids. Helmut Geyer <Helmut.Geyer@iwr.uni-heidelberg.de> Heavily changed it to include support for Linux Feb

5 configurable fields and other new options, and did further cleanup and use of the new readproc interface. The "b" and "n" options contributed by George Bonser for CapTech IT Services. Michael K. Johnson is now the maintainer. Please send bug reports to Linux Feb

Linux System Administration

Linux System Administration System Processes Objective At the conclusion of this module, the student will be able to: Describe and define a process Identify a process ID, the parent process and the child process Learn the PID for

More information

Checking Resource Usage in Fedora (Linux)

Checking Resource Usage in Fedora (Linux) Lab 5C Checking Resource Usage in Fedora (Linux) Objective In this exercise, the student will learn how to check the resources on a Fedora system. This lab covers the following commands: df du top Equipment

More information

Process States. Controlling processes. Process states. PID and PPID UID and EUID GID and EGID Niceness Control terminal. Runnable. Sleeping.

Process States. Controlling processes. Process states. PID and PPID UID and EUID GID and EGID Niceness Control terminal. Runnable. Sleeping. Controlling processes PID and PPID UID and EUID GID and EGID Niceness Control terminal 1 Process States Process states Runnable The process can be executed Waiting for CPU Sleeping The process is waiting

More information

User Commands ps ( 1 )

User Commands ps ( 1 ) NAME ps report process status SYNOPSIS ps [-aacdefjllpy] [-g grplist] [-n namelist] [-o format]... [-p proclist] [-s sidlist] [-t term] [-u uidlist] [-U uidlist] [-G gidlist] DESCRIPTION The ps command

More information

Chapter 9: Process management. Chapter 9 Process management

Chapter 9: Process management. Chapter 9 Process management Chapter 9: Process management Chapter 9 Process management Last revised: 19/7/2004 Chapter 9 Outline In this chapter we will learn about: Processes and process concepts Examining processes Adjusting process

More information

Most of the work is done in the context of the process rather than handled separately by the kernel

Most of the work is done in the context of the process rather than handled separately by the kernel Process Control Process Abstraction for a running program Manages program s use of memory, cpu time, and i/o resources Most of the work is done in the context of the process rather than handled separately

More information

Programs. Program: Set of commands stored in a file Stored on disk Starting a program creates a process static Process: Program loaded in RAM dynamic

Programs. Program: Set of commands stored in a file Stored on disk Starting a program creates a process static Process: Program loaded in RAM dynamic Programs Program: Set of commands stored in a file Stored on disk Starting a program creates a process static Process: Program loaded in RAM dynamic Types of Processes 1. User process: Process started

More information

Processes. System tasks Campus-Booster ID : **XXXXX. Copyright SUPINFO. All rights reserved

Processes. System tasks Campus-Booster ID : **XXXXX.  Copyright SUPINFO. All rights reserved Processes System tasks Campus-Booster ID : **XXXXX www.supinfo.com Copyright SUPINFO. All rights reserved Processes Your trainer Presenter s Name Title: **Enter title or job role. Accomplishments: **What

More information

elinks, mail processes nice ps, pstree, top job control, jobs, fg, bg signals, kill, killall crontab, anacron, at

elinks, mail processes nice ps, pstree, top job control, jobs, fg, bg signals, kill, killall crontab, anacron, at Processes 1 elinks, mail processes nice ps, pstree, top job control, jobs, fg, bg signals, kill, killall crontab, anacron, at 2 elinks is a text-based (character mode) web browser we will use it to enable

More information

Practical 5. Linux Commands: Working with Files

Practical 5. Linux Commands: Working with Files Practical 5 Linux Commands: Working with Files 1. Ps The ps command on linux is one of the most basic commands for viewing the processes running on the system. It provides a snapshot of the current processes

More information

Getting to know you. Anatomy of a Process. Processes. Of Programs and Processes

Getting to know you. Anatomy of a Process. Processes. Of Programs and Processes Getting to know you Processes A process is an abstraction that supports running programs A sequential stream of execution in its own address space A process is NOT the same as a program! So, two parts

More information

elinks, mail processes nice ps, pstree, top job control, jobs, fg, bg signals, kill, killall crontab, anacron, at

elinks, mail processes nice ps, pstree, top job control, jobs, fg, bg signals, kill, killall crontab, anacron, at Processes 1 elinks, mail processes nice ps, pstree, top job control, jobs, fg, bg signals, kill, killall crontab, anacron, at 2 elinks is a text-based (character mode) web browser we will use it to enable

More information

PROCESSES. At least they re not ISO-9001 processes

PROCESSES. At least they re not ISO-9001 processes PROCESSES At least they re not ISO-9001 processes STRUCTURE In Linux, a Process wraps up everything that is needed to know about a running piece of software The meta information not only includes the machine

More information

Chapter 4 Controlling Processes

Chapter 4 Controlling Processes Chapter 4 Controlling Processes Program to Process Program is dead Just lie on disk grep is a program /usr/bin/grep % file /usr/bin/grep ELF 32-bit LSB executable When you execute it It becomes a process

More information

High Performance Computing Lecture 11. Matthew Jacob Indian Institute of Science

High Performance Computing Lecture 11. Matthew Jacob Indian Institute of Science High Performance Computing Lecture 11 Matthew Jacob Indian Institute of Science Agenda 1. Program execution: Compilation, Object files, Function call and return, Address space, Data & its representation

More information

ELEC 377 Operating Systems. Week 4 Lab 2 Tutorial

ELEC 377 Operating Systems. Week 4 Lab 2 Tutorial ELEC 377 Operating Systems Week 4 Tutorial Modules Provide extensions to the kernel Device Drivers File Systems Extra Functionality int init_module() {.. do initialization stuff.... tell the kernel what

More information

Managing Processes Process: A running program

Managing Processes Process: A running program Managing Processes Process: A running program User Process: The process initiated by a User while logged into a terminal (e.g. grep, find, ls) Daemon Process: These processes are usually initiated on system

More information

by a dash. The PS_PERSONALITY environment variable (described below) provides more detailed control of ps behavior.

by a dash. The PS_PERSONALITY environment variable (described below) provides more detailed control of ps behavior. NAME ps report process status SYNOPSIS ps [options] DESCRIPTION ps gives asnapshot of the current processes. If you want a repetitive update of this status, use top. This man page documents the /proc-based

More information

Section 1: Tools. Contents CS162. January 19, Make More details about Make Git Commands to know... 3

Section 1: Tools. Contents CS162. January 19, Make More details about Make Git Commands to know... 3 CS162 January 19, 2017 Contents 1 Make 2 1.1 More details about Make.................................... 2 2 Git 3 2.1 Commands to know....................................... 3 3 GDB: The GNU Debugger

More information

OS lpr. www. nfsd gcc emacs ls 1/27/09. Process Management. CS 537 Lecture 3: Processes. Example OS in operation. Why Processes? Simplicity + Speed

OS lpr. www. nfsd gcc emacs ls 1/27/09. Process Management. CS 537 Lecture 3: Processes. Example OS in operation. Why Processes? Simplicity + Speed Process Management CS 537 Lecture 3: Processes Michael Swift This lecture begins a series of topics on processes, threads, and synchronization Today: processes and process management what are the OS units

More information

Bamuengine.com. Chapter 7. The Process

Bamuengine.com. Chapter 7. The Process Chapter 7. The Process Introduction A process is an OS abstraction that enables us to look at files and programs as their time image. This chapter discusses processes, the mechanism of creating a process,

More information

www nfsd emacs lpr Process Management CS 537 Lecture 4: Processes Example OS in operation Why Processes? Simplicity + Speed

www nfsd emacs lpr Process Management CS 537 Lecture 4: Processes Example OS in operation Why Processes? Simplicity + Speed Process Management CS 537 Lecture 4: Processes Michael Swift This lecture begins a series of topics on processes, threads, and synchronization Today: processes and process management what are the OS units

More information

CPSC 457 OPERATING SYSTEMS MIDTERM EXAM

CPSC 457 OPERATING SYSTEMS MIDTERM EXAM CPSC 457 OPERATING SYSTEMS MIDTERM EXAM Department of Computer Science University of Calgary Professor: Carey Williamson March 9, 2010 This is a CLOSED BOOK exam. Textbooks, notes, laptops, calculators,

More information

07 - Processes and Jobs

07 - Processes and Jobs 07 - Processes and Jobs CS 2043: Unix Tools and Scripting, Spring 2016 [1] Stephen McDowell February 10th, 2016 Cornell University Table of contents 1. Processes Overview 2. Modifying Processes 3. Jobs

More information

Metbox Training Outline LDM Training Metbox overview Break Metbox hands on training

Metbox Training Outline LDM Training Metbox overview Break Metbox hands on training Metbox Training Outline 1300-1430 LDM Training 1430-1500 Metbox overview 1500-1515 Break 1515-1700 Metbox hands on training Metbox Terms Metbox Hardware and software LDM Data management system GEneral

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST - 2 Date : 20/09/2016 Max Marks : 0 Subject & Code : Unix Shell Programming (15CS36) Section : 3 rd Sem ISE/CSE Name of faculty : Prof Ajoy Time : 11:30am to 1:00pm SOLUTIONS 1

More information

Processes. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Processes. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Processes Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu OS Internals User space shell ls trap shell ps Kernel space File System Management I/O

More information

The System Monitor Handbook. Chris Schlaeger John Tapsell Chris Schlaeger Tobias Koenig

The System Monitor Handbook. Chris Schlaeger John Tapsell Chris Schlaeger Tobias Koenig Chris Schlaeger John Tapsell Chris Schlaeger Tobias Koenig 2 Contents 1 Introduction 6 2 Using System Monitor 7 2.1 Getting started........................................ 7 2.2 Process Table.........................................

More information

Announcement. Exercise #2 will be out today. Due date is next Monday

Announcement. Exercise #2 will be out today. Due date is next Monday Announcement Exercise #2 will be out today Due date is next Monday Major OS Developments 2 Evolution of Operating Systems Generations include: Serial Processing Simple Batch Systems Multiprogrammed Batch

More information

OS lpr. www. nfsd gcc emacs ls 9/18/11. Process Management. CS 537 Lecture 4: Processes. The Process. Why Processes? Simplicity + Speed

OS lpr. www. nfsd gcc emacs ls 9/18/11. Process Management. CS 537 Lecture 4: Processes. The Process. Why Processes? Simplicity + Speed Process Management CS 537 Lecture 4: Processes Today: processes and process management what are the OS units of execution? how are they represented inside the OS? how is the CPU scheduled across processes?

More information

Operating Systems Lab 1 (Users, Groups, and Security)

Operating Systems Lab 1 (Users, Groups, and Security) Operating Systems Lab 1 (Users, Groups, and Security) Overview This chapter covers the most common commands related to users, groups, and security. It will also discuss topics like account creation/deletion,

More information

B. V. Patel Institute of Business Management, Computer &Information Technology, UTU

B. V. Patel Institute of Business Management, Computer &Information Technology, UTU BCA-3 rd Semester 030010304-Fundamentals Of Operating Systems Unit: 1 Introduction Short Answer Questions : 1. State two ways of process communication. 2. State any two uses of operating system according

More information

Process Control. Philipp Koehn. 23 April 2018

Process Control. Philipp Koehn. 23 April 2018 Process Control Philipp Koehn 23 April 2018 Control Flow 1 The CPU executes one instruction after another Typically, they are next to each other in memory (unless jumps, branches, and returns from subroutine)

More information

CSE410 Operating Systems Spring 2018 Project 1: Introduction to Unix/Linux Signals

CSE410 Operating Systems Spring 2018 Project 1: Introduction to Unix/Linux Signals CSE410 Operating Systems Spring 2018 Project 1: Introduction to Unix/Linux Signals 1 Overview and Background In this exercise you will gain first hand experience with Unix/Linux signals. You will develop

More information

COMP 3430 Robert Guderian

COMP 3430 Robert Guderian Operating Systems COMP 3430 Robert Guderian file:///users/robg/dropbox/teaching/3430-2018/slides/03_processes/index.html?print-pdf#/ 1/53 1 Processes file:///users/robg/dropbox/teaching/3430-2018/slides/03_processes/index.html?print-pdf#/

More information

APPLIED INFORMATICS Processes. Bash characteristics. Command type. Aliases.

APPLIED INFORMATICS Processes. Bash characteristics. Command type. Aliases. Lab 3 APPLIED INFORMATICS Processes. Bash characteristics. Command type. Aliases. Today... /proc /run 1. PROCESSES 2. BASH CHARACTERISTICS 3. COMMAND TYPES 4. ALIASES $$ $PPID pidof ps pgrep kill killall

More information

Unix Processes. What is a Process?

Unix Processes. What is a Process? Unix Processes Process -- program in execution shell spawns a process for each command and terminates it when the command completes Many processes all multiplexed to a single processor (or a small number

More information

Processes. Dr. Yingwu Zhu

Processes. Dr. Yingwu Zhu Processes Dr. Yingwu Zhu Process Growing Memory Stack expands automatically Data area (heap) can grow via a system call that requests more memory - malloc() in c/c++ Entering the kernel (mode) Hardware

More information

Process Management forks, bombs, zombies, and daemons! Lecture 5, Hands-On Unix System Administration DeCal

Process Management forks, bombs, zombies, and daemons! Lecture 5, Hands-On Unix System Administration DeCal Process Management forks, bombs, zombies, and daemons! Lecture 5, Hands-On Unix System Administration DeCal 2012-10-01 what is a process? an abstraction! you can think of it as a program in the midst of

More information

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Week 03 Lecture 12 Create, Execute, and Exit from a Process

More information

CPSC 341 OS & Networks. Processes. Dr. Yingwu Zhu

CPSC 341 OS & Networks. Processes. Dr. Yingwu Zhu CPSC 341 OS & Networks Processes Dr. Yingwu Zhu Process Concept Process a program in execution What is not a process? -- program on a disk A process is an active object, but a program is just a file It

More information

PROCESSES. Jo, Heeseung

PROCESSES. Jo, Heeseung PROCESSES Jo, Heeseung TODAY'S TOPICS What is the process? How to implement processes? Inter-Process Communication (IPC) 2 WHAT IS THE PROCESS? Program? vs. Process? vs. Processor? 3 PROCESS CONCEPT (1)

More information

Processes. Jo, Heeseung

Processes. Jo, Heeseung Processes Jo, Heeseung Today's Topics What is the process? How to implement processes? Inter-Process Communication (IPC) 2 What Is The Process? Program? vs. Process? vs. Processor? 3 Process Concept (1)

More information

Layers in a UNIX System. Create a new process. Processes in UNIX. fildescriptors streams pipe(2) labinstructions

Layers in a UNIX System. Create a new process. Processes in UNIX. fildescriptors streams pipe(2) labinstructions Process Management Operating Systems Spring 2005 Layers in a UNIX System interface Library interface System call interface Lab Assistant Magnus Johansson magnusj@it.uu.se room 1442 postbox 54 (4th floor,

More information

Chap 4, 5: Process. Dongkun Shin, SKKU

Chap 4, 5: Process. Dongkun Shin, SKKU Chap 4, 5: Process 1 Process Concept Job A bundle of program and data to be executed An entity before submission for execution Process (= running program) An entity that is registered to kernel for execution

More information

Kernel Services CIS 657

Kernel Services CIS 657 Kernel Services CIS 657 System Processes in Traditional Unix Three processes created at startup time init process 1 user-mode administrative tasks (keeps getty running; shutdown) ancestor of all of your

More information

PROCESS MANAGEMENT. Operating Systems 2015 Spring by Euiseong Seo

PROCESS MANAGEMENT. Operating Systems 2015 Spring by Euiseong Seo PROCESS MANAGEMENT Operating Systems 2015 Spring by Euiseong Seo Today s Topics Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication

More information

Operating Systems. Lecture 05

Operating Systems. Lecture 05 Operating Systems Lecture 05 http://web.uettaxila.edu.pk/cms/sp2013/seosbs/ February 25, 2013 Process Scheduling, System Calls Execution (Fork,Wait,Exit,Exec), Inter- Process Communication Schedulers Long

More information

PROCESS MANAGEMENT Operating Systems Design Euiseong Seo

PROCESS MANAGEMENT Operating Systems Design Euiseong Seo PROCESS MANAGEMENT 2016 Operating Systems Design Euiseong Seo (euiseong@skku.edu) Definition A process is a program in execution Context Resources Specifically, Register file state Address space File and

More information

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017 ECE 550D Fundamentals of Computer Systems and Engineering Fall 2017 The Operating System (OS) Prof. John Board Duke University Slides are derived from work by Profs. Tyler Bletsch and Andrew Hilton (Duke)

More information

System Performance Objects and Counters

System Performance Objects and Counters APPENDIXA System Performance Objects and This appendix contains the following sections: Cisco Tomcat Connector, page A-2 Cisco Tomcat JVM, page A-3 Cisco Tomcat Web Application, page A-4 Database Change

More information

Performance Objects and Counters for the System

Performance Objects and Counters for the System APPENDIXA Performance Objects and for the System May 19, 2009 This appendix provides information on system-related objects and counters. Cisco Tomcat Connector, page 2 Cisco Tomcat JVM, page 4 Cisco Tomcat

More information

11/3/71 SYS BREAK (II)

11/3/71 SYS BREAK (II) 11/3/71 SYS BREAK (II) break -- set program break SYNOPSIS sys break; addr / break = 17. break sets the system s idea of the highest location used by the program to addr. Locations greater than addr and

More information

S E C T I O N O V E R V I E W

S E C T I O N O V E R V I E W INPUT, OUTPUT REDIRECTION, PIPING AND PROCESS CONTROL S E C T I O N O V E R V I E W In this section, we will learn about: input redirection; output redirection; piping; process control; 5.1 INPUT AND OUTPUT

More information

Processes and Threads. Processes and Threads. Processes (2) Processes (1)

Processes and Threads. Processes and Threads. Processes (2) Processes (1) Processes and Threads (Topic 2-1) 2 홍성수 Processes and Threads Question: What is a process and why is it useful? Why? With many things happening at once in a system, need some way of separating them all

More information

Unix-Linux 2. Unix is supposed to leave room in the process table for a superuser process that could be used to kill errant processes.

Unix-Linux 2. Unix is supposed to leave room in the process table for a superuser process that could be used to kill errant processes. Unix-Linux 2 fork( ) system call is successful parent suspended child created fork( ) returns child pid to parent fork( ) returns zero value to child; zero is the pid of the swapper/scheduler process both

More information

Unix Internal Assessment-2 solution. Ans:There are two ways of starting a job in the background with the shell s & operator and the nohup command.

Unix Internal Assessment-2 solution. Ans:There are two ways of starting a job in the background with the shell s & operator and the nohup command. Unix Internal Assessment-2 solution 1 a.explain the mechanism of process creation. Ans: There are three distinct phases in the creation of a process and uses three important system calls viz., fork, exec,

More information

COSC243 Part 2: Operating Systems

COSC243 Part 2: Operating Systems COSC243 Part 2: Operating Systems Lecture 16: Threads and data sharing Zhiyi Huang Dept. of Computer Science, University of Otago Zhiyi Huang (Otago) COSC243 Lecture 16 1 / 24 Overview Last lecture: Hierarchical

More information

PROCESS CONTROL BLOCK TWO-STATE MODEL (CONT D)

PROCESS CONTROL BLOCK TWO-STATE MODEL (CONT D) MANAGEMENT OF APPLICATION EXECUTION PROCESS CONTROL BLOCK Resources (processor, I/O devices, etc.) are made available to multiple applications The processor in particular is switched among multiple applications

More information

Kernel Services. System Processes in Traditional Unix. Kernel Processes in FreeBSD 5.x CIS 657. swapper. Three processes created at startup time init

Kernel Services. System Processes in Traditional Unix. Kernel Processes in FreeBSD 5.x CIS 657. swapper. Three processes created at startup time init Kernel ervices CI 657 ystem Processes in Traditional Unix Three processes created at startup time init process 1 user-mode administrative tasks (keeps getty running; shutdown) ancestor of all of your processes

More information

Improving User Accounting and Isolation with Linux Kernel Features. Brian Bockelman Condor Week 2011

Improving User Accounting and Isolation with Linux Kernel Features. Brian Bockelman Condor Week 2011 Improving User Accounting and Isolation with Linux Kernel Features Brian Bockelman Condor Week 2011 Case Study: MPD The MPICH2 library is a common implementation of the MPI interface, a popular parallel

More information

Processes in linux. What s s a process? process? A dynamically executing instance of a program. David Morgan. David Morgan

Processes in linux. What s s a process? process? A dynamically executing instance of a program. David Morgan. David Morgan Processes in linux David Morgan What s s a process? process? A dynamically executing instance of a program 1 Constituents of a process its code data various attributes OS needs to manage it OS keeps track

More information

What is a Process? Processes and Process Management Details for running a program

What is a Process? Processes and Process Management Details for running a program 1 What is a Process? Program to Process OS Structure, Processes & Process Management Don Porter Portions courtesy Emmett Witchel! A process is a program during execution. Ø Program = static file (image)

More information

APACHE TROUBLESHOOTING. Or, what to do when your vhost won t behave

APACHE TROUBLESHOOTING. Or, what to do when your vhost won t behave APACHE TROUBLESHOOTING Or, what to do when your vhost won t behave ABOUT THE CLASS 24 hours over three days Very Short Lecture and Lots of Labs Hours: 8:30am - 5:00pm Lunch: 11:45am - 1:00pm ABOUT THE

More information

CS 31: Intro to Systems Processes. Kevin Webb Swarthmore College March 31, 2016

CS 31: Intro to Systems Processes. Kevin Webb Swarthmore College March 31, 2016 CS 31: Intro to Systems Processes Kevin Webb Swarthmore College March 31, 2016 Reading Quiz Anatomy of a Process Abstraction of a running program a dynamic program in execution OS keeps track of process

More information

o Reality The CPU switches between each process rapidly (multiprogramming) Only one program is active at a given time

o Reality The CPU switches between each process rapidly (multiprogramming) Only one program is active at a given time Introduction o Processes are a key concept in operating systems Abstraction of a running program Contains all information necessary to run o On modern systems, many processes are active at the same time

More information

Each terminal window has a process group associated with it this defines the current foreground process group. Keyboard-generated signals are sent to

Each terminal window has a process group associated with it this defines the current foreground process group. Keyboard-generated signals are sent to Each terminal window has a process group associated with it this defines the current foreground process group. Keyboard-generated signals are sent to all processes in the current window s process group.

More information

11/3/71 SYS MOUNT (II) sys mount; special; name / mount = 21.; not in assembler

11/3/71 SYS MOUNT (II) sys mount; special; name / mount = 21.; not in assembler 11/3/71 SYS MOUNT (II) SYNOPSIS mount -- mount file system sys mount; special; name / mount = 21.; not in assembler mount announces to the system that a removable file system has been mounted on special

More information

Sperimentazioni I LINUX commands tutorial - Part II

Sperimentazioni I LINUX commands tutorial - Part II Sperimentazioni I LINUX commands tutorial - Part II A. Garfagnini, M. Mazzocco Università degli studi di Padova 24 Ottobre 2012 Streams and I/O Redirection Pipelines Create, monitor and kill processes

More information

Application Monitor Application (APPMON)

Application Monitor Application (APPMON) Application Monitor Application (APPMON) version 1.0 Magnus Fröberg 1997-05-02 Typeset in L A TEX from SGML source using the DOCBUILDER 3.0 Document System. Contents 1 APPMON Reference Manual 1 1.1 appmon

More information

SNMP MIBs and Traps Supported

SNMP MIBs and Traps Supported This section describes the MIBs available on your system. When you access your MIB data you will expose additional MIBs not listed in this section. The additional MIBs you expose through the process are

More information

(MCQZ-CS604 Operating Systems)

(MCQZ-CS604 Operating Systems) command to resume the execution of a suspended job in the foreground fg (Page 68) bg jobs kill commands in Linux is used to copy file is cp (Page 30) mv mkdir The process id returned to the child process

More information

Debug for GDB Users. Action Description Debug GDB $debug <program> <args> >create <program> <args>

Debug for GDB Users. Action Description Debug GDB $debug <program> <args> >create <program> <args> Page 1 of 5 Debug for GDB Users Basic Control To be useful, a debugger must be capable of basic process control. This functionally allows the user to create a debugging session and instruct the process

More information

Monitoring Agent for Unix OS Version Reference IBM

Monitoring Agent for Unix OS Version Reference IBM Monitoring Agent for Unix OS Version 6.3.5 Reference IBM Monitoring Agent for Unix OS Version 6.3.5 Reference IBM Note Before using this information and the product it supports, read the information in

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 20

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 20 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 20 LAST TIME: UNIX PROCESS MODEL Began covering the UNIX process model and API Information associated with each process: A PID (process ID) to

More information

OS Structure, Processes & Process Management. Don Porter Portions courtesy Emmett Witchel

OS Structure, Processes & Process Management. Don Porter Portions courtesy Emmett Witchel OS Structure, Processes & Process Management Don Porter Portions courtesy Emmett Witchel 1 What is a Process?! A process is a program during execution. Ø Program = static file (image) Ø Process = executing

More information

CPSC 457 OPERATING SYSTEMS MIDTERM EXAM SOLUTION

CPSC 457 OPERATING SYSTEMS MIDTERM EXAM SOLUTION CPSC 457 OPERATING SYSTEMS MIDTERM EXAM SOLUTION Department of Computer Science University of Calgary Professor: Carey Williamson October 29, 2008 This is a CLOSED BOOK exam. Textbooks, notes, laptops,

More information

Lesson 2. process id = 1000 text data i = 5 pid = 1200

Lesson 2. process id = 1000 text data i = 5 pid = 1200 Lesson 2 fork: create a new process. The new process (child process) is almost an exact copy of the calling process (parent process). In this method we create an hierarchy structure for the processes,

More information

Viewing ACE Hardware and Software Configuration Information

Viewing ACE Hardware and Software Configuration Information CHAPTER 5 Viewing ACE Hardware and Software Configuration Information This chapter describes how to view ACE hardware and software configuration information. The ACE CLI provides a comprehensive set of

More information

Introduction. This project will focus primarily on processes.

Introduction. This project will focus primarily on processes. Project 2 Processes Introduction This project will focus primarily on processes. In this project, you will become familiar with: 1. Locks for kernel-level data structures; concurrency. 2. Implementing

More information

Lustre Client GSS with Linux Keyrings

Lustre Client GSS with Linux Keyrings Lustre Client GSS with Linux Keyrings Eric Mei 2008.07.22 1 Introduction This document describes how Lustre use keyring to populate and manage the client gss context, to replace current

More information

Binghamton University. CS-220 Spring Sharing Resources. Computer Systems Chapter 8.2, 8.4

Binghamton University. CS-220 Spring Sharing Resources. Computer Systems Chapter 8.2, 8.4 Sharing Resources Computer Systems Chapter 8.2, 8.4 Abstract View When I run my program, it has access to the entire computer, including the processor, memory, keyboard, display, disk drives, network connections,

More information

Processes & Threads. Today. Next Time. ! Process concept! Process model! Implementing processes! Multiprocessing once again. ! More of the same J

Processes & Threads. Today. Next Time. ! Process concept! Process model! Implementing processes! Multiprocessing once again. ! More of the same J Processes & Threads Today! Process concept! Process model! Implementing processes! Multiprocessing once again Next Time! More of the same J The process model! Most computers can do more than one thing

More information

Fundamentals of Linux Platform Security

Fundamentals of Linux Platform Security Fundamentals of Linux Platform Security Security Training Course Dr. Charles J. Antonelli The University of Michigan 2012 Hands-On Network Security Module 1 Reconnaissance Tools Roadmap Review of generally

More information

Fundamentals of Linux Platform Security. Hands-On Network Security. Roadmap. Security Training Course. Module 1 Reconnaissance Tools

Fundamentals of Linux Platform Security. Hands-On Network Security. Roadmap. Security Training Course. Module 1 Reconnaissance Tools Fundamentals of Linux Platform Security Security Training Course Dr. Charles J. Antonelli The University of Michigan 2012 Hands-On Network Security Module 1 Reconnaissance Tools Roadmap Review of generally

More information

System performance objects and counters

System performance objects and counters System performance objects and counters This appendix contains the following sections: Cisco Tomcat Connector, page 2 Cisco Tomcat JVM, page 4 Cisco Tomcat Web Application, page 5 Database Change Notification

More information

CIT 470: Advanced Network and System Administration. Topics. What is performance testing? Performance Monitoring

CIT 470: Advanced Network and System Administration. Topics. What is performance testing? Performance Monitoring CIT 470: Advanced Network and System Administration Performance Monitoring CIT 470: Advanced Network and System Administration Slide #1 Topics 1. Performance testing 2. Performance tuning. 3. CPU 4. Memory

More information

Introduction Programmer Interface User Interface Process Management Memory Management File System I/O System Interprocess Communication

Introduction Programmer Interface User Interface Process Management Memory Management File System I/O System Interprocess Communication UNIX Introduction Programmer Interface User Interface Process Management Memory Management File System I/O System Interprocess Communication 30 Process Management How to represent a process for Process

More information

Design Overview of the FreeBSD Kernel CIS 657

Design Overview of the FreeBSD Kernel CIS 657 Design Overview of the FreeBSD Kernel CIS 657 Organization of the Kernel Machine-independent 86% of the kernel (80% in 4.4BSD) C code Machine-dependent 14% of kernel Only 0.6% of kernel in assembler (2%

More information

Lecture 5: Jobs and Processes

Lecture 5: Jobs and Processes Lecture 5: and CS2042 - UNIX Tools October 8, 2008 and Lecture Outline 1 2 Manipulating and Intro to Definition: A process is an instance of a running program. More specific than a program because it s

More information

Design Overview of the FreeBSD Kernel. Organization of the Kernel. What Code is Machine Independent?

Design Overview of the FreeBSD Kernel. Organization of the Kernel. What Code is Machine Independent? Design Overview of the FreeBSD Kernel CIS 657 Organization of the Kernel Machine-independent 86% of the kernel (80% in 4.4BSD) C C code Machine-dependent 14% of kernel Only 0.6% of kernel in assembler

More information

Operating Systems. Overview Virtual memory part 2. Page replacement algorithms. Lecture 7 Memory management 3: Virtual memory

Operating Systems. Overview Virtual memory part 2. Page replacement algorithms. Lecture 7 Memory management 3: Virtual memory Operating Systems Lecture 7 Memory management : Virtual memory Overview Virtual memory part Page replacement algorithms Frame allocation Thrashing Other considerations Memory over-allocation Efficient

More information

Mid Term from Feb-2005 to Nov 2012 CS604- Operating System

Mid Term from Feb-2005 to Nov 2012 CS604- Operating System Mid Term from Feb-2005 to Nov 2012 CS604- Operating System Latest Solved from Mid term Papers Resource Person Hina 1-The problem with priority scheduling algorithm is. Deadlock Starvation (Page# 84) Aging

More information

Process management. What s in a process? What is a process? The OS s process namespace. A process s address space (idealized)

Process management. What s in a process? What is a process? The OS s process namespace. A process s address space (idealized) Process management CSE 451: Operating Systems Spring 2012 Module 4 Processes Ed Lazowska lazowska@cs.washington.edu Allen Center 570 This module begins a series of topics on processes, threads, and synchronization

More information

Section 9: Cache, Clock Algorithm, Banker s Algorithm and Demand Paging

Section 9: Cache, Clock Algorithm, Banker s Algorithm and Demand Paging Section 9: Cache, Clock Algorithm, Banker s Algorithm and Demand Paging CS162 March 16, 2018 Contents 1 Vocabulary 2 2 Problems 3 2.1 Caching.............................................. 3 2.2 Clock Algorithm.........................................

More information

1/13/2019 Operating Systems. file:///volumes/users/rasit/desktop/comp3430/coursematerial/slides/03_processes/index.html?

1/13/2019 Operating Systems. file:///volumes/users/rasit/desktop/comp3430/coursematerial/slides/03_processes/index.html? Operating Systems COMP 3430 Eskicioglu & Guderian file:///volumes/users/rasit/desktop/comp3430/coursematerial/slides/03_processes/index.html?print-pdf#/ 1/52 1 Processes file:///volumes/users/rasit/desktop/comp3430/coursematerial/slides/03_processes/index.html?print-pdf#/

More information

Processes. Today. Next Time. ! Process concept! Process model! Implementing processes! Multiprocessing once again. ! Scheduling processes

Processes. Today. Next Time. ! Process concept! Process model! Implementing processes! Multiprocessing once again. ! Scheduling processes Processes Today! Process concept! Process model! Implementing processes! Multiprocessing once again Next Time! Scheduling processes The process model! Most computers can do more than one thing at a time

More information

THE PROCESS ABSTRACTION. CS124 Operating Systems Winter , Lecture 7

THE PROCESS ABSTRACTION. CS124 Operating Systems Winter , Lecture 7 THE PROCESS ABSTRACTION CS124 Operating Systems Winter 2015-2016, Lecture 7 2 The Process Abstraction Most modern OSes include the notion of a process Term is short for a sequential process Frequently

More information

Question No: 1 In capacity planning exercises, which tools assist in listing and identifying processes of interest? (Choose TWO correct answers.

Question No: 1 In capacity planning exercises, which tools assist in listing and identifying processes of interest? (Choose TWO correct answers. Volume: 129 Questions Question No: 1 In capacity planning exercises, which tools assist in listing and identifying processes of interest? (Choose TWO correct answers.) A. acpid B. lsof C. pstree D. telinit

More information

Simplest version of DayOfYear

Simplest version of DayOfYear Reminder from last week: Simplest version of DayOfYear class DayOfYear { public: void output(); int month; int day; }; Like a struct with an added method All parts public Clients access month, day directly

More information