Chapter 4: Multithreaded Programming Dr. Varin Chouvatut. Operating System Concepts 8 th Edition,

Size: px
Start display at page:

Download "Chapter 4: Multithreaded Programming Dr. Varin Chouvatut. Operating System Concepts 8 th Edition,"

Transcription

1 Chapter 4: Multithreaded Programming Dr. Varin Chouvatut, Silberschatz, Galvin and Gagne 2010

2 Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads 4.2 Silberschatz, Galvin and Gagne 2010

3 Objectives To introduce the notion of a thread a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems To discuss the APIs for the Pthreads, Win32, and Java thread libraries To examine issues related to multithreaded programming basis : รากฐาน, ฐานหล ก 4.3 Silberschatz, Galvin and Gagne 2010

4 In Chapter 3 assumed a process was an executing program with a single thread of control sometime called Heavyweight process (HWP) A Thread is a basic unit of CPU utilization Each Thread is composed of - thread ID - program counter - register set - stack A thread shares with other threads belonging to the same process its code section, data section, and other OS resources, such as open files and signals. * If the process has multiple threads of control, it can do more than one task at a time. 4.4 Silberschatz, Galvin and Gagne 2010

5 Single and Multithreaded Processes HWP LWP Ex. Web server using run on single-threaded process, it would be able to service only one client at a time. Ex. Word Processor using run on multithreaded processes: thread for displaying graphics, thread for reading keystrokes from user and thread for spelling and grammar checking. 4.5 Silberschatz, Galvin and Gagne 2010

6 Benefits ข อได เปร ยบของ Multithreaded programming แบ งได เป น 4 Categories : Responsiveness EX. A multithreaded web browser could allow user interaction in one thread while an image was being loaded in another thread. Resource Sharing Threads share memory & resources of the process to which they belong; it allows an application to have several different threads of activity within the same address space. Economy Because threads share resources of the process; it is more economical to create and context-switch threads. It is much more time consuming to create and manage processes than threads. Scalability The benefits of multithreading can be greatly increased in a multiprocessor architecture, where threads may be running in parallel on different processors. 4.6 Silberschatz, Galvin and Gagne 2010

7 Multithreaded Server Architecture Example of Web server listening for many client request 4.7 Silberschatz, Galvin and Gagne 2010

8 Multicore Programming Multicore systems have placed pressure on programmers, challenges in programming include Dividing activities Balance Data splitting Data dependency Testing and debugging 4.8 Silberschatz, Galvin and Gagne 2010

9 Concurrent Execution on a Single-core System 4.9 Silberschatz, Galvin and Gagne 2010

10 Parallel Execution on a Multicore System 4.10 Silberschatz, Galvin and Gagne 2010

11 User Threads Support for threads is provided at the user level. User threads are supported above the kernel and are managed without kernel support. Thread management is done by the thread library (of user-level) in user space. Library supports for thread creation, scheduling & management with no support from the kernel. Fast to create and manage Three primary thread libraries in use today: POSIX Pthreads Win32 Threads Java Threads 4.11 Silberschatz, Galvin and Gagne 2010

12 Kernel Threads Support for threads is provided by the Kernel. Thread creation, scheduling & management is done by the kernel-level library in kernel space. Kernel threads are supported and managed directly by the OS; the kernel threads are generally slower to create and manage than user threads. In a multiprocessor environment, the kernel can schedule threads on different processors. Examples of contemporary OS s which support kernel threads: Windows XP/2000 Solaris Linux Tru64 UNIX (formerly Digital UNIX) Mac OS X 4.12 Silberschatz, Galvin and Gagne 2010

13 Multithreading Models Many systems provide support for both user and kernel threads. Many-to-One Model 3 common types of multithreading models : One-to-One Model Many-to-Many Model 4.13 Silberschatz, Galvin and Gagne 2010

14 Many-to-One Many user-level threads are mapped to a single kernel thread Examples: Solaris s Green Threads GNU Portable Threads 4.14 Silberschatz, Galvin and Gagne 2010

15 Many-to-One Model - Only one thread can access the kernel at a time 4.15 Silberschatz, Galvin and Gagne 2010

16 One-to-One Each user thread are mapped to a kernel thread Provide more concurrency than the many-to-one model by allowing another thread to run when a thread makes a blocking system call. Allow multiple threads to run in parallel on multiprocessors Examples Windows NT/XP/2000 Linux Solaris 9 and later 4.16 Silberschatz, Galvin and Gagne 2010

17 One-to-one Model 4.17 Silberschatz, Galvin and Gagne 2010

18 Many-to-Many Model Allows many user-level threads to be multiplexed to a smaller or equal number of kernel threads Allows the operating system to create a sufficient number of kernel threads Solaris prior to version 9 Windows NT/2000 with the ThreadFiber package 4.18 Silberschatz, Galvin and Gagne 2010

19 Many-to-Many Model 4.19 Silberschatz, Galvin and Gagne 2010

20 Two-level Model Similar to M:M, except that it also allows a user thread to be bound to a kernel thread Examples of OS s support the two-level model: IRIX HP-UX Tru64 UNIX Solaris 8 and earlier M:M ค อ Many-to-Many model 4.20 Silberschatz, Galvin and Gagne 2010

21 Two-level Model 4.21 Silberschatz, Galvin and Gagne 2010

22 Thread Libraries Thread library provides programmer with an API for creating and managing threads Two primary ways of implementing a thread library: A library entirely in user space with no kernel support. A kernel-level library supported by the OS. As mentioned, three main thread libraries are in use today are POSIX Pthreads Win32 Java 4.22 Silberschatz, Galvin and Gagne 2010

23 Pthreads May be provided as either a user-level or a kernel-level library Pthreads refers to the POSIX standard (IEEE c) defining an API for thread creation and synchronization API specifies behavior of the thread library, implementation is up to development of the library Common in UNIX operating systems (Solaris, Linux, Mac OS X, Tru64 UNIX) 4.23 Silberschatz, Galvin and Gagne 2010

24 Java Threads Java threads are managed by the JVM Typically implemented using the threads model provided by underlying OS Java threads may be created by: Extending the Thread class Implementing the Runnable interface 4.24 Silberschatz, Galvin and Gagne 2010

25 Threading Issues Semantics of fork() and exec() system calls Thread cancellation of target thread Asynchronous or deferred Signal handling Thread pools Thread-specific data Scheduler activations 4.25 Silberschatz, Galvin and Gagne 2010

26 Semantics of fork() and exec() Does fork() (or exec()) duplicate only the calling thread or all threads in a multithreaded program? 4.26 Silberschatz, Galvin and Gagne 2010

27 Thread Cancellation Terminating a thread before it has finished A thread that is to be canceled is often referred to as the target thread. Two general approaches: Asynchronous cancellation terminates the target thread immediately 1 thread terminates the target thread Deferred cancellation allows the target thread to periodically check if it should be cancelled target thread can periodically check if it should terminate the thread can terminate itself in an orderly fashion immediately: ท นท ท นใด 4.27 Silberschatz, Galvin and Gagne 2010

28 Signal Handling Signals are used in UNIX systems to notify a process that a particular event has occurred A signal handler is used to handle the signals 1. Signal is generated by the occurrence of a particular event 2. Signal is delivered to a process (after it is generated) 3. Signal must be handled, once it is delivered Options of signal delivery in multithreaded programs: Deliver the signal to the thread to which the signal applies Deliver the signal to every thread in the process Deliver the signal to certain threads in the process Assign a specific thread to receive all signals for the process 4.28 Silberschatz, Galvin and Gagne 2010

29 Thread Pools Create a number of threads in a pool where they await work Advantages: Usually slightly faster to service a request with an existing thread than to create a new thread Allows the limited number of threads in the application(s) to be bound to the size of the pool 4.29 Silberschatz, Galvin and Gagne 2010

30 Thread-Specific Data Allows each thread to have its own copy of data Useful when you do not have control over the thread creation process (i.e., when using a thread pool) 4.30 Silberschatz, Galvin and Gagne 2010

31 Scheduler Activations Both M:M and Two-level models require communication to maintain the appropriate number of kernel threads allocated to the application Scheduler activations provide upcall(s) - a communication mechanism from the kernel to the user-thread library For kernel to inform an application about certain events. This communication allows an application to maintain the correct number kernel threads 4.31 Silberschatz, Galvin and Gagne 2010

32 Operating-System Examples Windows XP Threads Linux Thread 4.32 Silberschatz, Galvin and Gagne 2010

33 Windows XP Threads Windows XP implements the one-to-one mapping, kernel-level library (Win32 API) Each thread contains A thread ID A register set A user stack and a kernel stack A private storage area The register set, stacks, and private storage area are known as the context of the threads The primary data structures of a thread include: ETHREAD (executive thread block) KTHREAD (kernel thread block) TEB (thread environment block) 4.33 Silberschatz, Galvin and Gagne 2010

34 Windows XP Threads 4.34 Silberschatz, Galvin and Gagne 2010

35 Linux Threads Linux refers to the term task(s) rather than thread(s) when referring to a flow of control within a program Thread creation is done through clone() system call clone() allows a child task to share the address space of the parent task (process) 4.35 Silberschatz, Galvin and Gagne 2010

36 Linux Threads 4.36 Silberschatz, Galvin and Gagne 2010

37 End of Chapter 4, Silberschatz, Galvin and Gagne 2010

Chapter 4: Threads. Chapter 4: Threads

Chapter 4: Threads. Chapter 4: Threads Chapter 4: Threads Silberschatz, Galvin and Gagne 2009 Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads 4.2

More information

Chapter 4: Multithreaded Programming. Operating System Concepts 8 th Edition,

Chapter 4: Multithreaded Programming. Operating System Concepts 8 th Edition, Chapter 4: Multithreaded Programming, Silberschatz, Galvin and Gagne 2009 Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading Issues 4.2 Silberschatz, Galvin

More information

Chapter 4: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads. Operating System Concepts

Chapter 4: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads. Operating System Concepts Chapter 4: Threads Chapter 4: Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads 4.2 Silberschatz, Galvin and Gagne 2005 Single and Multithreaded

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Chapter 4: Threads. Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads

Chapter 4: Threads. Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads Chapter 4: Threads Objectives To introduce the notion of a

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 4: MULTITHREADED PROGRAMMING

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 4: MULTITHREADED PROGRAMMING I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 4: MULTITHREADED PROGRAMMING Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading

More information

Chapter 4: Multithreaded

Chapter 4: Multithreaded Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading Issues Operating-System Examples 2009/10/19 2 4.1 Overview A thread is

More information

Chapter 4: Multi-Threaded Programming

Chapter 4: Multi-Threaded Programming Chapter 4: Multi-Threaded Programming Chapter 4: Threads 4.1 Overview 4.2 Multicore Programming 4.3 Multithreading Models 4.4 Thread Libraries Pthreads Win32 Threads Java Threads 4.5 Implicit Threading

More information

OPERATING SYSTEM. Chapter 4: Threads

OPERATING SYSTEM. Chapter 4: Threads OPERATING SYSTEM Chapter 4: Threads Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples Objectives To

More information

Chapter 4: Threads. Chapter 4: Threads

Chapter 4: Threads. Chapter 4: Threads Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

Chapter 4: Threads. Operating System Concepts. Silberschatz, Galvin and Gagne

Chapter 4: Threads. Operating System Concepts. Silberschatz, Galvin and Gagne Chapter 4: Threads Silberschatz, Galvin and Gagne Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Linux Threads 4.2 Silberschatz, Galvin and

More information

CS 450 Operating System Week 4 Lecture Notes

CS 450 Operating System Week 4 Lecture Notes CS 450 Operating System Week 4 Lecture Notes Reading: Operating System Concepts (7 th Edition) - Silberschatz, Galvin, Gagne Chapter 5 - Pages 129 147 Objectives: 1. Explain the main Objective of Threads

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Silberschatz, Galvin and Gagne 2013! Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Threading Issues Operating System Examples

More information

Chapter 4: Threads. Chapter 4: Threads. Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues

Chapter 4: Threads. Chapter 4: Threads. Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues 4.2 Silberschatz, Galvin

More information

Chapter 5: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads

Chapter 5: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads 5.1 Silberschatz, Galvin and Gagne 2003 More About Processes A process encapsulates

More information

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012 Eike Ritter 1 Modified: October 16, 2012 Lecture 8: Operating Systems with C/C++ School of Computer Science, University of Birmingham, UK 1 Based on material by Matt Smart and Nick Blundell Outline 1 Concurrent

More information

Chapter 4: Threads. Operating System Concepts 9 th Edit9on

Chapter 4: Threads. Operating System Concepts 9 th Edit9on Chapter 4: Threads Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads 1. Overview 2. Multicore Programming 3. Multithreading Models 4. Thread Libraries 5. Implicit

More information

Chapter 4: Threads. Operating System Concepts 9 th Edition

Chapter 4: Threads. Operating System Concepts 9 th Edition Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

Operating Systems 2 nd semester 2016/2017. Chapter 4: Threads

Operating Systems 2 nd semester 2016/2017. Chapter 4: Threads Operating Systems 2 nd semester 2016/2017 Chapter 4: Threads Mohamed B. Abubaker Palestine Technical College Deir El-Balah Note: Adapted from the resources of textbox Operating System Concepts, 9 th edition

More information

Chapter 4: Threads. Operating System Concepts 9 th Edition

Chapter 4: Threads. Operating System Concepts 9 th Edition Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Silberschatz, Galvin and Gagne 2013 Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading

More information

CSE 4/521 Introduction to Operating Systems

CSE 4/521 Introduction to Operating Systems CSE 4/521 Introduction to Operating Systems Lecture 5 Threads (Overview, Multicore Programming, Multithreading Models, Thread Libraries, Implicit Threading, Operating- System Examples) Summer 2018 Overview

More information

Chapter 4: Threads. Operating System Concepts with Java 8 th Edition

Chapter 4: Threads. Operating System Concepts with Java 8 th Edition Chapter 4: Threads 14.1 Silberschatz, Galvin and Gagne 2009 Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples 14.2 Silberschatz, Galvin and Gagne

More information

Threads. What is a thread? Motivation. Single and Multithreaded Processes. Benefits

Threads. What is a thread? Motivation. Single and Multithreaded Processes. Benefits CS307 What is a thread? Threads A thread is a basic unit of CPU utilization contains a thread ID, a program counter, a register set, and a stack shares with other threads belonging to the same process

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Threading Issues Operating System Examples Objectives To introduce the notion

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Threading Issues Operating System Examples Objectives To introduce the notion

More information

Chapter 4 Multithreaded Programming

Chapter 4 Multithreaded Programming Chapter 4 Multithreaded Programming Da-Wei Chang CSIE.NCKU Source: Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, "Operating System Concepts", 9th Edition, Wiley. 1 1 Outline Overview Multithreading

More information

Chapter 4: Threads. Operating System Concepts 8 th Edition,

Chapter 4: Threads. Operating System Concepts 8 th Edition, Chapter 4: Threads, Silberschatz, Galvin and Gagne 2009 Chapter 4: Threads Overview Multithreading Models Thread Libraries 4.2 Silberschatz, Galvin and Gagne 2009 Objectives To introduce the notion of

More information

CS420: Operating Systems

CS420: Operating Systems Threads James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Threads A thread is a basic unit of processing

More information

Multithreaded Programming

Multithreaded Programming Multithreaded Programming The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. September 4, 2014 Topics Overview

More information

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture)

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) Dept. of Computer Science & Engineering Chentao Wu wuct@cs.sjtu.edu.cn Download lectures ftp://public.sjtu.edu.cn User:

More information

Chapter 5: Processes & Process Concept. Objectives. Process Concept Process Scheduling Operations on Processes. Communication in Client-Server Systems

Chapter 5: Processes & Process Concept. Objectives. Process Concept Process Scheduling Operations on Processes. Communication in Client-Server Systems Chapter 5: Processes Chapter 5: Processes & Threads Process Concept Process Scheduling Operations on Processes Interprocess Communication Communication in Client-Server Systems, Silberschatz, Galvin and

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University 1. Introduction 2. System Structures 3. Process Concept 4. Multithreaded Programming

More information

Chapter 5: Threads. Single and Multithreaded Processes

Chapter 5: Threads. Single and Multithreaded Processes Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads Chapter 5: Threads 5.1 Silberschatz, Galvin and Gagne 2003 Single and Multithreaded Processes 5.2

More information

CSCE 313: Intro to Computer Systems

CSCE 313: Intro to Computer Systems CSCE 313 Introduction to Computer Systems Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce313/ Programs, Processes, and Threads Programs and Processes Threads 1 Programs, Processes, and

More information

Operating Systems Prof. Ashok K Agrawala

Operating Systems Prof. Ashok K Agrawala CSMC 412 Operating Systems Prof. Ashok K Agrawala 2005 Ashok Agrawala Set 4 4.1 Silberschatz, Galvin and Gagne 2005 Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux

More information

CSCE 313 Introduction to Computer Systems. Instructor: Dezhen Song

CSCE 313 Introduction to Computer Systems. Instructor: Dezhen Song CSCE 313 Introduction to Computer Systems Instructor: Dezhen Song Programs, Processes, and Threads Programs and Processes Threads Programs, Processes, and Threads Programs and Processes Threads Processes

More information

Lecture 4 Threads. (chapter 4)

Lecture 4 Threads. (chapter 4) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 4 Threads (chapter 4) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The slides here are adapted/modified

More information

Chapter 3: Processes. Operating System Concepts 8th Edition

Chapter 3: Processes. Operating System Concepts 8th Edition Chapter 3: Processes Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication in Client-Server Systems 3.2 Objectives

More information

Processes and Threads

Processes and Threads TDDI04 Concurrent Programming, Operating Systems, and Real-time Operating Systems Processes and Threads [SGG7] Chapters 3 and 4 Copyright Notice: The lecture notes are mainly based on Silberschatz s, Galvin

More information

COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 4: Threads. Zhi Wang Florida State University

COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 4: Threads. Zhi Wang Florida State University COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 4: Threads Zhi Wang Florida State University Contents Thread overview Multithreading models Thread libraries Threading issues Operating

More information

Chapter 5: Threads. Outline

Chapter 5: Threads. Outline Department of Electr rical Eng ineering, Chapter 5: Threads 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Feng-Chia Unive ersity Outline Overview Multithreading Models Threading Issues 2 Depar

More information

Processes and Threads

Processes and Threads Processes and Threads Giuseppe Anastasi g.anastasi@iet.unipi.it Pervasive Computing & Networking Lab. () Dept. of Information Engineering, University of Pisa Based on original slides by Silberschatz, Galvin

More information

CISC2200 Threads Spring 2015

CISC2200 Threads Spring 2015 CISC2200 Threads Spring 2015 Process We learn the concept of process A program in execution A process owns some resources A process executes a program => execution state, PC, We learn that bash creates

More information

Semantics of fork() and exec()

Semantics of fork() and exec() Threads Week 3.2 Threading Issues Semantics of fork() and exec() system calls Signal handling Synchronous and asynchronous Thread cancellation of target thread Asynchronous or deferred Thread-local storage

More information

CSMC 412. Operating Systems Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 2006 CMSC 412 Set 4

CSMC 412. Operating Systems Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 2006 CMSC 412 Set 4 CSMC 412 Operating Systems Prof. Ashok K Agrawala 2005 Ashok Agrawala Set 4 1 Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads 2 Single and

More information

CS420: Operating Systems

CS420: Operating Systems Threading Issues James Moscola Department of Engineering & Computer Science York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Threading Issues

More information

Process Description and Control

Process Description and Control Process Description and Control 1 Process:the concept Process = a program in execution Example processes: OS kernel OS shell Program executing after compilation www-browser Process management by OS : Allocate

More information

Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2

Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Lecture 3: Processes Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Process in General 3.3 Process Concept Process is an active program in execution; process

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto Slides based on the book Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter B. Galvin and Greg Gagne,

More information

Definition Multithreading Models Threading Issues Pthreads (Unix)

Definition Multithreading Models Threading Issues Pthreads (Unix) Chapter 4: Threads Definition Multithreading Models Threading Issues Pthreads (Unix) Solaris 2 Threads Windows 2000 Threads Linux Threads Java Threads 1 Thread A Unix process (heavy-weight process HWP)

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 7 Threads Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How many processes can a core

More information

Threads. CS3026 Operating Systems Lecture 06

Threads. CS3026 Operating Systems Lecture 06 Threads CS3026 Operating Systems Lecture 06 Multithreading Multithreading is the ability of an operating system to support multiple threads of execution within a single process Processes have at least

More information

Threads. Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows. 2/13/11 CSE325 - Threads 1

Threads. Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows. 2/13/11 CSE325 - Threads 1 Threads Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows 2/13/11 CSE325 - Threads 1 Threads The process concept incorporates two abstractions: a virtual

More information

Lecture 2 Process Management

Lecture 2 Process Management Lecture 2 Process Management Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks The terms job and process may be interchangeable

More information

Process Concept Process in Memory Process State new running waiting ready terminated Diagram of Process State

Process Concept Process in Memory Process State new running waiting ready terminated Diagram of Process State Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks Textbook uses the terms job and process almost interchangeably Process a

More information

COP 4610: Introduction to Operating Systems (Fall 2016) Chapter 4: Threads. Zhi Wang Florida State University

COP 4610: Introduction to Operating Systems (Fall 2016) Chapter 4: Threads. Zhi Wang Florida State University COP 4610: Introduction to Operating Systems (Fall 2016) Chapter 4: Threads Zhi Wang Florida State University Contents Thread overview Multithreading models Thread libraries Threading issues Operating system

More information

Chapter 4: Threads. Operating System Concepts 9 th Edition

Chapter 4: Threads. Operating System Concepts 9 th Edition Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Objectives To introduce the notion of a thread a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems To discuss

More information

Threads. CS-3013 Operating Systems Hugh C. Lauer. CS-3013, C-Term 2012 Threads 1

Threads. CS-3013 Operating Systems Hugh C. Lauer. CS-3013, C-Term 2012 Threads 1 Threads CS-3013 Operating Systems Hugh C. Lauer (Slides include materials from Slides include materials from Modern Operating Systems, 3 rd ed., by Andrew Tanenbaum and from Operating System Concepts,

More information

CSE Opera,ng System Principles

CSE Opera,ng System Principles CSE 30341 Opera,ng System Principles Lecture 5 Processes / Threads Recap Processes What is a process? What is in a process control bloc? Contrast stac, heap, data, text. What are process states? Which

More information

Exercise (could be a quiz) Solution. Concurrent Programming. Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - IV Threads

Exercise (could be a quiz) Solution. Concurrent Programming. Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - IV Threads Exercise (could be a quiz) 1 2 Solution CSE 421/521 - Operating Systems Fall 2013 Lecture - IV Threads Tevfik Koşar 3 University at Buffalo September 12 th, 2013 4 Roadmap Threads Why do we need them?

More information

Multithreading. Reading: Silberschatz chapter 5 Additional Reading: Stallings chapter 4

Multithreading. Reading: Silberschatz chapter 5 Additional Reading: Stallings chapter 4 Multithreading Reading: Silberschatz chapter 5 Additional Reading: Stallings chapter 4 Understanding Linux/Unix Programming, Bruce Molay, Prentice-Hall, 2003. EEL 602 1 Outline Process and Threads Multithreading

More information

4.8 Summary. Practice Exercises

4.8 Summary. Practice Exercises Practice Exercises 191 structures of the parent process. A new task is also created when the clone() system call is made. However, rather than copying all data structures, the new task points to the data

More information

Thread. Operating Systems (Fall/Winter 2018) Yajin Zhou ( Zhejiang University

Thread. Operating Systems (Fall/Winter 2018) Yajin Zhou (  Zhejiang University Operating Systems (Fall/Winter 2018) Thread Yajin Zhou (http://yajin.org) Zhejiang University Acknowledgement: some pages are based on the slides from Zhi Wang(fsu). Review Process Multiple parts: text,

More information

Thread Concept. Thread. No. 3. Multiple single-threaded Process. One single-threaded Process. Process vs. Thread. One multi-threaded Process

Thread Concept. Thread. No. 3. Multiple single-threaded Process. One single-threaded Process. Process vs. Thread. One multi-threaded Process EECS 3221 Operating System Fundamentals What is thread? Thread Concept No. 3 Thread Difference between a process and a thread Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University

More information

CS Lecture 3! Threads! George Mason University! Spring 2010!

CS Lecture 3! Threads! George Mason University! Spring 2010! CS 571 - Lecture 3! Threads! George Mason University! Spring 2010! Threads! Overview! Multithreading! Example Applications! User-level Threads! Kernel-level Threads! Hybrid Implementation! Observing Threads!

More information

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful?

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads!! How is a thread different from a process?!! Why are threads useful?!! How can OSIX threads be useful?!! What are user-level and kernel-level

More information

Last Class: CPU Scheduling. Pre-emptive versus non-preemptive schedulers Goals for Scheduling: CS377: Operating Systems.

Last Class: CPU Scheduling. Pre-emptive versus non-preemptive schedulers Goals for Scheduling: CS377: Operating Systems. Last Class: CPU Scheduling Pre-emptive versus non-preemptive schedulers Goals for Scheduling: Minimize average response time Maximize throughput Share CPU equally Other goals? Scheduling Algorithms: Selecting

More information

Yi Shi Fall 2017 Xi an Jiaotong University

Yi Shi Fall 2017 Xi an Jiaotong University Threads Yi Shi Fall 2017 Xi an Jiaotong University Goals for Today Case for Threads Thread details Case for Parallelism main() read_data() for(all data) compute(); write_data(); endfor main() read_data()

More information

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful?

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads! How is a thread different from a process?! Why are threads useful?! How can OSIX threads be useful?! What are user-level and kernel-level

More information

Preview. The Thread Model Motivation of Threads Benefits of Threads Implementation of Thread

Preview. The Thread Model Motivation of Threads Benefits of Threads Implementation of Thread Preview The Thread Model Motivation of Threads Benefits of Threads Implementation of Thread Implement thread in User s Mode Implement thread in Kernel s Mode CS 431 Operating System 1 The Thread Model

More information

TDIU25: Operating Systems II. Processes, Threads and Scheduling

TDIU25: Operating Systems II. Processes, Threads and Scheduling TDIU25: Operating Systems II. Processes, Threads and Scheduling SGG9: 3.1-3.3, 4.1-4.3, 5.1-5.4 o Process concept: context switch, scheduling queues, creation o Multithreaded programming o Process scheduling

More information

Motivation. Threads. Multithreaded Server Architecture. Thread of execution. Chapter 4

Motivation. Threads. Multithreaded Server Architecture. Thread of execution. Chapter 4 Motivation Threads Chapter 4 Most modern applications are multithreaded Threads run within application Multiple tasks with the application can be implemented by separate Update display Fetch data Spell

More information

ICS Principles of Operating Systems

ICS Principles of Operating Systems ICS 143 - Principles of Operating Systems Lectures 3 and 4 - Processes and Threads Prof. Nalini Venkatasubramanian nalini@ics.uci.edu Some slides adapted from http://www-inst.eecs.berkeley.edu/~cs162/

More information

Threads Implementation. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Threads Implementation. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Threads Implementation Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics How to implement threads? User-level threads Kernel-level

More information

Lecture 5: Process Description and Control Multithreading Basics in Interprocess communication Introduction to multiprocessors

Lecture 5: Process Description and Control Multithreading Basics in Interprocess communication Introduction to multiprocessors Lecture 5: Process Description and Control Multithreading Basics in Interprocess communication Introduction to multiprocessors 1 Process:the concept Process = a program in execution Example processes:

More information

Page 1. Analogy: Problems: Operating Systems Lecture 7. Operating Systems Lecture 7

Page 1. Analogy: Problems: Operating Systems Lecture 7. Operating Systems Lecture 7 Os-slide#1 /*Sequential Producer & Consumer*/ int i=0; repeat forever Gather material for item i; Produce item i; Use item i; Discard item i; I=I+1; end repeat Analogy: Manufacturing and distribution Print

More information

THREADS. Jo, Heeseung

THREADS. Jo, Heeseung THREADS Jo, Heeseung TODAY'S TOPICS Why threads? Threading issues 2 PROCESSES Heavy-weight A process includes many things: - An address space (all the code and data pages) - OS resources (e.g., open files)

More information

CHAPTER 2: PROCESS MANAGEMENT

CHAPTER 2: PROCESS MANAGEMENT 1 CHAPTER 2: PROCESS MANAGEMENT Slides by: Ms. Shree Jaswal TOPICS TO BE COVERED Process description: Process, Process States, Process Control Block (PCB), Threads, Thread management. Process Scheduling:

More information

Lecture Contents. 1. Overview. 2. Multithreading Models 3. Examples of Thread Libraries 4. Summary

Lecture Contents. 1. Overview. 2. Multithreading Models 3. Examples of Thread Libraries 4. Summary Lecture 4 Threads 1 Lecture Contents 1. Overview 2. Multithreading Models 3. Examples of Thread Libraries 4. Summary 2 1. Overview Process is the unit of resource allocation and unit of protection. Thread

More information

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009 CS211: Programming and Operating Systems Lecture 17: Threads and Scheduling Thursday, 05 Nov 2009 CS211 Lecture 17: Threads and Scheduling 1/22 Today 1 Introduction to threads Advantages of threads 2 User

More information

Concurrency, Thread. Dongkun Shin, SKKU

Concurrency, Thread. Dongkun Shin, SKKU Concurrency, Thread 1 Thread Classic view a single point of execution within a program a single PC where instructions are being fetched from and executed), Multi-threaded program Has more than one point

More information

Agenda. Threads. Single and Multi-threaded Processes. What is Thread. CSCI 444/544 Operating Systems Fall 2008

Agenda. Threads. Single and Multi-threaded Processes. What is Thread. CSCI 444/544 Operating Systems Fall 2008 Agenda Threads CSCI 444/544 Operating Systems Fall 2008 Thread concept Thread vs process Thread implementation - user-level - kernel-level - hybrid Inter-process (inter-thread) communication What is Thread

More information

Questions from last time

Questions from last time Questions from last time Pthreads vs regular thread? Pthreads are POSIX-standard threads (1995). There exist earlier and newer standards (C++11). Pthread is probably most common. Pthread API: about a 100

More information

Chapter 3: Process Concept

Chapter 3: Process Concept Chapter 3: Process Concept By Worawut Srisukkham Updated By Dr. Varin Chouvatut, Silberschatz, Galvin and Gagne 2010 Chapter 3: Process-Concept Process Concept Process Scheduling Operations on Processes

More information

4. Concurrency via Threads

4. Concurrency via Threads CSC400 - Operating Systems 4. Concurrency via Threads J. Sumey Overview Multithreading Concept Background Implementations Thread States & Thread Switching Thread Operations Case Study: pthreads CSC400

More information

Threads. Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1

Threads. Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1 Threads Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1 Single and Multithreaded Processes Thread specific Data (TSD) Code 3/9/2003 B.Ramamurthy 2 User Threads

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2019 Lecture 6 Processes Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Fork( ) causes a branch

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University Threads Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Why threads? Threading issues 2 Processes Heavy-weight A process includes

More information

Threads Assistant Professor DCS Operating System Concepts

Threads Assistant Professor DCS Operating System Concepts Threads Rab Nawaz Jadoon DCS COMSATS Institute of Information Technology Assistant Professor COMSATS Lahore Pakistan Operating System Concepts Definitions Threads In the previous discussion, a process

More information

Chapter 3 Process Description and Control

Chapter 3 Process Description and Control Operating Systems: Internals and Design Principles Chapter 3 Process Description and Control Seventh Edition By William Stallings Process Control Block Structure of Process Images in Virtual Memory How

More information

Distributed Systems Operation System Support

Distributed Systems Operation System Support Hajussüsteemid MTAT.08.009 Distributed Systems Operation System Support slides are adopted from: lecture: Operating System(OS) support (years 2016, 2017) book: Distributed Systems: Concepts and Design,

More information

操作系统原理与设计. 第 4 章 Threads( 线程 ) 陈香兰. March 28, 2014 中国科学技术大学计算机学院. 陈香兰 ( 中国科学技术大学计算机学院 ) 操作系统原理与设计 March 28, /

操作系统原理与设计. 第 4 章 Threads( 线程 ) 陈香兰. March 28, 2014 中国科学技术大学计算机学院. 陈香兰 ( 中国科学技术大学计算机学院 ) 操作系统原理与设计 March 28, / 操作系统原理与设计 第 4 章 Threads( 线程 ) 陈香兰 中国科学技术大学计算机学院 March 28, 2014 陈香兰 ( 中国科学技术大学计算机学院 ) 操作系统原理与设计 March 28, 2014 1 / 44 提纲 1 Overview 2 Multithreading Models 3 Thread Libraries 4 Threading Issues 5 OS Examples

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 8 Threads and Scheduling Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How many threads

More information

Processes & Threads. Recap of the Last Class. Microkernel System Architecture. Layered Structure

Processes & Threads. Recap of the Last Class. Microkernel System Architecture. Layered Structure Recap of the Last Class Processes & Threads CS 256/456 Dept. of Computer Science, University of Rochester Hardware protection kernel and user mode System components process management, memory management,

More information

Lecture Topics. Announcements. Today: Threads (Stallings, chapter , 4.6) Next: Concurrency (Stallings, chapter , 5.

Lecture Topics. Announcements. Today: Threads (Stallings, chapter , 4.6) Next: Concurrency (Stallings, chapter , 5. Lecture Topics Today: Threads (Stallings, chapter 4.1-4.3, 4.6) Next: Concurrency (Stallings, chapter 5.1-5.4, 5.7) 1 Announcements Make tutorial Self-Study Exercise #4 Project #2 (due 9/20) Project #3

More information

Part V. Process Management. Sadeghi, Cubaleska RUB Course Operating System Security Memory Management and Protection

Part V. Process Management. Sadeghi, Cubaleska RUB Course Operating System Security Memory Management and Protection Part V Process Management Sadeghi, Cubaleska RUB 2008-09 Course Operating System Security Memory Management and Protection Roadmap of Chapter 5 Notion of Process and Thread Data Structures Used to Manage

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 8 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How many partners can we cave for project:

More information

Threads. studykorner.org

Threads. studykorner.org Threads Thread Subpart of a process Basic unit of CPU utilization Smallest set of programmed instructions, can be managed independently by OS No independent existence (process dependent) Light Weight Process

More information

Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation. What s in a process? Organizing a Process

Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation. What s in a process? Organizing a Process Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation Why are threads useful? How does one use POSIX pthreads? Michael Swift 1 2 What s in a process? Organizing a Process A process

More information