Automated Tagging for Online Q&A Forums

Size: px
Start display at page:

Download "Automated Tagging for Online Q&A Forums"

Transcription

1 1 Automated Tagging for Online Q&A Forums Rajat Sharma, Nitin Kalra, Gautam Nagpal University of California, San Diego, La Jolla, CA 92093, USA {ras043, nikalra, Abstract Hashtags created by users of online content websites such as Facebook, Twitter, StackExchange, Quora, etc. provide us a great way to explore trending content, discover new content as well as explore content of our interests. With tremendous increase in the size of content on these online websites, these tags are becoming increasingly important. Datasets from these websites can be explored to understand how hashtags for a particular post are chosen and how they relate to the interests of a user. In this paper, we explore the StackOverflow dataset, and develop a system for content tag prediction by modelling it as a multi-label classification problem. Keywords Prediction, Tags, Multi-label, classification, Data Mining I. INTRODUCTION We are living in the era of Hashtags, where tagging of online content is widespread. These tags allow for easy discovery of content. Some examples of such human based content tagging include Hashtags on Facebook and Twitter, tags on Quora, StackExchange and blog posts, etc. This exponential increase in content tagging in recent years calls for the need of understanding the underlying process by which certain post gets a set of associated tags. Understanding such process could lead to building an efficient predictive system which could suggest tags for posts based on the content. Such a predictive system could be a very useful feature for users of these online content websites. Another potential benefit could be to have a tag correction system based on such a tag prediction system, which could clear incorrectly labeled tags on a post. These benefits motivate us to understand what goes into choosing a set of tags for an online post and do some predictive analysis for the same. We have built a tag prediction system for the Stack Overflow Questions. We chose the Stack Overflow dataset primarily because it has large number of posts and corresponding tags and we found the features present in the data to be good for building a tag prediction system. In addition, Stack Overflow imposes a limit of five tags per question, which results in the tags being highly related to the post and hence, leading to better predictive analysis. Moreover, StackExchange - the parent company of Stack Overflow - regularly makes this data available online, which will facilitate further analysis. II. RELATED WORK The task of predicting content tags has been studied by a few researchers previously. Kuo, 2011 proposed a model where content tags are predicted based on the words in the post and their relation to the tags. [3] The model, which was originally built for next word prediction in documents, was able to perform well when adapted for Stack Overflow dataset by limiting the nextword prediction to tags only. This co-occurrence based model exploits the very important feature responsible for the tags, that is, the post s content itself. Stanley & Byrne, 2013 have also explored this problem and presented a model based on a variation of declarative memory retrieval theory of ACT-R cognitive architecture (Anderson et al., 2004) to predict associated tags for posts on StackOverflow.[5][6] Similar work has been done by Xia & Lo, 2013 who have proposed a multi-component tag prediction model based on multi-label learning problem, similarity based ranking as well as tag-term based ranking to predict the tags of posts of software information sites.[4] These models provide us with a good starting point for building a predictive system for Stack Overflow Questions. III. DATA SET We use the dataset from 10% of Stack Overflow Q&A provided on Kaggle.[1] The dataset contains 1,264,217 Stack Overflow questions, each consisting of the following fields: question-id owner-id creation date score title text HTML markup of body The corresponding Tags dataset contains tags for each of the questions which can be fetched using the question-id.

2 2 A. Exploratory Analysis The dataset contains 37,036 unique tags. Figure 1 shows the distribution of the tag occurrences for 1000 most frequent tags. From the plot we inferred that the 20 most frequent tags account for approximately 67% of the question data. Figure 2 shows those top 20 tags plotted with their corresponding frequency. Since working with such a huge dataset can be computationally intensive we filtered our dataset to only contain questions tagged with the 500 most frequent tags. This led to a reduced dataset of size 486,209. Table 1 shows some of the statistics of the filtered data and Fig 3 shows the distribution of number of tags per question. From the figure we can infer that after filtering most of the questions contain either two or three tags. TABLE I: STATISTICS OF FILTERED DATA Fig. 2: Number of occurrences for 20 most frequent tags Number of questions 486,209 Number of unique tags 500 Total occurrences of tags 2,510,762 Average number of tags per question 2.4 Finally, we shuffled and partitioned the filtered dataset into training (60% - 291,726), validation (15% - 72,930) and test sets(25% - 121,553). Fig. 3: Distribution of Number of Tags per question in the filtered data Fig. 1: Number of occurrences for 1000 most frequent tags We then analyzed the data by pivoting on unique users and their history. Figure 4 shows the distribution of number of questions posted by top unique users. Analysis showed that more than 85% of the users posted less than 3 questions. IV. PREDICTIVE TASK The primary predictive task for this dataset is to predict the tags based on the content of a question. Earlier we inferred that most of the questions have either two or three tags and a maximum of five tags are possible per question. Thus, the final predictive task can be defined as: given a set of questions Q, and a set of tags T = {t 1, t 2..., t n }, n = 500, we want to assign a subset of tags T q T q Q, where T q 5. A. Features used 1) Title of the question: The title of the question is one of the most important feature as users tend to add direct reference to the tag in title to make it clear what the query is specifically about. We dont filter out punctuations marks as they represent crucial information like the language name. For instance, asp.net

3 3 Fig. 5: Significance of code as a feature Fig. 4: Distribution of most number of questions posted by unique users in training dataset N idf(t, Q) = log q Q : t q (2) tfidf(t, q, Q) = tf(t, q) idf(t, Q) (3) Before calculating the TF-IDF values the text of the review is filtered using following methods: Remove the stop words. Convert the textual content to lower case. 2) Body of the question: The body of the question is given to us in the data as an HTML blob that includes textual content for the question as well as the code element associated with it. The code element is embedded between <code></code>tags. Following techniques were used to filter body-text: Remove the stop-words Convert the content to lower case. Extract and remove the code element Remove tags from the data. After this filtering we are left with the body of the question without the code element. Using this body text we now calculate the TF-IDF values for the dataset. 3) Code element of the question: We obtained the code element for each question from the filtering done for the body of the question. The code usually consists of keywords that are highly related to the programming language/ framework that the question is concerned about. For instance Figure 5 shows a query about scikit-learn library and has no mention about it in the body. If we analyze and train our model, it can learn to relate sklearn import statement with scikit-learn tag. We utilize this property of the code content and implement TF-IDF score for code element of each of the questions. The formulation that we use for TF-IDF calculation: tf(t, q) = number of times term t appears in question q (1) B. Methods We are predicting at most 5 tags for each question from a pool of 500 unique tags, implying that each question can be assigned multiple tags based on its content. So we train independent classifiers for each tag to achieve this. scikit-learn provides us with a multi-label classification wrapper - OneVsRestClassifier which can work on top of any underlying classification algorithm. For the underlying algorithm we try with the following: Multinomial Naive Bayes Linear SVC Stochastic Gradient Descent A. Evaluation V. MODEL Our prediction system is evaluated on the basis of the mean recall, mean precision and mean F1 score over all questions, i.e. the recall, precision and F1 are computed for every question, and then, the mean of all these values are computed. If Q is the validation data set, consisting of questions, Y i is the set of actual labels and Z i is the set predicted labels for i th data point. The precision, recall and F1 scores for a predictor h are computed as follows: P recision(h, Q) = 1 Recall(h, Q) = 1 F 1(h, Q) = 1 i=1 i=1 i=1 Y i Z i Z i Y i Z i Y i 2 Y i Z i Z i + Y i (4) (5) (6)

4 4 B. Baseline Model For comparing various models defined above we create a model with the following feature: Bag-of-words Title - We create a frequency based feature vector for a question by counting the number of occurrences of a word across all unique words in the title corpus. Bag-of-words Body - Similar to the bag-of-words approach we followed for title text we create a bag-of-words representation of the body data. We then use the multiple classifiers approach to perform the prediction using the Naive Bayes classifier for individual tags. Using this model we get mean precision and mean recall values as 0.46 and 0.63 respectively. of tags associated with each question. We construct our label vectors by creating a list of tags assigned for each question. We construct our training set of features by segregating the title, body and code as separate string entries. To perform classification we create a Feature union pipeline that consists of a union of features and a classifier. The flow is depicted as follows: C. Optimal number of Tags Since a question can have any number of tags between one and five, we assign k tags having the highest decision function value where k is a hyper-parameter. In order to determine the optimal value of this hyper-parameter we plot the distribution of mean F1 score, precision and recall with varying k on the validation set (Fig. 6). It is observed that we get the best performance by setting the value of k to 3. Hence, we predict three tags for all models from here onwards. Fig. 7: Classification Training Fig. 6: Model performance with maximum number of predicted tags on validation set D. Classification Task For performing classification, we filter our dataset as specified in the Data Exploration. Once we are done filtering the data we have a set of questions and a set To compute the TF-IDF scores of each of features we first pass them through a CountVectorizer which computes the counts of each unigram in the textual content across the corpus and then the Tfidf transformer creates tfidf values for these unigrams. These features are then used to train a OneVsRestClassifier with an underlying linear SVM classifier. Once the training is done, we predict the labels for test data using the classifier. To get the confidence scores for each prediction we use the decision function of the classifier. The predicted labels, actual labels and the sorted confidence scores are then used to predict the performance measures - F1 Score, Precision and Recall. We experiment with different features and underlying classifiers for the OneVsRest classifier. The results are depicted in the next section. VI. A. Classifiers Performance RESULTS We evaluate our model performance parameters with different classification methods. Figure 8 shows the per-

5 5 formance of our selected models on the test dataset. Compared to baseline, Linear SVC and SGD techniques perform much better and on the other hand Multinomial NB falls behind. This seems to be because of the fact that the features are not independent and the dependencies among them are quite dissimilar. We observe a large improvement in performance when using the SGD method and an even better performance with the Linear SVC based model. Fig. 9: Results with different features using Linear SVC on test dataset Fig. 8: Results of different models on test dataset B. Feature Experiments We performed ablation experiments on our feature set to evaluate the impact of each feature. Figure 9 shows the impact of each feature on our model. The best performing feature set is the combination of the defined features. Title only model that is very close to the baseline model has the least performance as expected because of the absence of the code and body context, hence it provides limited information. Removing code from the feature set leads to a significant drop in performace across all three measures (F1 Score, Precision and Recall). VII. FUTURE WORK The main limitation of the approach is the inability to run the model on entire dataset i.e. for all the tags (37,036) because of computational limitations of the machine. During analysis, we discovered that a great proportion of the tags were programming languages, which can prove to be a very useful feature. As an extension to this model, we can try and discover the language of the code element and use it as a feature by creating one-hot representation of the programming language used in the question. The raw data-dump from stack-exchange has almost 20 dataset for Stackoverflow questions which can be helpful if we were to include the user-preferences/history as a feature to predict the tags. Another complex feature can be to harvest the correlation between tags to perform classification. For instance, questions about Javascript/CSS/HTML are highly like to have front-end as a secondary tag. The proposed model has a unique capability of training multiple tags and combining different elements of the content as independent features. For instance, we discovered that embedded code though not following the same content background proved a powerful feature for tagging. We can exploit this capability to tag Piazza posts which can have embedded code/equations as elements. Another application can be tagging Quora data, although Quora being a more social platform, user history and correlation plays an important role in classification. VIII. CONCLUSION We conclude that predicting the tags of a question based on its title, body and code section worked reasonably well. Based on our experimentation, including user based feature into tag prediction didn t work well, primarily because very small proportion of the users posted more than two questions and hence, the model was not able to learn significantly by knowing who posted the question. Also, excluding the code part from the model resulted in less accurate prediction because the code part leads to important learning about the language and syntax which in turn leads to better predictions. Removing the

6 6 punctuations from the content was also not a good idea because many of the terms which help in predictive analysis have some punctuation mark in them because of the nature of this content being related to code and technical terms. We also conclude that considering title, body and code as separate features instead of combining them leads to better prediction, primarily because the significance of a term in the questions content would generally depend on whether the term appears in title, body or the code section because of different tf-idf distributions in different sections. REFERENCES [1] StackSample: 10% of Stack Overflow Q&A, [2] I. Katakis, G. Tsoumakas, I. Vlahavas, Multilabel text classification for automated tag suggestion, Proceedings of the ECML/PKDD Discovery Challenge, [3] Kuo, D. On Word Prediction Methods (Tech. Rep. No. UCB/EECS ). EECS Department, University of California, Berkeley [4] Xin Xia, Davud Lo, Xinyu Wang and Bo Zhou Tag Recommendation in Software Information Sites, IEEE Explore, [5] Claton Stanley, Michael D. Byrne Predicting Tags for Stack- Overflow Posts, 2013 [6] PFu, W. ; Pirolli, P. L.SNIF-ACT: a cognitive model of user navigation on the World Wide Web. Human Computer Interaction. 2007

Improving Stack Overflow Tag Prediction Using Eye Tracking Alina Lazar Youngstown State University Bonita Sharif, Youngstown State University

Improving Stack Overflow Tag Prediction Using Eye Tracking Alina Lazar Youngstown State University Bonita Sharif, Youngstown State University Improving Stack Overflow Tag Prediction Using Eye Tracking Alina Lazar, Youngstown State University Bonita Sharif, Youngstown State University Jenna Wise, Youngstown State University Alyssa Pawluk, Youngstown

More information

CS229 Final Project: Predicting Expected Response Times

CS229 Final Project: Predicting Expected  Response Times CS229 Final Project: Predicting Expected Email Response Times Laura Cruz-Albrecht (lcruzalb), Kevin Khieu (kkhieu) December 15, 2017 1 Introduction Each day, countless emails are sent out, yet the time

More information

RSDC 09: Tag Recommendation Using Keywords and Association Rules

RSDC 09: Tag Recommendation Using Keywords and Association Rules RSDC 09: Tag Recommendation Using Keywords and Association Rules Jian Wang, Liangjie Hong and Brian D. Davison Department of Computer Science and Engineering Lehigh University, Bethlehem, PA 18015 USA

More information

ResPubliQA 2010

ResPubliQA 2010 SZTAKI @ ResPubliQA 2010 David Mark Nemeskey Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary (SZTAKI) Abstract. This paper summarizes the results of our first

More information

Final Report: Keyword extraction from text

Final Report: Keyword extraction from text Final Report: Keyword extraction from text Gowtham Rangarajan R and Sainyam Galhotra December 2015 Abstract We have devised a model for tagging stack overflow questions with keywords which help classify

More information

Predicting Popular Xbox games based on Search Queries of Users

Predicting Popular Xbox games based on Search Queries of Users 1 Predicting Popular Xbox games based on Search Queries of Users Chinmoy Mandayam and Saahil Shenoy I. INTRODUCTION This project is based on a completed Kaggle competition. Our goal is to predict which

More information

Salford Systems Predictive Modeler Unsupervised Learning. Salford Systems

Salford Systems Predictive Modeler Unsupervised Learning. Salford Systems Salford Systems Predictive Modeler Unsupervised Learning Salford Systems http://www.salford-systems.com Unsupervised Learning In mainstream statistics this is typically known as cluster analysis The term

More information

Link Prediction for Social Network

Link Prediction for Social Network Link Prediction for Social Network Ning Lin Computer Science and Engineering University of California, San Diego Email: nil016@eng.ucsd.edu Abstract Friendship recommendation has become an important issue

More information

Semantic Extensions to Syntactic Analysis of Queries Ben Handy, Rohini Rajaraman

Semantic Extensions to Syntactic Analysis of Queries Ben Handy, Rohini Rajaraman Semantic Extensions to Syntactic Analysis of Queries Ben Handy, Rohini Rajaraman Abstract We intend to show that leveraging semantic features can improve precision and recall of query results in information

More information

TISA Methodology Threat Intelligence Scoring and Analysis

TISA Methodology Threat Intelligence Scoring and Analysis TISA Methodology Threat Intelligence Scoring and Analysis Contents Introduction 2 Defining the Problem 2 The Use of Machine Learning for Intelligence Analysis 3 TISA Text Analysis and Feature Extraction

More information

Applications of Machine Learning on Keyword Extraction of Large Datasets

Applications of Machine Learning on Keyword Extraction of Large Datasets Applications of Machine Learning on Keyword Extraction of Large Datasets 1 2 Meng Yan my259@stanford.edu 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

More information

Multi-Stage Rocchio Classification for Large-scale Multilabeled

Multi-Stage Rocchio Classification for Large-scale Multilabeled Multi-Stage Rocchio Classification for Large-scale Multilabeled Text data Dong-Hyun Lee Nangman Computing, 117D Garden five Tools, Munjeong-dong Songpa-gu, Seoul, Korea dhlee347@gmail.com Abstract. Large-scale

More information

Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data

Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data Jesse Read 1, Albert Bifet 2, Bernhard Pfahringer 2, Geoff Holmes 2 1 Department of Signal Theory and Communications Universidad

More information

Application of rough ensemble classifier to web services categorization and focused crawling

Application of rough ensemble classifier to web services categorization and focused crawling With the expected growth of the number of Web services available on the web, the need for mechanisms that enable the automatic categorization to organize this vast amount of data, becomes important. A

More information

Allstate Insurance Claims Severity: A Machine Learning Approach

Allstate Insurance Claims Severity: A Machine Learning Approach Allstate Insurance Claims Severity: A Machine Learning Approach Rajeeva Gaur SUNet ID: rajeevag Jeff Pickelman SUNet ID: pattern Hongyi Wang SUNet ID: hongyiw I. INTRODUCTION The insurance industry has

More information

Predicting Gene Function and Localization

Predicting Gene Function and Localization Predicting Gene Function and Localization By Ankit Kumar and Raissa Largman CS 229 Fall 2013 I. INTRODUCTION Our data comes from the 2001 KDD Cup Data Mining Competition. The competition had two tasks,

More information

Automatic Domain Partitioning for Multi-Domain Learning

Automatic Domain Partitioning for Multi-Domain Learning Automatic Domain Partitioning for Multi-Domain Learning Di Wang diwang@cs.cmu.edu Chenyan Xiong cx@cs.cmu.edu William Yang Wang ww@cmu.edu Abstract Multi-Domain learning (MDL) assumes that the domain labels

More information

An Empirical Study of Lazy Multilabel Classification Algorithms

An Empirical Study of Lazy Multilabel Classification Algorithms An Empirical Study of Lazy Multilabel Classification Algorithms E. Spyromitros and G. Tsoumakas and I. Vlahavas Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

More information

Predicting Stack Exchange Keywords

Predicting Stack Exchange Keywords 1 Alan Newman Devin Guillory Predicting Stack Exchange Keywords Abstract In large scale systems driven by user uploaded content, tagging has become increasingly popular, as it leads to efficient ways to

More information

Kaggle See Click Fix Model Description

Kaggle See Click Fix Model Description Kaggle See Click Fix Model Description BY: Miroslaw Horbal & Bryan Gregory LOCATION: Waterloo, Ont, Canada & Dallas, TX CONTACT : miroslaw@gmail.com & bryan.gregory1@gmail.com CONTEST: See Click Predict

More information

How Often and What StackOverflow Posts Do Developers Reference in Their GitHub Projects?

How Often and What StackOverflow Posts Do Developers Reference in Their GitHub Projects? How Often and What StackOverflow Posts Do Developers Reference in Their GitHub Projects? Saraj Singh Manes School of Computer Science Carleton University Ottawa, Canada sarajmanes@cmail.carleton.ca Olga

More information

On the automatic classification of app reviews

On the automatic classification of app reviews Requirements Eng (2016) 21:311 331 DOI 10.1007/s00766-016-0251-9 RE 2015 On the automatic classification of app reviews Walid Maalej 1 Zijad Kurtanović 1 Hadeer Nabil 2 Christoph Stanik 1 Walid: please

More information

Using Text Learning to help Web browsing

Using Text Learning to help Web browsing Using Text Learning to help Web browsing Dunja Mladenić J.Stefan Institute, Ljubljana, Slovenia Carnegie Mellon University, Pittsburgh, PA, USA Dunja.Mladenic@{ijs.si, cs.cmu.edu} Abstract Web browsing

More information

Developing Focused Crawlers for Genre Specific Search Engines

Developing Focused Crawlers for Genre Specific Search Engines Developing Focused Crawlers for Genre Specific Search Engines Nikhil Priyatam Thesis Advisor: Prof. Vasudeva Varma IIIT Hyderabad July 7, 2014 Examples of Genre Specific Search Engines MedlinePlus Naukri.com

More information

Predicting Messaging Response Time in a Long Distance Relationship

Predicting Messaging Response Time in a Long Distance Relationship Predicting Messaging Response Time in a Long Distance Relationship Meng-Chen Shieh m3shieh@ucsd.edu I. Introduction The key to any successful relationship is communication, especially during times when

More information

SCENARIO BASED ADAPTIVE PREPROCESSING FOR STREAM DATA USING SVM CLASSIFIER

SCENARIO BASED ADAPTIVE PREPROCESSING FOR STREAM DATA USING SVM CLASSIFIER SCENARIO BASED ADAPTIVE PREPROCESSING FOR STREAM DATA USING SVM CLASSIFIER P.Radhabai Mrs.M.Priya Packialatha Dr.G.Geetha PG Student Assistant Professor Professor Dept of Computer Science and Engg Dept

More information

Data Mining with Oracle 10g using Clustering and Classification Algorithms Nhamo Mdzingwa September 25, 2005

Data Mining with Oracle 10g using Clustering and Classification Algorithms Nhamo Mdzingwa September 25, 2005 Data Mining with Oracle 10g using Clustering and Classification Algorithms Nhamo Mdzingwa September 25, 2005 Abstract Deciding on which algorithm to use, in terms of which is the most effective and accurate

More information

Chrome based Keyword Visualizer (under sparse text constraint) SANGHO SUH MOONSHIK KANG HOONHEE CHO

Chrome based Keyword Visualizer (under sparse text constraint) SANGHO SUH MOONSHIK KANG HOONHEE CHO Chrome based Keyword Visualizer (under sparse text constraint) SANGHO SUH MOONSHIK KANG HOONHEE CHO INDEX Proposal Recap Implementation Evaluation Future Works Proposal Recap Keyword Visualizer (chrome

More information

ANALYSIS COMPUTER SCIENCE Discovery Science, Volume 9, Number 20, April 3, Comparative Study of Classification Algorithms Using Data Mining

ANALYSIS COMPUTER SCIENCE Discovery Science, Volume 9, Number 20, April 3, Comparative Study of Classification Algorithms Using Data Mining ANALYSIS COMPUTER SCIENCE Discovery Science, Volume 9, Number 20, April 3, 2014 ISSN 2278 5485 EISSN 2278 5477 discovery Science Comparative Study of Classification Algorithms Using Data Mining Akhila

More information

Building Classifiers using Bayesian Networks

Building Classifiers using Bayesian Networks Building Classifiers using Bayesian Networks Nir Friedman and Moises Goldszmidt 1997 Presented by Brian Collins and Lukas Seitlinger Paper Summary The Naive Bayes classifier has reasonable performance

More information

Unstructured Data. CS102 Winter 2019

Unstructured Data. CS102 Winter 2019 Winter 2019 Big Data Tools and Techniques Basic Data Manipulation and Analysis Performing well-defined computations or asking well-defined questions ( queries ) Data Mining Looking for patterns in data

More information

NLP Final Project Fall 2015, Due Friday, December 18

NLP Final Project Fall 2015, Due Friday, December 18 NLP Final Project Fall 2015, Due Friday, December 18 For the final project, everyone is required to do some sentiment classification and then choose one of the other three types of projects: annotation,

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Moodify. 1. Introduction. 2. System Architecture. 2.1 Data Fetching Component. W205-1 Rock Baek, Saru Mehta, Vincent Chio, Walter Erquingo Pezo

Moodify. 1. Introduction. 2. System Architecture. 2.1 Data Fetching Component. W205-1 Rock Baek, Saru Mehta, Vincent Chio, Walter Erquingo Pezo 1. Introduction Moodify Moodify is an music web application that recommend songs to user based on mood. There are two ways a user can interact with the application. First, users can select a mood that

More information

Part I: Data Mining Foundations

Part I: Data Mining Foundations Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web and the Internet 2 1.3. Web Data Mining 4 1.3.1. What is Data Mining? 6 1.3.2. What is Web Mining?

More information

Chapter 2. Architecture of a Search Engine

Chapter 2. Architecture of a Search Engine Chapter 2 Architecture of a Search Engine Search Engine Architecture A software architecture consists of software components, the interfaces provided by those components and the relationships between them

More information

An Efficient Clustering for Crime Analysis

An Efficient Clustering for Crime Analysis An Efficient Clustering for Crime Analysis Malarvizhi S 1, Siddique Ibrahim 2 1 UG Scholar, Department of Computer Science and Engineering, Kumaraguru College Of Technology, Coimbatore, Tamilnadu, India

More information

AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS

AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS Nilam B. Lonkar 1, Dinesh B. Hanchate 2 Student of Computer Engineering, Pune University VPKBIET, Baramati, India Computer Engineering, Pune University VPKBIET,

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (  1 Cluster Based Speed and Effective Feature Extraction for Efficient Search Engine Manjuparkavi A 1, Arokiamuthu M 2 1 PG Scholar, Computer Science, Dr. Pauls Engineering College, Villupuram, India 2 Assistant

More information

Spam Detection ECE 539 Fall 2013 Ethan Grefe. For Public Use

Spam Detection ECE 539 Fall 2013 Ethan Grefe. For Public Use Email Detection ECE 539 Fall 2013 Ethan Grefe For Public Use Introduction email is sent out in large quantities every day. This results in email inboxes being filled with unwanted and inappropriate messages.

More information

Information Retrieval. (M&S Ch 15)

Information Retrieval. (M&S Ch 15) Information Retrieval (M&S Ch 15) 1 Retrieval Models A retrieval model specifies the details of: Document representation Query representation Retrieval function Determines a notion of relevance. Notion

More information

Chapter 5: Summary and Conclusion CHAPTER 5 SUMMARY AND CONCLUSION. Chapter 1: Introduction

Chapter 5: Summary and Conclusion CHAPTER 5 SUMMARY AND CONCLUSION. Chapter 1: Introduction CHAPTER 5 SUMMARY AND CONCLUSION Chapter 1: Introduction Data mining is used to extract the hidden, potential, useful and valuable information from very large amount of data. Data mining tools can handle

More information

A PRELIMINARY STUDY ON THE EXTRACTION OF SOCIO-TOPICAL WEB KEYWORDS

A PRELIMINARY STUDY ON THE EXTRACTION OF SOCIO-TOPICAL WEB KEYWORDS A PRELIMINARY STUDY ON THE EXTRACTION OF SOCIO-TOPICAL WEB KEYWORDS KULWADEE SOMBOONVIWAT Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033,

More information

The Utrecht Blend: Basic Ingredients for an XML Retrieval System

The Utrecht Blend: Basic Ingredients for an XML Retrieval System The Utrecht Blend: Basic Ingredients for an XML Retrieval System Roelof van Zwol Centre for Content and Knowledge Engineering Utrecht University Utrecht, the Netherlands roelof@cs.uu.nl Virginia Dignum

More information

Implementation of a High-Performance Distributed Web Crawler and Big Data Applications with Husky

Implementation of a High-Performance Distributed Web Crawler and Big Data Applications with Husky Implementation of a High-Performance Distributed Web Crawler and Big Data Applications with Husky The Chinese University of Hong Kong Abstract Husky is a distributed computing system, achieving outstanding

More information

Mining Social Media Users Interest

Mining Social Media Users Interest Mining Social Media Users Interest Presenters: Heng Wang,Man Yuan April, 4 th, 2016 Agenda Introduction to Text Mining Tool & Dataset Data Pre-processing Text Mining on Twitter Summary & Future Improvement

More information

Machine Learning Part 1

Machine Learning Part 1 Data Science Weekend Machine Learning Part 1 KMK Online Analytic Team Fajri Koto Data Scientist fajri.koto@kmklabs.com Machine Learning Part 1 Outline 1. Machine Learning at glance 2. Vector Representation

More information

A Semi-Supervised Approach for Web Spam Detection using Combinatorial Feature-Fusion

A Semi-Supervised Approach for Web Spam Detection using Combinatorial Feature-Fusion A Semi-Supervised Approach for Web Spam Detection using Combinatorial Feature-Fusion Ye Tian, Gary M. Weiss, Qiang Ma Department of Computer and Information Science Fordham University 441 East Fordham

More information

Recommendation System for Location-based Social Network CS224W Project Report

Recommendation System for Location-based Social Network CS224W Project Report Recommendation System for Location-based Social Network CS224W Project Report Group 42, Yiying Cheng, Yangru Fang, Yongqing Yuan 1 Introduction With the rapid development of mobile devices and wireless

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/25/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 3 In many data mining

More information

TERM BASED WEIGHT MEASURE FOR INFORMATION FILTERING IN SEARCH ENGINES

TERM BASED WEIGHT MEASURE FOR INFORMATION FILTERING IN SEARCH ENGINES TERM BASED WEIGHT MEASURE FOR INFORMATION FILTERING IN SEARCH ENGINES Mu. Annalakshmi Research Scholar, Department of Computer Science, Alagappa University, Karaikudi. annalakshmi_mu@yahoo.co.in Dr. A.

More information

Extracting Algorithms by Indexing and Mining Large Data Sets

Extracting Algorithms by Indexing and Mining Large Data Sets Extracting Algorithms by Indexing and Mining Large Data Sets Vinod Jadhav 1, Dr.Rekha Rathore 2 P.G. Student, Department of Computer Engineering, RKDF SOE Indore, University of RGPV, Bhopal, India Associate

More information

Louis Fourrier Fabien Gaie Thomas Rolf

Louis Fourrier Fabien Gaie Thomas Rolf CS 229 Stay Alert! The Ford Challenge Louis Fourrier Fabien Gaie Thomas Rolf Louis Fourrier Fabien Gaie Thomas Rolf 1. Problem description a. Goal Our final project is a recent Kaggle competition submitted

More information

Classifying Bug Reports to Bugs and Other Requests Using Topic Modeling

Classifying Bug Reports to Bugs and Other Requests Using Topic Modeling Classifying Bug Reports to Bugs and Other Requests Using Topic Modeling Natthakul Pingclasai Department of Computer Engineering Kasetsart University Bangkok, Thailand Email: b5310547207@ku.ac.th Hideaki

More information

Using Coherence-based Measures to Predict Query Difficulty

Using Coherence-based Measures to Predict Query Difficulty Using Coherence-based Measures to Predict Query Difficulty Jiyin He, Martha Larson, and Maarten de Rijke ISLA, University of Amsterdam {jiyinhe,larson,mdr}@science.uva.nl Abstract. We investigate the potential

More information

CIRGDISCO at RepLab2012 Filtering Task: A Two-Pass Approach for Company Name Disambiguation in Tweets

CIRGDISCO at RepLab2012 Filtering Task: A Two-Pass Approach for Company Name Disambiguation in Tweets CIRGDISCO at RepLab2012 Filtering Task: A Two-Pass Approach for Company Name Disambiguation in Tweets Arjumand Younus 1,2, Colm O Riordan 1, and Gabriella Pasi 2 1 Computational Intelligence Research Group,

More information

Karami, A., Zhou, B. (2015). Online Review Spam Detection by New Linguistic Features. In iconference 2015 Proceedings.

Karami, A., Zhou, B. (2015). Online Review Spam Detection by New Linguistic Features. In iconference 2015 Proceedings. Online Review Spam Detection by New Linguistic Features Amir Karam, University of Maryland Baltimore County Bin Zhou, University of Maryland Baltimore County Karami, A., Zhou, B. (2015). Online Review

More information

Link Analysis in Weibo

Link Analysis in Weibo Link Analysis in Weibo Liwen Sun AMPLab, EECS liwen@cs.berkeley.edu Di Wang Theory Group, EECS wangd@eecs.berkeley.edu Abstract With the widespread use of social network applications, online user behaviors,

More information

Fig 1. Overview of IE-based text mining framework

Fig 1. Overview of IE-based text mining framework DiscoTEX: A framework of Combining IE and KDD for Text Mining Ritesh Kumar Research Scholar, Singhania University, Pacheri Beri, Rajsthan riteshchandel@gmail.com Abstract: Text mining based on the integration

More information

CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks

CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks Archana Sulebele, Usha Prabhu, William Yang (Group 29) Keywords: Link Prediction, Review Networks, Adamic/Adar,

More information

An Information Retrieval Approach for Source Code Plagiarism Detection

An Information Retrieval Approach for Source Code Plagiarism Detection -2014: An Information Retrieval Approach for Source Code Plagiarism Detection Debasis Ganguly, Gareth J. F. Jones CNGL: Centre for Global Intelligent Content School of Computing, Dublin City University

More information

Python for. Data Science. by Luca Massaron. and John Paul Mueller

Python for. Data Science. by Luca Massaron. and John Paul Mueller Python for Data Science by Luca Massaron and John Paul Mueller Table of Contents #»» *» «»>»»» Introduction 1 About This Book 1 Foolish Assumptions 2 Icons Used in This Book 3 Beyond the Book 4 Where to

More information

Detection and Extraction of Events from s

Detection and Extraction of Events from  s Detection and Extraction of Events from Emails Shashank Senapaty Department of Computer Science Stanford University, Stanford CA senapaty@cs.stanford.edu December 12, 2008 Abstract I build a system to

More information

Tag-based Social Interest Discovery

Tag-based Social Interest Discovery Tag-based Social Interest Discovery Xin Li / Lei Guo / Yihong (Eric) Zhao Yahoo!Inc 2008 Presented by: Tuan Anh Le (aletuan@vub.ac.be) 1 Outline Introduction Data set collection & Pre-processing Architecture

More information

In this project, I examined methods to classify a corpus of s by their content in order to suggest text blocks for semi-automatic replies.

In this project, I examined methods to classify a corpus of  s by their content in order to suggest text blocks for semi-automatic replies. December 13, 2006 IS256: Applied Natural Language Processing Final Project Email classification for semi-automated reply generation HANNES HESSE mail 2056 Emerson Street Berkeley, CA 94703 phone 1 (510)

More information

Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval

Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval 1 Naïve Implementation Convert all documents in collection D to tf-idf weighted vectors, d j, for keyword vocabulary V. Convert

More information

Personalized Web Search

Personalized Web Search Personalized Web Search Dhanraj Mavilodan (dhanrajm@stanford.edu), Kapil Jaisinghani (kjaising@stanford.edu), Radhika Bansal (radhika3@stanford.edu) Abstract: With the increase in the diversity of contents

More information

Mapping Bug Reports to Relevant Files and Automated Bug Assigning to the Developer Alphy Jose*, Aby Abahai T ABSTRACT I.

Mapping Bug Reports to Relevant Files and Automated Bug Assigning to the Developer Alphy Jose*, Aby Abahai T ABSTRACT I. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 1 ISSN : 2456-3307 Mapping Bug Reports to Relevant Files and Automated

More information

Semantic Estimation for Texts in Software Engineering

Semantic Estimation for Texts in Software Engineering Semantic Estimation for Texts in Software Engineering 汇报人 : Reporter:Xiaochen Li Dalian University of Technology, China 大连理工大学 2016 年 11 月 29 日 Oscar Lab 2 Ph.D. candidate at OSCAR Lab, in Dalian University

More information

Feature Selecting Model in Automatic Text Categorization of Chinese Financial Industrial News

Feature Selecting Model in Automatic Text Categorization of Chinese Financial Industrial News Selecting Model in Automatic Text Categorization of Chinese Industrial 1) HUEY-MING LEE 1 ), PIN-JEN CHEN 1 ), TSUNG-YEN LEE 2) Department of Information Management, Chinese Culture University 55, Hwa-Kung

More information

Association Rule Mining in The Wider Context of Text, Images and Graphs

Association Rule Mining in The Wider Context of Text, Images and Graphs Association Rule Mining in The Wider Context of Text, Images and Graphs Frans Coenen Department of Computer Science UKKDD 07, April 2007 PRESENTATION OVERVIEW Motivation. Association Rule Mining (quick

More information

Performance Evaluation of Various Classification Algorithms

Performance Evaluation of Various Classification Algorithms Performance Evaluation of Various Classification Algorithms Shafali Deora Amritsar College of Engineering & Technology, Punjab Technical University -----------------------------------------------------------***----------------------------------------------------------

More information

Eagle Eye. Sommersemester 2017 Big Data Science Praktikum. Zhenyu Chen - Wentao Hua - Guoliang Xue - Bernhard Fabry - Daly

Eagle Eye. Sommersemester 2017 Big Data Science Praktikum. Zhenyu Chen - Wentao Hua - Guoliang Xue - Bernhard Fabry - Daly Eagle Eye Sommersemester 2017 Big Data Science Praktikum Zhenyu Chen - Wentao Hua - Guoliang Xue - Bernhard Fabry - Daly 1 Sommersemester Agenda 2009 Brief Introduction Pre-processiong of dataset Front-end

More information

Keywords- Classification algorithm, Hypertensive, K Nearest Neighbor, Naive Bayesian, Data normalization

Keywords- Classification algorithm, Hypertensive, K Nearest Neighbor, Naive Bayesian, Data normalization GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES APPLICATION OF CLASSIFICATION TECHNIQUES TO DETECT HYPERTENSIVE HEART DISEASE Tulasimala B. N* 1, Elakkiya S 2 & Keerthana N 3 *1 Assistant Professor,

More information

A FRAMEWORK FOR EFFICIENT DATA SEARCH THROUGH XML TREE PATTERNS

A FRAMEWORK FOR EFFICIENT DATA SEARCH THROUGH XML TREE PATTERNS A FRAMEWORK FOR EFFICIENT DATA SEARCH THROUGH XML TREE PATTERNS SRIVANI SARIKONDA 1 PG Scholar Department of CSE P.SANDEEP REDDY 2 Associate professor Department of CSE DR.M.V.SIVA PRASAD 3 Principal Abstract:

More information

AN IMPROVISED FREQUENT PATTERN TREE BASED ASSOCIATION RULE MINING TECHNIQUE WITH MINING FREQUENT ITEM SETS ALGORITHM AND A MODIFIED HEADER TABLE

AN IMPROVISED FREQUENT PATTERN TREE BASED ASSOCIATION RULE MINING TECHNIQUE WITH MINING FREQUENT ITEM SETS ALGORITHM AND A MODIFIED HEADER TABLE AN IMPROVISED FREQUENT PATTERN TREE BASED ASSOCIATION RULE MINING TECHNIQUE WITH MINING FREQUENT ITEM SETS ALGORITHM AND A MODIFIED HEADER TABLE Vandit Agarwal 1, Mandhani Kushal 2 and Preetham Kumar 3

More information

Sentiment Analysis for Amazon Reviews

Sentiment Analysis for Amazon Reviews Sentiment Analysis for Amazon Reviews Wanliang Tan wanliang@stanford.edu Xinyu Wang xwang7@stanford.edu Xinyu Xu xinyu17@stanford.edu Abstract Sentiment analysis of product reviews, an application problem,

More information

Micro-blogging Sentiment Analysis Using Bayesian Classification Methods

Micro-blogging Sentiment Analysis Using Bayesian Classification Methods Micro-blogging Sentiment Analysis Using Bayesian Classification Methods Suhaas Prasad I. Introduction In this project I address the problem of accurately classifying the sentiment in posts from micro-blogs

More information

Ranking Algorithms For Digital Forensic String Search Hits

Ranking Algorithms For Digital Forensic String Search Hits DIGITAL FORENSIC RESEARCH CONFERENCE Ranking Algorithms For Digital Forensic String Search Hits By Nicole Beebe and Lishu Liu Presented At The Digital Forensic Research Conference DFRWS 2014 USA Denver,

More information

Mahout in Action MANNING ROBIN ANIL SEAN OWEN TED DUNNING ELLEN FRIEDMAN. Shelter Island

Mahout in Action MANNING ROBIN ANIL SEAN OWEN TED DUNNING ELLEN FRIEDMAN. Shelter Island Mahout in Action SEAN OWEN ROBIN ANIL TED DUNNING ELLEN FRIEDMAN II MANNING Shelter Island contents preface xvii acknowledgments about this book xx xix about multimedia extras xxiii about the cover illustration

More information

Markov Chains for Robust Graph-based Commonsense Information Extraction

Markov Chains for Robust Graph-based Commonsense Information Extraction Markov Chains for Robust Graph-based Commonsense Information Extraction N iket Tandon 1,4 Dheera j Ra jagopal 2,4 Gerard de M elo 3 (1) Max Planck Institute for Informatics, Germany (2) NUS, Singapore

More information

An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data

An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data Nian Zhang and Lara Thompson Department of Electrical and Computer Engineering, University

More information

Supervised classification of law area in the legal domain

Supervised classification of law area in the legal domain AFSTUDEERPROJECT BSC KI Supervised classification of law area in the legal domain Author: Mees FRÖBERG (10559949) Supervisors: Evangelos KANOULAS Tjerk DE GREEF June 24, 2016 Abstract Search algorithms

More information

Information Retrieval

Information Retrieval Information Retrieval CSC 375, Fall 2016 An information retrieval system will tend not to be used whenever it is more painful and troublesome for a customer to have information than for him not to have

More information

Introduction to Data Science. Introduction to Data Science with Python. Python Basics: Basic Syntax, Data Structures. Python Concepts (Core)

Introduction to Data Science. Introduction to Data Science with Python. Python Basics: Basic Syntax, Data Structures. Python Concepts (Core) Introduction to Data Science What is Analytics and Data Science? Overview of Data Science and Analytics Why Analytics is is becoming popular now? Application of Analytics in business Analytics Vs Data

More information

A New Model of Search Engine based on Cloud Computing

A New Model of Search Engine based on Cloud Computing A New Model of Search Engine based on Cloud Computing DING Jian-li 1,2, YANG Bo 1 1. College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China 2. Tianjin Key

More information

Creating a Classifier for a Focused Web Crawler

Creating a Classifier for a Focused Web Crawler Creating a Classifier for a Focused Web Crawler Nathan Moeller December 16, 2015 1 Abstract With the increasing size of the web, it can be hard to find high quality content with traditional search engines.

More information

Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination

Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination Richard Kershaw and Bhaskar Krishnamachari Ming Hsieh Department of Electrical Engineering, Viterbi School

More information

NUS-I2R: Learning a Combined System for Entity Linking

NUS-I2R: Learning a Combined System for Entity Linking NUS-I2R: Learning a Combined System for Entity Linking Wei Zhang Yan Chuan Sim Jian Su Chew Lim Tan School of Computing National University of Singapore {z-wei, tancl} @comp.nus.edu.sg Institute for Infocomm

More information

Supervised Learning Classification Algorithms Comparison

Supervised Learning Classification Algorithms Comparison Supervised Learning Classification Algorithms Comparison Aditya Singh Rathore B.Tech, J.K. Lakshmipat University -------------------------------------------------------------***---------------------------------------------------------

More information

Chapter 1. Introduction. 1.1 Content Quality - Motivation

Chapter 1. Introduction. 1.1 Content Quality - Motivation 2 Chapter 1 Introduction The meteoric rise of the Internet has led to an increase of Web 2.0 websites on the World Wide Web (WWW). Web 2.0 websites are a paradigm shift from the traditional websites and

More information

Handwritten Mathematical Expression Recognition

Handwritten Mathematical Expression Recognition Handwritten Mathematical Expression Recognition Group 27 - Abhyãsa Abhishek Gunda abhigun@iitk.ac.in Krishna Karthik jkrishna@iitk.ac.in Harsha Nalluru harshan@iitk.ac.in Aravind Reddy arareddy@iitk.ac.in

More information

Modelling Structures in Data Mining Techniques

Modelling Structures in Data Mining Techniques Modelling Structures in Data Mining Techniques Ananth Y N 1, Narahari.N.S 2 Associate Professor, Dept of Computer Science, School of Graduate Studies- JainUniversity- J.C.Road, Bangalore, INDIA 1 Professor

More information

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.3, May Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.3, May Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani LINK MINING PROCESS Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani Higher Colleges of Technology, United Arab Emirates ABSTRACT Many data mining and knowledge discovery methodologies and process models

More information

Chapter 8 The C 4.5*stat algorithm

Chapter 8 The C 4.5*stat algorithm 109 The C 4.5*stat algorithm This chapter explains a new algorithm namely C 4.5*stat for numeric data sets. It is a variant of the C 4.5 algorithm and it uses variance instead of information gain for the

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

The Comparative Study of Machine Learning Algorithms in Text Data Classification*

The Comparative Study of Machine Learning Algorithms in Text Data Classification* The Comparative Study of Machine Learning Algorithms in Text Data Classification* Wang Xin School of Science, Beijing Information Science and Technology University Beijing, China Abstract Classification

More information

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p.

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. 6 What is Web Mining? p. 6 Summary of Chapters p. 8 How

More information

Enhancing Clustering Results In Hierarchical Approach By Mvs Measures

Enhancing Clustering Results In Hierarchical Approach By Mvs Measures International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 6 (June 2014), PP.25-30 Enhancing Clustering Results In Hierarchical Approach

More information

TEXT PREPROCESSING FOR TEXT MINING USING SIDE INFORMATION

TEXT PREPROCESSING FOR TEXT MINING USING SIDE INFORMATION TEXT PREPROCESSING FOR TEXT MINING USING SIDE INFORMATION Ms. Nikita P.Katariya 1, Prof. M. S. Chaudhari 2 1 Dept. of Computer Science & Engg, P.B.C.E., Nagpur, India, nikitakatariya@yahoo.com 2 Dept.

More information