Knowledge and Ontological Engineering: Directions for the Semantic Web

Size: px
Start display at page:

Download "Knowledge and Ontological Engineering: Directions for the Semantic Web"

Transcription

1 Knowledge and Ontological Engineering: Directions for the Semantic Web Dana Vaughn and David J. Russomanno Department of Electrical and Computer Engineering The University of Memphis Memphis, TN { dvaughn3@midsouth.rr.com, d-russomanno@memphis.edu } Abstract. The exponential growth of the World Wide Web (WWW) in recent years has created a vast repository of documents primarily intended for human interpretation and use rather than serving as a formal knowledge and database that can be potentially utilized by machines realized as functional, intelligent agents. The Semantic Web's goal is to improve this situation by augmenting the classical WWW with an infrastructure for automated Web services by embedding semantic content within the web pages themselves, thereby making it possible for artificial, functional agents to perform intelligent tasks. The Semantic Web presents an application domain with a number of interesting research challenges including how to conceptualize, represent, acquire, organize, integrate, and reason about WWW data and knowledge sources. Of particular interest in the evolution of the Semantic Web is the issue of knowledge representation and ontologies. This paper presents an overview of some of the current research for ontological engineering and knowledge representation as applied to the Semantic Web and discusses the benefits and limitations of each, then concludes with a research proposal for one approach to leveraging the Semantic Web. Introduction The World Wide Web consists of several hundred million static and dynamic documents, and it continues to grow exponentially in size. This exponential growth has created a gigantic repository of useful, somewhat useful, and useless data, information, and knowledge from the perspective of an individual user. Complicating matters further is the fact that the majority of the information is represented in a format designed chiefly for human understanding, not machine processing. As this growth continues unabated, it has become obvious that conventional methods of exploring and exploiting the data will no longer be sufficient, and that searching through this unstructured data will only become more and more tedious unless new approaches along with supporting infrastructures are developed. Just such an approach has been proposed: The Semantic Web (Berners-Lee, Hendler, and Lassila, 2001). The Semantic Web is not a new World Wide Web; rather, it is an extension of the existing one. The Semantic Web proposes to add semantic content to the Web, thereby adding structure and meaning to it in a way that will make it more amenable to machine processing. This structure and semantics will be added in two ways: through the use of ontologies and the adaptation of XML or other knowledge representation languages. By embedding semantics and structure within the web pages 1

2 themselves, the meaningful content is more readily extracted by autonomous means. Two mature research areas that will influence both the evolution and applications of the Semantic Web are ontological engineering and knowledge representation. Ontological Engineering and the Semantic Web A good definition of an ontology is "a specification of a conceptualization" (Hendler, 2001). In other words, an ontology defines those types of things that will be reasoned about and represented within a certain domain. Ontologies can serve as metadata schemas, providing a precise vocabulary of concepts, each with explicit semantics. Furthermore, the defining of shared and common domain concepts will help people and machines to communicate more effectively (Maedche and Staab, 2001). Once the ontologies have been created, they can then be utilized by Semantic Web-site developers as well as knowledge engineers who will create the knowledge acquisition and reasoning systems that will exploit the available data, information, and knowledge in the Semantic Web. Figure 1 shows a sample of code from a simple ontology. <HTML> <Body> <ONTOLOGY ID="eece-dept-ontology" VERSION="1.0"> <DEF-CATEGORY NAME="ElectricalEngineering"> <DEF-RELATION NAME="isTeaching"> <DEF-ARG POS=1 TYPE ="Professor"> <DEF-ARG POS=2 TYPE ="Class"> </DEF-RELATION> </ONTOLOGY> Figure 1. A simple ontology The Semantic Web presents new challenges for ontological engineers, as well as knowledge engineers who want to build intelligent systems that exploit this repository. First, the World Wide Web is a highly distributed system. In other words, the number of providers of information is so great that inconsistencies in the information provided will be unavoidable. Second, since the Web is a dynamic environment, ontologies will need to evolve as the Web evolves. Third, the size of the Web creates the added concern of scalability. One way to address these issues is through ontology revision. Ontology revision means changing the ontology as new information becomes available. However, any web pages that depend on the previous ontology must be able to access it in its unmodified form. Otherwise, changes to ontologies will have far-reaching side effects. These are not the only issues concerning ontologies and the Semantic Web. In all likelihood, the Semantic Web will not consist of highly structured ontologies created by experts in their particular fields; rather, it will be composed of numerous small ontologies that leverage off one another. As such, it will be necessary for some level of interoperability and inheritance among ontologies. Also, the success of the Semantic Web will be highly dependent on how quickly domain specific ontologies can be developed or utilized (Maedche and Staab, 2001). 2

3 Several options will be available for those that want to build semantically rich web sites: creating an ontology from the outset or leveraging off an existing ontology. Creating a detailed and extensive ontology takes time and effort, so this will probably not be the approach used by the majority of people wishing to embrace the Semantic Web. Instead, users will turn to previously created ontologies and modify them to suit their individual needs. Several researchers have done considerable work in ontologies (Gruber, 1993; Hendler, 2001) and example ontologies can be found at a Web ontology repository. Of particular note is Cyc s ontology, an enormous knowledge base containing literally tens of thousands of terms about the range of human experiences. While Cyc s ontology is more than likely overkill for most users, it illustrates an important concept. There are already ontologies in existence, and more are being created by those best suited to represent the knowledge in a particular domain. Table 1. Representative Ontologies Name Description Website SENSUS Terminology taxonomy Cyc Multi-contextual knowledge base WordNet Online lexical reference Table 1 lists three ontologies, including Cyc. WordNet is an online lexical reference system wherein English nouns, verbs, adjectives, and adverbs are organized into synonym sets, each representing one underlying lexicalized concept. Different relations link the synonym sets. SENSUS is an extension of WordNet that rearranges the branches and includes other ontologies. Cyc, as mentioned above, is a comprehensive ontology covering the range of human experience. While Cyc has the advantage of covering a broader spectrum of ideas, the domain specific approaches of the other two may make them more powerful in their respective domain. Knowledge Representation The traditional Artificial Intelligence (AI) perspective is that the objective of knowledge representation is to express knowledge in a computer-tractable form (Russell and Norvig, 1995). A knowledge representation system in AI has traditionally been centralized, which requires all users to share definitions of common concepts. This idea of central control is very limiting, and it has a direct impact on the scalability of the knowledge representation system. Furthermore, knowledge representation systems typically limit the types of questions that can be asked of them to ones that can be answered reliably. A Semantic Web may change this traditional AI perspective. Extensible Markup Language (XML) is emerging as the de facto standard language of the Semantic Web. Since XML allows for user-defined tags, the meaning of the text between the tags can be represented in the tags themselves. The benefit of user-defined tags is that there is no limitation on what the tags mean; however, this flexibility is also its primary drawback. As an example, consider the following example: Let user A create a web page with the 3

4 tag <address> with intended meaning mailing address, while user B assigns the same <address> tag to his web pages. The corollary to that is when user A creates a tag, say <contact>, which means the same as < recipient> on user B s site. This use of the same tags, which mean different things, or different tags that mean the same thing, highlight one of the drawbacks to a purely XML-based Semantic Web. While the semantics may be obvious to a human interpreter, it will not necessarily be so obvious to an automated agent, which is why ontologies must be used in conjunction with XML. Another research language that has been proposed is SHOE, a web-based knowledge representation language that supports multiple ontologies (Heflin and Hender, 2000). SHOE, which stands for Simple HTML Ontology Extensions, allows web page designers to add ontology-based knowledge to web pages. SHOE associates meaning with the content by making each web page commit to one or more ontologies. These ontologies then allow for the discovery of implicit knowledge through taxonomies and inference rules. SHOE has the added benefit of promoting interoperability through its sharing and reuse of ontologies. At the core of all Semantic Web research and development is DAML, the DARPA Agent Markup Language program. DAML seeks to move beyond the simple semantics inherent in XML to a more fully realized semantic language that can be employed by knowledge engineers. With DAML, the goal is to develop a language that unifies the information available from a variety of sources. Whatever languages emerge for the Semantic Web, they will have to allow for ontology extension and revision, as well as provide semantic interoperability. Research Proposal The traditional role of knowledge engineering has been to investigate application domains, determine what the important concepts and ideas are within those domains, and create the formal representation of the objects and relations as they pertain to the domains, as well as the control and reasoning strategies that will be employed (Russell and Norvig, 1995). Knowledge engineers are usually not experts within a particular application domain, but are skilled in the representation of ideas. To gain knowledge about the domain requires interviews with the application experts within a field of study, an often costly and time-consuming process. But what if this process could be automated, or at least partially automated by artificial intelligent agents leveraging the Semantic Web rather than human application domain experts? We propose an architecture that supports the following problem-solving activity: a Knowledge Acquisition Agent (KAA) will extract data and knowledge from a semantically-enriched Web, using pre-existing ontologies and a goal of building a domain-specific knowledge base as its focus of attention as highlighted in Figure 2. Instead of focusing on the creation of the ontologies from scratch, the ontologies will use consist of the online repositories when searching the semantically-enriched Web. This approach has the advantage of efficiency, and will also more closely match the process the average user will go through when using the web. The ontologies may be extended as needed by the KAA to accommodate the specific application domain, but it must be stressed that ontologies will not be created by the KAA. 4

5 User Ontology A Ontology B... Ontology N Inference Engine KAA Knowledge Base Database WWW Domain Specific Expert System Figure 2. A proposed architecture for building application-specific expert systems Once the KAA has a particular set of ontologies in place that will serve as the basis for its knowledge acquisition, it will search the Web for the information that pertains to its goal: building a domain-specific knowledge base from the Semantic Web using a set of a prior ontologies. Based on the information it finds and its own set of inference rules, it will construct a knowledge base for a specific application domain as conceived by its underlying ontologies. This approach will not completely remove the need for evaluation by experts, but it should greatly enhance the creation of a knowledgebased system by taking advantage of the fact that an enormous amount of information, albeit unstructured or semi-structure, will be readily available on the World Wide Web and the evolving Semantic Web. This goal of this research is the creation of a domain independent Knowledge Acquisition Agent (KAA) capable of building domain specific knowledge bases from the Web. The KAA is domain independent in the sense that the underlying ontologies used will determine the concepts that will be employed to build an application specific knowledge base for a particular use. By changing the guiding ontologies, the associated knowledge gathered is changed as well; hence, supporting a means of building application specific knowledge bases. One ultimate application of KAA is that it would build the application specific knowledge bases in a variety of domains that users would subsequently interact with to seek advice, etc., rather than interacting with the Web directly. As an example, consider the case of a parent with a sick child in the middle of the night. The immediate question becomes, do the child's symptoms merit a trip to the emergency room or can the child wait until morning and a trip to the pediatrician? The information needed to make a diagnosis is readily available on the Web, but finding it when time is of the essence can be an impossible task. The KAA could change that. By simply giving the KAA a medical ontology of childhood illnesses and symptoms, the KAA could construct a knowledge base in its own time. Then, when the parent needs to ask a specific question, instead of fruitlessly combing the Web, the expert system, created by the KAA partly from the Web, is queried. This would greatly minimize the time spent searching, and would pay off in knowing whether a costly visit to the emergency room was warranted. 5

6 The same issues that arise when constructing a conventional knowledge base system will also have to be considered when constructing domain-specific, KB systems using KAA from the Web. Namely, deciding the domain, deciding the vocabulary, predicates, functions, and constants, encoding knowledge about the domain (how the information is taken from the Web and added into the KB), encoding descriptions of the specific problem instance, and deciding how to pose queries to the KB, and finally the quality and reliability of the system with respect to some metric. Fortunately, the use of ontologies will address some of these issues. The domain of choice (e.g., medicine) and the appropriate choice of ontologies will help address the first two issues. Furthermore, a well-thought out ontology should make posing queries easily implemented, since the vocabulary needed to pose queries will already be a part of the ontology. References Berners-Lee, T; Hendler, J; and Lassila, O. (2001) The Semantic Web, Scientific American, May 2001; Fensel, D; van Harmelen, F; Horrocks, I; McGuinness, D; and Patel-Schneider, P. (2001) OIL: An Ontology Infrastrucuture for the Semantic Web, IEEE Intelligent Systems, March/April 2001; Gruber, T. (1993) Toward Principles for the Design of Ontologies Used for Knowledge Sharing, Presented at the Padua workshop on Formal Ontology, Padova, Italy, Heflin, J. and Hendler, J. (2000) Dynamic Ontologies on the Web, In: Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), AAAI/MIT Press, Menlo Park, CA; Hendler, J. (2001) Agents and the Semantic Web, IEEE Intelligent Systems, March/April 2001; Maedche, A. and Staab, S. (2001) Ontology Learning for the Semantic Web, IEEE Intelligent Systems, March/April 2001; Russell, S. and Norvig, P. (1995) Artificial Intelligence A Modern Approach, Prentice- Hall, Englewood Cliffs, NJ. 6

Development of an Ontology-Based Portal for Digital Archive Services

Development of an Ontology-Based Portal for Digital Archive Services Development of an Ontology-Based Portal for Digital Archive Services Ching-Long Yeh Department of Computer Science and Engineering Tatung University 40 Chungshan N. Rd. 3rd Sec. Taipei, 104, Taiwan chingyeh@cse.ttu.edu.tw

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 4, Jul-Aug 2015

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 4, Jul-Aug 2015 RESEARCH ARTICLE OPEN ACCESS Multi-Lingual Ontology Server (MOS) For Discovering Web Services Abdelrahman Abbas Ibrahim [1], Dr. Nael Salman [2] Department of Software Engineering [1] Sudan University

More information

New Tools for the Semantic Web

New Tools for the Semantic Web New Tools for the Semantic Web Jennifer Golbeck 1, Michael Grove 1, Bijan Parsia 1, Adtiya Kalyanpur 1, and James Hendler 1 1 Maryland Information and Network Dynamics Laboratory University of Maryland,

More information

Annotation for the Semantic Web During Website Development

Annotation for the Semantic Web During Website Development Annotation for the Semantic Web During Website Development Peter Plessers and Olga De Troyer Vrije Universiteit Brussel, Department of Computer Science, WISE, Pleinlaan 2, 1050 Brussel, Belgium {Peter.Plessers,

More information

Semantic Web Domain Knowledge Representation Using Software Engineering Modeling Technique

Semantic Web Domain Knowledge Representation Using Software Engineering Modeling Technique Semantic Web Domain Knowledge Representation Using Software Engineering Modeling Technique Minal Bhise DAIICT, Gandhinagar, Gujarat, India 382007 minal_bhise@daiict.ac.in Abstract. The semantic web offers

More information

TERM BASED WEIGHT MEASURE FOR INFORMATION FILTERING IN SEARCH ENGINES

TERM BASED WEIGHT MEASURE FOR INFORMATION FILTERING IN SEARCH ENGINES TERM BASED WEIGHT MEASURE FOR INFORMATION FILTERING IN SEARCH ENGINES Mu. Annalakshmi Research Scholar, Department of Computer Science, Alagappa University, Karaikudi. annalakshmi_mu@yahoo.co.in Dr. A.

More information

Ontology Extraction from Heterogeneous Documents

Ontology Extraction from Heterogeneous Documents Vol.3, Issue.2, March-April. 2013 pp-985-989 ISSN: 2249-6645 Ontology Extraction from Heterogeneous Documents Kirankumar Kataraki, 1 Sumana M 2 1 IV sem M.Tech/ Department of Information Science & Engg

More information

OntoShare An Ontology-based Knowledge Sharing System for Virtual Communities of Practice

OntoShare An Ontology-based Knowledge Sharing System for Virtual Communities of Practice OntoShare An Ontology-based Knowledge Sharing System for Virtual Communities of Practice John Davies, Alistair Duke BTexact, Orion 5/12, Adastral Park, Ipswich IP5 3RE, UK john.nj.davies@bt.com, alistair.duke@bt.com

More information

The Semantic Web & Ontologies

The Semantic Web & Ontologies The Semantic Web & Ontologies Kwenton Bellette The semantic web is an extension of the current web that will allow users to find, share and combine information more easily (Berners-Lee, 2001, p.34) This

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1402 An Application Programming Interface Based Architectural Design for Information Retrieval in Semantic Organization

More information

Ontology Construction -An Iterative and Dynamic Task

Ontology Construction -An Iterative and Dynamic Task From: FLAIRS-02 Proceedings. Copyright 2002, AAAI (www.aaai.org). All rights reserved. Ontology Construction -An Iterative and Dynamic Task Holger Wache, Ubbo Visser & Thorsten Scholz Center for Computing

More information

Self-Controlling Architecture Structured Agents

Self-Controlling Architecture Structured Agents Self-Controlling Architecture Structured Agents Mieczyslaw M. Kokar (contact author) Department of Electrical and Computer Engineering 360 Huntington Avenue, Boston, MA 02115 ph: (617) 373-4849, fax: (617)

More information

Context Building Information-Centric Decision-Support Systems

Context Building Information-Centric Decision-Support Systems Context Building Information-Centric Decision-Support Systems Steven J. Gollery California Polytechnic State University (Cal Poly) San Luis Obispo, California Cal Poly State University One Grand Avenue

More information

Semantic Clickstream Mining

Semantic Clickstream Mining Semantic Clickstream Mining Mehrdad Jalali 1, and Norwati Mustapha 2 1 Department of Software Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran 2 Department of Computer Science, Universiti

More information

New Approach to Graph Databases

New Approach to Graph Databases Paper PP05 New Approach to Graph Databases Anna Berg, Capish, Malmö, Sweden Henrik Drews, Capish, Malmö, Sweden Catharina Dahlbo, Capish, Malmö, Sweden ABSTRACT Graph databases have, during the past few

More information

SEMANTIC SUPPORT FOR MEDICAL IMAGE SEARCH AND RETRIEVAL

SEMANTIC SUPPORT FOR MEDICAL IMAGE SEARCH AND RETRIEVAL SEMANTIC SUPPORT FOR MEDICAL IMAGE SEARCH AND RETRIEVAL Wang Wei, Payam M. Barnaghi School of Computer Science and Information Technology The University of Nottingham Malaysia Campus {Kcy3ww, payam.barnaghi}@nottingham.edu.my

More information

A Novel Architecture of Ontology based Semantic Search Engine

A Novel Architecture of Ontology based Semantic Search Engine International Journal of Science and Technology Volume 1 No. 12, December, 2012 A Novel Architecture of Ontology based Semantic Search Engine Paras Nath Gupta 1, Pawan Singh 2, Pankaj P Singh 3, Punit

More information

Towards the Semantic Web

Towards the Semantic Web Towards the Semantic Web Ora Lassila Research Fellow, Nokia Research Center (Boston) Chief Scientist, Nokia Venture Partners LLP Advisory Board Member, W3C XML Finland, October 2002 1 NOKIA 10/27/02 -

More information

Ontology Development. Qing He

Ontology Development. Qing He A tutorial report for SENG 609.22 Agent Based Software Engineering Course Instructor: Dr. Behrouz H. Far Ontology Development Qing He 1 Why develop an ontology? In recent years the development of ontologies

More information

SEMANTIC WEB POWERED PORTAL INFRASTRUCTURE

SEMANTIC WEB POWERED PORTAL INFRASTRUCTURE SEMANTIC WEB POWERED PORTAL INFRASTRUCTURE YING DING 1 Digital Enterprise Research Institute Leopold-Franzens Universität Innsbruck Austria DIETER FENSEL Digital Enterprise Research Institute National

More information

Knowledge Representation, Ontologies, and the Semantic Web

Knowledge Representation, Ontologies, and the Semantic Web Knowledge Representation, Ontologies, and the Semantic Web Evimaria Terzi 1, Athena Vakali 1, and Mohand-Saïd Hacid 2 1 Informatics Dpt., Aristotle University, 54006 Thessaloniki, Greece evimaria,avakali@csd.auth.gr

More information

Semantic Web Mining and its application in Human Resource Management

Semantic Web Mining and its application in Human Resource Management International Journal of Computer Science & Management Studies, Vol. 11, Issue 02, August 2011 60 Semantic Web Mining and its application in Human Resource Management Ridhika Malik 1, Kunjana Vasudev 2

More information

Adaptable and Adaptive Web Information Systems. Lecture 1: Introduction

Adaptable and Adaptive Web Information Systems. Lecture 1: Introduction Adaptable and Adaptive Web Information Systems School of Computer Science and Information Systems Birkbeck College University of London Lecture 1: Introduction George Magoulas gmagoulas@dcs.bbk.ac.uk October

More information

Jeff Heflin and James Hendler

Jeff Heflin and James Hendler From: AAAI-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Dynamic Ontologies on the Web Jeff Heflin and James Hendler Department of Computer Science University of Maryland College

More information

Semantic Web. Ontology Engineering and Evaluation. Morteza Amini. Sharif University of Technology Fall 93-94

Semantic Web. Ontology Engineering and Evaluation. Morteza Amini. Sharif University of Technology Fall 93-94 ه عا ی Semantic Web Ontology Engineering and Evaluation Morteza Amini Sharif University of Technology Fall 93-94 Outline Ontology Engineering Class and Class Hierarchy Ontology Evaluation 2 Outline Ontology

More information

Semantic Web: vision and reality

Semantic Web: vision and reality Semantic Web: vision and reality Mile Jovanov, Marjan Gusev Institute of Informatics, FNSM, Gazi Baba b.b., 1000 Skopje {mile, marjan}@ii.edu.mk Abstract. Semantic Web is set of technologies currently

More information

The Semantic Web: A Vision or a Dream?

The Semantic Web: A Vision or a Dream? The Semantic Web: A Vision or a Dream? Ben Weber Department of Computer Science California Polytechnic State University May 15, 2005 Abstract The Semantic Web strives to be a machine readable version of

More information

Information Retrieval (IR) through Semantic Web (SW): An Overview

Information Retrieval (IR) through Semantic Web (SW): An Overview Information Retrieval (IR) through Semantic Web (SW): An Overview Gagandeep Singh 1, Vishal Jain 2 1 B.Tech (CSE) VI Sem, GuruTegh Bahadur Institute of Technology, GGS Indraprastha University, Delhi 2

More information

Semantic Web and Electronic Information Resources Danica Radovanović

Semantic Web and Electronic Information Resources Danica Radovanović D.Radovanovic: Semantic Web and Electronic Information Resources 1, Infotheca journal 4(2003)2, p. 157-163 UDC 004.738.5:004.451.53:004.22 Semantic Web and Electronic Information Resources Danica Radovanović

More information

An Evaluation of Geo-Ontology Representation Languages for Supporting Web Retrieval of Geographical Information

An Evaluation of Geo-Ontology Representation Languages for Supporting Web Retrieval of Geographical Information An Evaluation of Geo-Ontology Representation Languages for Supporting Web Retrieval of Geographical Information P. Smart, A.I. Abdelmoty and C.B. Jones School of Computer Science, Cardiff University, Cardiff,

More information

Ontology Development Tools and Languages: A Review

Ontology Development Tools and Languages: A Review Ontology Development Tools and Languages: A Review Parveen 1, Dheeraj Kumar Sahni 2, Dhiraj Khurana 3, Rainu Nandal 4 1,2 M.Tech. (CSE), UIET, MDU, Rohtak, Haryana 3,4 Asst. Professor, UIET, MDU, Rohtak,

More information

A WEB-BASED TOOLKIT FOR LARGE-SCALE ONTOLOGIES

A WEB-BASED TOOLKIT FOR LARGE-SCALE ONTOLOGIES A WEB-BASED TOOLKIT FOR LARGE-SCALE ONTOLOGIES 1 Yuxin Mao 1 School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, P.R. China E-mail: 1 maoyuxin@zjgsu.edu.cn ABSTRACT

More information

Using the Semantic Web in Ubiquitous and Mobile Computing

Using the Semantic Web in Ubiquitous and Mobile Computing Using the Semantic Web in Ubiquitous and Mobile Computing Ora Lassila Research Fellow, Software & Applications Laboratory, Nokia Research Center Elected Member of Advisory Board, World Wide Web Consortium

More information

Massive Data Analysis

Massive Data Analysis Professor, Department of Electrical and Computer Engineering Tennessee Technological University February 25, 2015 Big Data This talk is based on the report [1]. The growth of big data is changing that

More information

Semantic Web. Ontology Engineering and Evaluation. Morteza Amini. Sharif University of Technology Fall 95-96

Semantic Web. Ontology Engineering and Evaluation. Morteza Amini. Sharif University of Technology Fall 95-96 ه عا ی Semantic Web Ontology Engineering and Evaluation Morteza Amini Sharif University of Technology Fall 95-96 Outline Ontology Engineering Class and Class Hierarchy Ontology Evaluation 2 Outline Ontology

More information

Agent-oriented Semantic Discovery and Matchmaking of Web Services

Agent-oriented Semantic Discovery and Matchmaking of Web Services Agent-oriented Semantic Discovery and Matchmaking of Web Services Ivan Mećar 1, Alisa Devlić 1, Krunoslav Tržec 2 1 University of Zagreb Faculty of Electrical Engineering and Computing Department of Telecommunications

More information

P2P Knowledge Management: an Investigation of the Technical Architecture and Main Processes

P2P Knowledge Management: an Investigation of the Technical Architecture and Main Processes P2P Management: an Investigation of the Technical Architecture and Main Processes Oscar Mangisengi, Wolfgang Essmayr Software Competence Center Hagenberg (SCCH) Hauptstrasse 99, A-4232 Hagenberg, Austria

More information

2 Experimental Methodology and Results

2 Experimental Methodology and Results Developing Consensus Ontologies for the Semantic Web Larry M. Stephens, Aurovinda K. Gangam, and Michael N. Huhns Department of Computer Science and Engineering University of South Carolina, Columbia,

More information

Spinning the Semantic Web

Spinning the Semantic Web Spinning the Semantic Web Bringing the World Wide Web to Its Full Potential Edited by Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster The MIT Press Cambridge, Massachusetts London,

More information

Motivating Ontology-Driven Information Extraction

Motivating Ontology-Driven Information Extraction Motivating Ontology-Driven Information Extraction Burcu Yildiz 1 and Silvia Miksch 1, 2 1 Institute for Software Engineering and Interactive Systems, Vienna University of Technology, Vienna, Austria {yildiz,silvia}@

More information

Towards Ontology Mapping: DL View or Graph View?

Towards Ontology Mapping: DL View or Graph View? Towards Ontology Mapping: DL View or Graph View? Yongjian Huang, Nigel Shadbolt Intelligence, Agents and Multimedia Group School of Electronics and Computer Science University of Southampton November 27,

More information

KawaWiki: A Semantic Wiki Based on RDF Templates

KawaWiki: A Semantic Wiki Based on RDF Templates Kawa: A Semantic Based on RDF s Kensaku Kawamoto, Yasuhiko Kitamura, and Yuri Tijerino Kwansei Gakuin University 2-1 Gakuen, Sanda-shi, Hyogo 669-1337, JAPAN {kkensaku, ykitamura}@ksc.kwansei.ac.jp, yuri@tijerino.net

More information

Semi-automatic Composition of Web Services using Semantic Descriptions

Semi-automatic Composition of Web Services using Semantic Descriptions Semi-automatic Composition of Web Services using Semantic Descriptions Evren Sirin 1, James Hendler 2, and Bijan Parsia 2 1 University of Maryland, Computer Science Department, College Park MD 20742, USA

More information

Lecture Telecooperation. D. Fensel Leopold-Franzens- Universität Innsbruck

Lecture Telecooperation. D. Fensel Leopold-Franzens- Universität Innsbruck Lecture Telecooperation D. Fensel Leopold-Franzens- Universität Innsbruck First Lecture: Introduction: Semantic Web & Ontology Introduction Semantic Web and Ontology Part I Introduction into the subject

More information

Matching Techniques for Resource Discovery in Distributed Systems Using Heterogeneous Ontology Descriptions

Matching Techniques for Resource Discovery in Distributed Systems Using Heterogeneous Ontology Descriptions Matching Techniques for Discovery in Distributed Systems Using Heterogeneous Ontology Descriptions S. Castano, A. Ferrara, S. Montanelli, G. Racca Università degli Studi di Milano DICO - Via Comelico,

More information

A Lightweight Approach to Semantic Tagging

A Lightweight Approach to Semantic Tagging A Lightweight Approach to Semantic Tagging Nadzeya Kiyavitskaya, Nicola Zeni, Luisa Mich, John Mylopoulus Department of Information and Communication Technologies, University of Trento Via Sommarive 14,

More information

SEMANTIC WEB LANGUAGES - STRENGTHS AND WEAKNESS

SEMANTIC WEB LANGUAGES - STRENGTHS AND WEAKNESS SEMANTIC WEB LANGUAGES - STRENGTHS AND WEAKNESS Sinuhé Arroyo Ying Ding Rubén Lara Universität Innsbruck Universität Innsbruck Universität Innsbruck Institut für Informatik Institut für Informatik Institut

More information

Ontology Exemplification for aspocms in the Semantic Web

Ontology Exemplification for aspocms in the Semantic Web Ontology Exemplification for aspocms in the Semantic Web Anand Kumar Department of Computer Science Babasaheb Bhimrao Ambedkar University Lucknow-226025, India e-mail: anand_smsvns@yahoo.co.in Sanjay K.

More information

Developing A Web-based User Interface for Semantic Information Retrieval

Developing A Web-based User Interface for Semantic Information Retrieval Developing A Web-based User Interface for Semantic Information Retrieval Daniel C. Berrios 1, Richard M. Keller 2 1 Research Institute for Advanced Computer Science, MS 269-2, NASA Ames Research Center,

More information

The Model-Driven Semantic Web Emerging Standards & Technologies

The Model-Driven Semantic Web Emerging Standards & Technologies The Model-Driven Semantic Web Emerging Standards & Technologies Elisa Kendall Sandpiper Software March 24, 2005 1 Model Driven Architecture (MDA ) Insulates business applications from technology evolution,

More information

Exploiting the Small-Worlds of the Semantic Web to Connect Heterogeneous, Local Ontologies

Exploiting the Small-Worlds of the Semantic Web to Connect Heterogeneous, Local Ontologies Information Technology and Management 6, 89 96, 2005 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. Exploiting the Small-Worlds of the Semantic Web to Connect Heterogeneous,

More information

A tutorial report for SENG Agent Based Software Engineering. Course Instructor: Dr. Behrouz H. Far. XML Tutorial.

A tutorial report for SENG Agent Based Software Engineering. Course Instructor: Dr. Behrouz H. Far. XML Tutorial. A tutorial report for SENG 609.22 Agent Based Software Engineering Course Instructor: Dr. Behrouz H. Far XML Tutorial Yanan Zhang Department of Electrical and Computer Engineering University of Calgary

More information

Optimised Classification for Taxonomic Knowledge Bases

Optimised Classification for Taxonomic Knowledge Bases Optimised Classification for Taxonomic Knowledge Bases Dmitry Tsarkov and Ian Horrocks University of Manchester, Manchester, UK {tsarkov horrocks}@cs.man.ac.uk Abstract Many legacy ontologies are now being

More information

Ontology-Based Schema Integration

Ontology-Based Schema Integration Ontology-Based Schema Integration Zdeňka Linková Institute of Computer Science, Academy of Sciences of the Czech Republic Pod Vodárenskou věží 2, 182 07 Prague 8, Czech Republic linkova@cs.cas.cz Department

More information

Coping with Changing Ontologies in a Distributed Environment

Coping with Changing Ontologies in a Distributed Environment Coping with Changing Ontologies in a Distributed Environment From: AAAI Technical Report WS-99-13. Compilation copyright 1999, AAAI (www.aaai.org). All rights reserved. Jeff Heflin, James Hendler, and

More information

Learning from Semantically Heterogeneous Data

Learning from Semantically Heterogeneous Data Learning from Semantically Heterogeneous Data Doina Caragea* Department of Computing and Information Sciences Kansas State University 234 Nichols Hall Manhattan, KS 66506 USA voice: +1 785-532-7908 fax:

More information

Helmi Ben Hmida Hannover University, Germany

Helmi Ben Hmida Hannover University, Germany Helmi Ben Hmida Hannover University, Germany 1 Summarizing the Problem: Computers don t understand Meaning My mouse is broken. I need a new one 2 The Semantic Web Vision the idea of having data on the

More information

Searching the Web with SHOE

Searching the Web with SHOE Searching the Web with SHOE Jeff Heflin and James Hendler Department of Computer Science University of Maryland College Park, MD 20742 {heflin, hendler}@cs.umd.edu Abstract Although search engine technology

More information

WEB SEARCH, FILTERING, AND TEXT MINING: TECHNOLOGY FOR A NEW ERA OF INFORMATION ACCESS

WEB SEARCH, FILTERING, AND TEXT MINING: TECHNOLOGY FOR A NEW ERA OF INFORMATION ACCESS 1 WEB SEARCH, FILTERING, AND TEXT MINING: TECHNOLOGY FOR A NEW ERA OF INFORMATION ACCESS BRUCE CROFT NSF Center for Intelligent Information Retrieval, Computer Science Department, University of Massachusetts,

More information

The Semantic Planetary Data System

The Semantic Planetary Data System The Semantic Planetary Data System J. Steven Hughes 1, Daniel J. Crichton 1, Sean Kelly 1, and Chris Mattmann 1 1 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 USA {steve.hughes, dan.crichton,

More information

An Annotation Tool for Semantic Documents

An Annotation Tool for Semantic Documents An Annotation Tool for Semantic Documents (System Description) Henrik Eriksson Dept. of Computer and Information Science Linköping University SE-581 83 Linköping, Sweden her@ida.liu.se Abstract. Document

More information

From XML to Semantic Web

From XML to Semantic Web From XML to Semantic Web Changqing Li and Tok Wang Ling Department of Computer Science, National University of Singapore {lichangq, lingtw}@comp.nus.edu.sg Abstract. The present web is existing in the

More information

Semantic Searching. John Winder CMSC 676 Spring 2015

Semantic Searching. John Winder CMSC 676 Spring 2015 Semantic Searching John Winder CMSC 676 Spring 2015 Semantic Searching searching and retrieving documents by their semantic, conceptual, and contextual meanings Motivations: to do disambiguation to improve

More information

Exloring Semantic Web using Ontologies. Digivjay Singh *, R. K. Mishra **, Dehradun, Chandrashekhar ***

Exloring Semantic Web using Ontologies. Digivjay Singh *, R. K. Mishra **, Dehradun, Chandrashekhar *** Exloring Semantic Web using Ontologies Digivjay Singh *, R. K. Mishra **, Dehradun, Chandrashekhar *** * M.ech-CSE, Moradabad, ** Associate Professor, Department of CSE, DBGI *** Assistant Professor, Department

More information

Chapter 2 SEMANTIC WEB. 2.1 Introduction

Chapter 2 SEMANTIC WEB. 2.1 Introduction Chapter 2 SEMANTIC WEB 2.1 Introduction The term Semantic refers to a sequence of symbols that can be used to communicate meaning and this communication can then affect behavior in different situations.

More information

Racer: An OWL Reasoning Agent for the Semantic Web

Racer: An OWL Reasoning Agent for the Semantic Web Racer: An OWL Reasoning Agent for the Semantic Web Volker Haarslev and Ralf Möller Concordia University, Montreal, Canada (haarslev@cs.concordia.ca) University of Applied Sciences, Wedel, Germany (rmoeller@fh-wedel.de)

More information

A GML SCHEMA MAPPING APPROACH TO OVERCOME SEMANTIC HETEROGENEITY IN GIS

A GML SCHEMA MAPPING APPROACH TO OVERCOME SEMANTIC HETEROGENEITY IN GIS A GML SCHEMA MAPPING APPROACH TO OVERCOME SEMANTIC HETEROGENEITY IN GIS Manoj Paul, S. K. Ghosh School of Information Technology, Indian Institute of Technology, Kharagpur 721302, India - (mpaul, skg)@sit.iitkgp.ernet.in

More information

SEMANTIC WEB LANGUAGES STRENGTHS AND WEAKNESS

SEMANTIC WEB LANGUAGES STRENGTHS AND WEAKNESS SEMANTIC WEB LANGUAGES STRENGTHS AND WEAKNESS Sinuhé Arroyo, Rubén Lara, Ying Ding, Michael Stollberg, Dieter Fensel Universität Innsbruck Institut für Informatik Technikerstraße 13 6020 Innsbruck, Austria

More information

Making Semantic Web based-hypermedia Applications

Making Semantic Web based-hypermedia Applications Making Semantic Web based-hypermedia Applications Laura Montells, Susana Montero, Paloma Díaz, Ignacio Aedo Laboratorio DEI. Dpto. de Informática Universidad Carlos III de Madrid Avda. de la Universidad

More information

Adaptive Personal Information Environment based on the Semantic Web

Adaptive Personal Information Environment based on the Semantic Web Adaptive Personal Information Environment based on the Semantic Web Thanyalak Maneewatthana, Gary Wills, Wendy Hall Intelligence, Agents, Multimedia Group School of Electronics and Computer Science University

More information

Semantic web. Tapas Kumar Mishra 11CS60R32

Semantic web. Tapas Kumar Mishra 11CS60R32 Semantic web Tapas Kumar Mishra 11CS60R32 1 Agenda Introduction What is semantic web Issues with traditional web search The Technology Stack Architecture of semantic web Meta Data Main Tasks Knowledge

More information

Ontology Creation and Development Model

Ontology Creation and Development Model Ontology Creation and Development Model Pallavi Grover, Sonal Chawla Research Scholar, Department of Computer Science & Applications, Panjab University, Chandigarh, India Associate. Professor, Department

More information

SEMANTIC SOLUTIONS FOR OIL & GAS: ROLES AND RESPONSIBILITIES

SEMANTIC SOLUTIONS FOR OIL & GAS: ROLES AND RESPONSIBILITIES SEMANTIC SOLUTIONS FOR OIL & GAS: ROLES AND RESPONSIBILITIES Jeremy Carroll, Ralph Hodgson, {jeremy,ralph}@topquadrant.com This paper is submitted to The W3C Workshop on Semantic Web in Energy Industries

More information

OntoXpl Exploration of OWL Ontologies

OntoXpl Exploration of OWL Ontologies OntoXpl Exploration of OWL Ontologies Volker Haarslev and Ying Lu and Nematollah Shiri Computer Science Department Concordia University, Montreal, Canada haarslev@cs.concordia.ca ying lu@cs.concordia.ca

More information

Ontology Servers and Metadata Vocabulary Repositories

Ontology Servers and Metadata Vocabulary Repositories Ontology Servers and Metadata Vocabulary Repositories Dr. Manjula Patel Technical Research and Development m.patel@ukoln.ac.uk http://www.ukoln.ac.uk/ Overview agentcities.net deployment grant Background

More information

KNOWLEDGE MANAGEMENT VIA DEVELOPMENT IN ACCOUNTING: THE CASE OF THE PROFIT AND LOSS ACCOUNT

KNOWLEDGE MANAGEMENT VIA DEVELOPMENT IN ACCOUNTING: THE CASE OF THE PROFIT AND LOSS ACCOUNT KNOWLEDGE MANAGEMENT VIA DEVELOPMENT IN ACCOUNTING: THE CASE OF THE PROFIT AND LOSS ACCOUNT Tung-Hsiang Chou National Chengchi University, Taiwan John A. Vassar Louisiana State University in Shreveport

More information

Maximizing the Value of STM Content through Semantic Enrichment. Frank Stumpf December 1, 2009

Maximizing the Value of STM Content through Semantic Enrichment. Frank Stumpf December 1, 2009 Maximizing the Value of STM Content through Semantic Enrichment Frank Stumpf December 1, 2009 What is Semantics and Semantic Processing? Content Knowledge Framework Technology Framework Search Text Images

More information

Knowledge Representation. What is knowledge representation?

Knowledge Representation. What is knowledge representation? Knowledge Representation What is knowledge representation? Structured knowledge base Search and inference algorithms 1 Examples of knowledge representation in AI Logic for general reasoning Expert systems

More information

EFFICIENT INTEGRATION OF SEMANTIC TECHNOLOGIES FOR PROFESSIONAL IMAGE ANNOTATION AND SEARCH

EFFICIENT INTEGRATION OF SEMANTIC TECHNOLOGIES FOR PROFESSIONAL IMAGE ANNOTATION AND SEARCH EFFICIENT INTEGRATION OF SEMANTIC TECHNOLOGIES FOR PROFESSIONAL IMAGE ANNOTATION AND SEARCH Andreas Walter FZI Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany, awalter@fzi.de

More information

A framework of ontology revision on the semantic web: a belief revision approach

A framework of ontology revision on the semantic web: a belief revision approach University of Wollongong Research Online Faculty of Commerce - Papers (Archive) Faculty of Business 2005 A framework of ontology revision on the semantic web: a belief revision approach Seung Hwan Kang

More information

3) CHARLIE HULL. Implementing open source search for a major specialist recruiting firm

3) CHARLIE HULL. Implementing open source search for a major specialist recruiting firm Advice: The time spent on pre-launch analysis is worth the effort to avoid starting from scratch and further alienating already frustrated users by implementing a search which appears to have no connection

More information

User Interests: Definition, Vocabulary, and Utilization in Unifying Search and Reasoning

User Interests: Definition, Vocabulary, and Utilization in Unifying Search and Reasoning User Interests: Definition, Vocabulary, and Utilization in Unifying Search and Reasoning Yi Zeng 1, Yan Wang 1, Zhisheng Huang 2, Danica Damljanovic 3, Ning Zhong 1,4, Cong Wang 1 1 International WIC Institute,

More information

It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing

It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing Tom Gruber Founder and CTO, Intraspect Software Formerly at Stanford University tomgruber.org What is this talk about? What are ontologies?

More information

XML ALONE IS NOT SUFFICIENT FOR EFFECTIVE WEBEDI

XML ALONE IS NOT SUFFICIENT FOR EFFECTIVE WEBEDI Chapter 18 XML ALONE IS NOT SUFFICIENT FOR EFFECTIVE WEBEDI Fábio Ghignatti Beckenkamp and Wolfgang Pree Abstract: Key words: WebEDI relies on the Internet infrastructure for exchanging documents among

More information

A Study of Future Internet Applications based on Semantic Web Technology Configuration Model

A Study of Future Internet Applications based on Semantic Web Technology Configuration Model Indian Journal of Science and Technology, Vol 8(20), DOI:10.17485/ijst/2015/v8i20/79311, August 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Study of Future Internet Applications based on

More information

Agenda. Introduction. Semantic Web Architectural Overview Motivations / Goals Design Conclusion. Jaya Pradha Avvaru

Agenda. Introduction. Semantic Web Architectural Overview Motivations / Goals Design Conclusion. Jaya Pradha Avvaru Semantic Web for E-Government Services Jaya Pradha Avvaru 91.514, Fall 2002 University of Massachusetts Lowell November 25, 2002 Introduction Agenda Semantic Web Architectural Overview Motivations / Goals

More information

Analysing Web Ontology in Alloy: A Military Case Study

Analysing Web Ontology in Alloy: A Military Case Study Analysing Web Ontology in Alloy: A Military Case Study Jin Song Dong Jun Sun Hai Wang School of Computing, National University of Singapore, {dongjs,sunjing,wangh}@comp.nus.edu.sg Chew Hung Lee Hian Beng

More information

The Semantic Annotated Documents - From HTML to the Semantic Web

The Semantic Annotated Documents - From HTML to the Semantic Web Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 413 The Semantic Annotated Documents - From HTML to the Semantic

More information

Google indexed 3,3 billion of pages. Google s index contains 8,1 billion of websites

Google indexed 3,3 billion of pages. Google s index contains 8,1 billion of websites Access IT Training 2003 Google indexed 3,3 billion of pages http://searchenginewatch.com/3071371 2005 Google s index contains 8,1 billion of websites http://blog.searchenginewatch.com/050517-075657 Estimated

More information

Where is the Semantics on the Semantic Web?

Where is the Semantics on the Semantic Web? Where is the Semantics on the Semantic Web? Ontologies and Agents Workshop Autonomous Agents Montreal, 29 May 2001 Mike Uschold Mathematics and Computing Technology Boeing Phantom Works Acknowledgements

More information

Metadata and the Semantic Web and CREAM 0

Metadata and the Semantic Web and CREAM 0 Metadata and the Semantic Web and CREAM 0 1 Siegfried Handschuh, 1;2 Steffen Staab, 1;3 Alexander Maedche 1 Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe, Germany http://www.aifb.uni-karlsruhe.de/wbs

More information

Ontology Engineering for Product Development

Ontology Engineering for Product Development Ontology Engineering for Product Development Henson Graves Lockheed Martin Aeronautics Company Fort Worth Texas, USA henson.graves@lmco.com Abstract. This analysis is to identify requirements for a Description

More information

Ontology Research Group Overview

Ontology Research Group Overview Ontology Research Group Overview ORG Dr. Valerie Cross Sriram Ramakrishnan Ramanathan Somasundaram En Yu Yi Sun Miami University OCWIC 2007 February 17, Deer Creek Resort OCWIC 2007 1 Outline Motivation

More information

Proposal for Implementing Linked Open Data on Libraries Catalogue

Proposal for Implementing Linked Open Data on Libraries Catalogue Submitted on: 16.07.2018 Proposal for Implementing Linked Open Data on Libraries Catalogue Esraa Elsayed Abdelaziz Computer Science, Arab Academy for Science and Technology, Alexandria, Egypt. E-mail address:

More information

Two Layer Mapping from Database to RDF

Two Layer Mapping from Database to RDF Two Layer Mapping from Database to Martin Svihla, Ivan Jelinek Department of Computer Science and Engineering Czech Technical University, Prague, Karlovo namesti 13, 121 35 Praha 2, Czech republic E-mail:

More information

ARKIVO: an Ontology for Describing Archival Resources

ARKIVO: an Ontology for Describing Archival Resources ARKIVO: an Ontology for Describing Archival Resources Laura Pandolfo 1, Luca Pulina 1, and Marek Zieliński 2 1 Dipartimento di Chimica e Farmacia, Università di Sassari, via Vienna 2, 07100 Sassari Italy,

More information

Ontology Based Prediction of Difficult Keyword Queries

Ontology Based Prediction of Difficult Keyword Queries Ontology Based Prediction of Difficult Keyword Queries Lubna.C*, Kasim K Pursuing M.Tech (CSE)*, Associate Professor (CSE) MEA Engineering College, Perinthalmanna Kerala, India lubna9990@gmail.com, kasim_mlp@gmail.com

More information

Probabilistic Information Integration and Retrieval in the Semantic Web

Probabilistic Information Integration and Retrieval in the Semantic Web Probabilistic Information Integration and Retrieval in the Semantic Web Livia Predoiu Institute of Computer Science, University of Mannheim, A5,6, 68159 Mannheim, Germany livia@informatik.uni-mannheim.de

More information

A Method for Semi-Automatic Ontology Acquisition from a Corporate Intranet

A Method for Semi-Automatic Ontology Acquisition from a Corporate Intranet A Method for Semi-Automatic Ontology Acquisition from a Corporate Intranet Joerg-Uwe Kietz, Alexander Maedche, Raphael Volz Swisslife Information Systems Research Lab, Zuerich, Switzerland fkietz, volzg@swisslife.ch

More information

Using Data-Extraction Ontologies to Foster Automating Semantic Annotation

Using Data-Extraction Ontologies to Foster Automating Semantic Annotation Using Data-Extraction Ontologies to Foster Automating Semantic Annotation Yihong Ding Department of Computer Science Brigham Young University Provo, Utah 84602 ding@cs.byu.edu David W. Embley Department

More information