Material. Thought Question. Outline For Today. Example: Map-Coloring EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

Similar documents
Constraint Satisfaction Problems

CS 188: Artificial Intelligence Fall 2011

Constraint Satisfaction Problems

CSE 473: Artificial Intelligence

Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs)

Lecture 6: Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction

Example: Map-Coloring. Constraint Satisfaction Problems Western Australia. Example: Map-Coloring contd. Outline. Constraint graph

Constraint Satisfaction Problems. A Quick Overview (based on AIMA book slides)

Announcements. Reminder: CSPs. Today. Example: N-Queens. Example: Map-Coloring. Introduction to Artificial Intelligence

CS 188: Artificial Intelligence Fall 2008

Announcements. CS 188: Artificial Intelligence Fall Large Scale: Problems with A* What is Search For? Example: N-Queens

Constraint Satisfaction Problems

What is Search For? CSE 473: Artificial Intelligence. Example: N-Queens. Example: N-Queens. Example: Map-Coloring 4/7/17

CS W4701 Artificial Intelligence

CS 188: Artificial Intelligence

Constraint Satisfaction. AI Slides (5e) c Lin

Announcements. CS 188: Artificial Intelligence Fall Reminder: CSPs. Today. Example: 3-SAT. Example: Boolean Satisfiability.

CS 188: Artificial Intelligence Fall 2008

Constraint Satisfaction Problems. Chapter 6

CS 188: Artificial Intelligence

10/11/2017. Constraint Satisfaction Problems II. Review: CSP Representations. Heuristic 1: Most constrained variable

Constraint Satisfaction Problems Part 2

Announcements. CS 188: Artificial Intelligence Spring Today. A* Review. Consistency. A* Graph Search Gone Wrong

Chapter 6 Constraint Satisfaction Problems

CS 188: Artificial Intelligence. Recap: Search

Space of Search Strategies. CSE 573: Artificial Intelligence. Constraint Satisfaction. Recap: Search Problem. Example: Map-Coloring 11/30/2012

Australia Western Australia Western Territory Northern Territory Northern Australia South Australia South Tasmania Queensland Tasmania Victoria

Constraint Satisfaction Problems

CS 771 Artificial Intelligence. Constraint Satisfaction Problem

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence

CS 4100 // artificial intelligence

CS 188: Artificial Intelligence Spring Announcements

Constraint Satisfaction Problems

Announcements. CS 188: Artificial Intelligence Spring Production Scheduling. Today. Backtracking Search Review. Production Scheduling

Outline. Best-first search

What is Search For? CS 188: Artificial Intelligence. Example: Map Coloring. Example: N-Queens. Example: N-Queens. Constraint Satisfaction Problems

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries.

Constraint Satisfaction Problems

Recap: Search Problem. CSE 473: Artificial Intelligence. Space of Search Strategies. Constraint Satisfaction. Example: N-Queens 4/9/2012

Reading: Chapter 6 (3 rd ed.); Chapter 5 (2 nd ed.) For next week: Thursday: Chapter 8

K-Consistency. CS 188: Artificial Intelligence. K-Consistency. Strong K-Consistency. Constraint Satisfaction Problems II

CS 188: Artificial Intelligence Spring Today

Week 8: Constraint Satisfaction Problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems. Chapter 6

ARTIFICIAL INTELLIGENCE (CS 370D)

CS 188: Artificial Intelligence Fall 2011

Constraints. CSC 411: AI Fall NC State University 1 / 53. Constraints

Announcements. CS 188: Artificial Intelligence Fall 2010

Announcements. Homework 4. Project 3. Due tonight at 11:59pm. Due 3/8 at 4:00pm

What is Search For? CS 188: Artificial Intelligence. Constraint Satisfaction Problems

CS 188: Artificial Intelligence. What is Search For? Constraint Satisfaction Problems. Constraint Satisfaction Problems

Announcements. Homework 1: Search. Project 1: Search. Midterm date and time has been set:

CS 343: Artificial Intelligence

Artificial Intelligence Constraint Satisfaction Problems

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence,

Constraint Satisfaction Problems. slides from: Padhraic Smyth, Bryan Low, S. Russell and P. Norvig, Jean-Claude Latombe

Spezielle Themen der Künstlichen Intelligenz

Artificial Intelligence

Constraint Satisfaction. CS 486/686: Introduction to Artificial Intelligence

Constraint Satisfaction Problems

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1

Foundations of Artificial Intelligence

Map Colouring. Constraint Satisfaction. Map Colouring. Constraint Satisfaction

Constraint Satisfaction Problems

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 30 January, 2018

Artificial Intelligence

Artificial Intelligence

Outline. Best-first search

Example: Map coloring

Constraint Satisfaction Problems (CSP)

Local Search and Constraint Reasoning. CS 510 Lecture 3 October 6, 2009

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 6 February, 2018

Constraint Satisfaction Problems

Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3)

Announcements. CS 188: Artificial Intelligence Spring Today. Example: Map-Coloring. Example: Cryptarithmetic.

Constraint Satisfaction Problems Chapter 3, Section 7 and Chapter 4, Section 4.4 AIMA Slides cstuart Russell and Peter Norvig, 1998 Chapter 3, Section

CS 188: Artificial Intelligence. Recap Search I

AI Fundamentals: Constraints Satisfaction Problems. Maria Simi

Constraint Satisfaction Problems

Review I" CMPSCI 383 December 6, 2011!

What is Search For? CS 188: Ar)ficial Intelligence. Constraint Sa)sfac)on Problems Sep 14, 2015

Constraint Satisfaction Problems

CS 4100/5100: Foundations of AI

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

Constraint Satisfaction Problems (CSP) (Where we postpone making difficult

Constraint Satisfaction Problems (CSPs) Introduction and Backtracking Search

CSE 573: Artificial Intelligence

Moving to a different formalism... SEND + MORE MONEY

Today. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 5. Constraint Satisfaction Problems (CSP) CSP Definition

Module 4. Constraint satisfaction problems. Version 2 CSE IIT, Kharagpur

The Einstein Puzzle. Hints to Einstein Puzzle. Hints to Einstein Puzzle (cont) Specify Einstein Puzzle in SAT. Specify Einstein Puzzle in SAT

Constraint satisfaction problems. CS171, Winter 2018 Introduction to Artificial Intelligence Prof. Richard Lathrop

Local Search for CSPs

CONSTRAINT SATISFACTION

CMU-Q Lecture 7: Searching in solution space Constraint Satisfaction Problems (CSPs) Teacher: Gianni A. Di Caro

Solving Problems by Searching: Constraint Satisfaction Problems

Transcription:

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 6, 4/20/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Material Read all of chapter 5 Read Fahiem Bacchus Constraints Tutorial on the web (dated Oct 25 th, 2001). Reminder: Homework: Due Today. Do: Problems 3.4, 3.7 3.10, 4.7, and 4.16. for 4.16, do both 8-puzzle & 8-queens, and also implement the two simple heuristics h1 and h2 given in the book. Compare all of them. Also for 4.16, devise your own novel heuristics for A* for the 8-puzzle & 8- queens problem. 4/18/2005 EE562 1 4/18/2005 EE562 2 Rest of Chapter 5 Outline For Today Thought Question Let us assume that there are five houses of different colors next to each other on the same road. In each house lives a man of a different nationality. Every man has his favorite drink, his favorite brand of cigarettes, and keeps pets of a particular kind. The Englishman lives in the red house. The Swede keeps dogs. The Dane drinks tea. The green house is just to the left of the white one. The owner of the green house drinks coffee. The Pall Mall smoker keeps birds. The owner of the yellow house smokes Dunhills. The man in the center house drinks milk. The Norwegian lives in the first house. The Blend smoker has a neighbor who keeps cats. The man who smokes Blue Masters drinks bier. The man who keeps horses lives next to the Dunhill smoker. The German smokes Prince. The Norwegian lives next to the blue house. The Blend smoker has a neighbor who drinks water. Question for you to answer: Who keeps the fish? 4/18/2005 EE562 3 4/18/2005 EE562 4 Constraint satisfaction problems (CSPs) Example: Map-Coloring Standard search problem: state is a "black box any data structure that supports successor function, heuristic function, and goal test CSP: state is defined by variables X i with values from domain D i goal test is a set of constraints specifying allowable combinations of values for subsets of variables This is a simple example of a formal representation language Allows useful general-purpose algorithms with more power than standard search algorithms (because of the special nature of the search space) 4/18/2005 EE562 5 Variables WA, NT, Q, NSW, V, SA, T Domains D i = {red,green,blue} Constraints : adjacent regions must have different colors e.g., WA NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)} 4/18/2005 EE562 6 1

Example: Map-Coloring Constraint graph Binary CSP: each constraint relates two variables Constraint graph: nodes are variables, arcs are constraints Solutions are complete and consistent assignments, e.g., WA = red, NT = green,q = red,nsw = green,v = red,sa = blue,t = green 4/18/2005 EE562 7 4/18/2005 EE562 8 Backtracking search Improving backtracking efficiency General-purpose methods can give huge gains in speed: Which variable should be assigned next? In what order should its values be tried? Can we detect inevitable failure early? Can we take better advantage of the problem structure? 4/18/2005 EE562 9 4/18/2005 EE562 10 Most constrained variable Most constrained variable: choose the variable with the fewest legal values Least constraining value Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables (useful when we want only to find one set of sat. values, not all) a.k.a. minimum remaining values (MRV) heuristic 4/18/2005 EE562 11 Combining these heuristics makes 1000 queens feasible 4/18/2005 EE562 12 2

Arc consistency Arc consistency algorithm AC-3 Simplest form of propagation makes each arc consistent X Y is consistent iff for every value x of X there is some allowed y If X loses a value, neighbors of X need to be rechecked Arc consistency detects failure earlier than forward checking Can be run as a preprocessor or after each assignment 4/18/2005 EE562 13 Time complexity: O(n 2 d 3 ) (AC-4 is O(n 2 d 2 )) 4/18/2005 EE562 14 Stronger Forms of Consistency Backtracking search Def: k-consistency: A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any k th variable. Example: 1-consistency (node-consistency): each variable is consistent itself 2-consistency: same as arc-consistency 3-consistency: (path-consistency), any pair of adjacent variables can always be extended to third variable Strongly k-consistent: if it is j-consistent, for j = k down to 1. Note: if CSP is strongly n-consistent, then we can solve problem in O(nd) time (choose a value for first variable, then choose a value for some second one, etc.) 4/18/2005 EE562 15 4/18/2005 EE562 16 Intelligent Backjumping Suppose we search using order: Q, NSW, V, T, SA and have assignment: red, green, blue, red respectively. We go to assign SA, nothing works, so back up to T and try blue, green for T. But this is wasteful since changing T is not going to change the values of the variables constraining SA. Intelligent backjumping is how we get around this. Intelligent Backjumping For each variable, when we find no assignment works (e.g., for SA) we backjump to last var in its conflict set SA s conflict set is Q, NSW, and V, so from SA we backjump over T and directly to V. Often we build up the conflict set dynamically (e.g., backtracking search can do this while checking values) 4/18/2005 EE562 17 4/18/2005 EE562 18 3

Intelligent Backjumping Forward checking also can compute conflict set In fact, forward checking and backjumping can be redundant Conflict-directed backjumping Reason for failure might not be detected. WA,NSW 1 st to assign and are red, SA is last. In this order, all colors of NT will fail, but NT is consistent (nothing wrong). We keep track of children s conflict set and propagate it up so we know what cause of problem is: Variable X i and most recent conflict is X π(i) Do: conf(x i ) conf(x i ) conf(x π(i) ) { X i } 4/18/2005 EE562 19 4/18/2005 EE562 20 Local (iterative) search for CSPs Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned To apply to CSPs : allow states with unsatisfied constraints operators reassign variable values (perhaps even randomly change state) Variable selection: randomly select any conflicted variable and change its value. Value selection by min-conflicts heuristic: choose value that violates the fewest constraints i.e., hill-climb with h(n) = total number of violated constraints Example: 4-Queens States: 4 queens in 4 columns (4 4 = 256 states) Actions : move queen in column Goal test : no attacks Evaluation: h(n) = number of attacks Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000), except 4/18/2005 EE562 21 4/18/2005 EE562 22 Performance of min-conflicts Problem Structure Given random initial state, can solve n-queens in almost constant time for arbitrary n with high prob. This appears to be true for any randomly-generated CSP except in a narrow range of the ratio: R = number_of_constraints/number_of_variables Tasmania and mainland are independent subproblems Identifiable as connected components of constraint graph 4/18/2005 EE562 23 4/18/2005 EE562 24 4

Problem Structure Independent problems can be solved, well, independently. Example: if each sub-problem has c out of n variables, worse case solution will be O((n/c)d c ) which is linear in n this can be a big constant, but in general it is much better to solve independent problems separately. Example: n=80, d=2, c=20 2^80 = 4 billion years at 10 million nodes/sec 4*2^20 = 0.4 seconds at 10 million nodes/sec only 0.1 seconds of we exploit inherent parallelism in problem. Tree-structured CSPs Thm: if the constraint graph has no loops (i.e., a tree), CSP can be solved in O(nd^2) time. Compare this to general worse-case time O(d^n) Consider algorithm: 1) choose any var as root, label as X_1. Label all other variables so that vars closer to root have lower numbers than those farther away. This gives us a directed acyclic graph (DAG) with variables having at most one parent each. 4/18/2005 EE562 25 4/18/2005 EE562 26 Tree-structured CSPs Nearly Tree-structured CSPs Conditioning: instantiate a variable, prune its neighbors domains: 2) from leaves moving up to root, apply arc consistency between parent and child. I.e., call RemoveInconsistentParent(X π(j),x j ) 3) Starting from root, choose a consistent assignment, then for each child choose a consistent assignment (guaranteed to exist), and keep doing down tree until you hit leaves. Due to the directional arc-consistency, this is guaranteed to work! Custset conditioning: instantiate (in all ways) a set of variables such that the remaining constant graph is a tree. Custset size c runtime O(d c (n-c)d 2 ), fast if c is small!! 4/18/2005 EE562 27 4/18/2005 EE562 28 Nearly Tree-structured CSPs General Algorithm: Choose a subset S from VARIABLES[csp] such that graph becomes a tree after removal of S. S is called a cycle cutset. It has c variables For each possible assignment of vars in S (O(d^c)) satisfying constraints on S, do: remove from remaining variables values that are inconsistent with assignments for S, and If remaining CSP has a solution (easy to find since remaining vars is a tree), return it together with the assignment to S Problems: custset might be as large as n-2 variables. when? Consider a clique Finding smallest cycle cutset is NP-hard. Overall approach is called cutset conditioning, originally developed for probabilistic inference. Nearly Tree-structured CSPs We can characterize how difficult a given CSP problem might be using a generalized notion of tree, called a k-tree A 1-tree is just a normal tree: a graph that has no cycles a graph where there is one and only one path that connects any two arbitrarily chosen nodes. A path is also a tree. 4/18/2005 EE562 29 4/18/2005 EE562 30 5

Nearly Tree-structured CSPs A k-tree is defined as follows: Any fully connected set of (k+1) nodes is a k-tree Given any k-tree on n nodes, we can get another k-tree with (n+1) nodes, by connecting that new node to a set k other nodes that are fully connected. Example: 2-trees Thm: We can solve any CSP on a k-tree in time O(nd k+1 ) 4/18/2005 EE562 31 Summary Of Today CSPs are a special kind of problem: states defined by values of a fixed set of variables goal test defined by constraints on variable values Backtracking = depth-first search with one variable assigned per node Variable ordering and value selection heuristics help significantly Forward checking prevents assignments that guarantee later failure Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies Iterative min-conflicts is usually effective in practice For Next time: Read Bacchus Paper!! 4/18/2005 EE562 32 6