The course that gives CMU its Zip! Internetworking Nov 20, 2001

Similar documents
Giving credit where credit is due

Giving credit where credit is due

Internetworking Nov 25, 2009"

Internetworking April 13, 2006

The course that gives CMU its Zip! Internetworking Nov 19, 2002

A Client-Server Transaction The course that gives CMU its Zip! Internetworking Nov. 4, 2008

Network Programming. ò Network Protocols ò Communication Connection ò Naming

Client-server model The course that gives CMU its Zip! Network programming Nov 27, Using ports to identify services.

Distributed Systems. Distributed Systems Within the Internet Nov. 9, 2011

Hyo-bong Son Computer Systems Laboratory Sungkyunkwan University

Introduction to Networking

CS155b: E-Commerce. Lecture 3: Jan 16, How Does the Internet Work? Acknowledgements: S. Bradner and R. Wang

Network Programming: Part I

Network Programming November 3, 2008

Introduction to Socket Programming

DNS. DNS is an example of a large scale client-server application.

Application Programming Interfaces

NETWORK AND SYSTEM PROGRAMMING

Network Layer, Part 1 Internet Architecture. History

CS 455 Internet Architecture, Page 3 ffl By 1985, the ARPANET was heavily used and congested; the National Science Foundation (NSF) initiated the NSFN

Interprocess Communication Mechanisms

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1

CS321: Computer Networks Introduction to Application Layer

Types of Transfer. Connection-oriented Transfer. Connectionless Transfer. Networks generally provide two types of communication. Connection-oriented

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms

Communication Networks

Interprocess Communication Mechanisms

Network Programming Worksheet 2. Simple TCP Clients and Servers on *nix with C.

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Oral. Total. Dated Sign (2) (5) (3) (2)

Networked Applications: Sockets. End System: Computer on the Net

The Internet. Overview. Network building blocks

CS118 Discussion 1B, Week 1. Taqi Raza BUNCHE 1209B, Fridays 12:00pm to 1:50pm

Tutorial on Socket Programming

How do we Communicate? Introduction to Unix Network Programming. What does Alice do? What does Bob do? Two simplest networking programs

Chapter Motivation For Internetworking

Network Socket Programming - 2 BUPT/QMUL

Networking and Internetworking 1

Operating Systems CS 571

6 Computer Networks 6.1. Foundations of Computer Science Cengage Learning

Network.... communication system for connecting end- systems. End-systems a.k.a. hosts PCs, workstations dedicated computers network components

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

Sockets. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University Embedded Software Lab.

PART X. Internetworking Part 1. (Concept, IP Addressing, IP Routing, IP Datagrams, Address Resolution)

Local Area Networks; Ethernet

A Client-Server Exchange

Session 2. Background. Lecture Objectives

Copyleft 2005, Binnur Kurt. Objectives

Sockets. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

ECE 435 Network Engineering Lecture 2

Kent State University

Internet protocol stack. Internetworking II: Network programming. April 20, UDP vs TCP. Berkeley Sockets Interface.

UNIX Network Programming. Overview of Socket API Network Programming Basics

Networking and TCP/IP. John Kalbach November 8, 2004

Processes communicating. Network Communication. Sockets. Addressing processes 4/15/2013

INTERNET ARCHITECTURE & PROTOCOLS

Significance of TCP/IP Model Divya Shree Assistant Professor (Resource Person), Department of computer science and engineering, UIET, MDU, Rohtak

The TCP/IP Architecture Jean Yves Le Boudec 2014

The TCP/IP Architecture Jean Yves Le Boudec 2014

Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar

The TCP/IP Architecture. Jean Yves Le Boudec 2015

The TCP/IP Architecture. Jean Yves Le Boudec 2015

Chapter 4 The Internet

Lab 0. Yvan Petillot. Networks - Lab 0 1

Socket Programming. CSIS0234A Computer and Communication Networks. Socket Programming in C

Internetworking I: Basics. November 11, 1999

Network: infrastructure (hard/software) that enables endpoints (hosts) to communicate

The TCP/IP Architecture. Jean Yves Le Boudec 2015

Introduction to Computer Science (I1100) Networks. Chapter 6

Internetworking II: Network programming. April 20, 2000

0 TCP/IP overview. 0.1 The Internet

Principles behind data link layer services

CSMC 412. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala Set 2. September 15 CMSC417 Set 2 1

COMS Introduction to Computers. Networking

Principles behind data link layer services:

Principles behind data link layer services:

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

COMP/ELEC 429/556 Introduction to Computer Networks

Computer Networking. Chapter #1. Dr. Abdulrhaman Alameer

COMPONENTS OF DATA COMMUNICATION

IP Address Assignment

Socket Programming for TCP and UDP

Review of Network Technologies

Networks and Their Abstractions. CS439: Principles of Computer Systems April 9, 2018

UNIT IV- SOCKETS Part A

Dr./ Ahmed Mohamed Rabie Sayed

CPEG514 Advanced Computer Networks. Atef Abu Salim University of Nizwa Spring 2013/2014

PA #2 Reviews. set_name, get_name, del_name. Questions? Will be modified after PA #4 ~

Chapter 15 Networks. Chapter Goals. Networking. Chapter Goals. Networking. Networking. Computer network. Node (host) Any device on a network

Introduction to Computer Networks INTRODUCTION TO COMPUTER NETWORKS

SOCKET PROGRAMMING. What is a socket? Using sockets Types (Protocols) Associated functions Styles

03 The Internet Model and TCP/IP

6 Computer Networks 6.1. Foundations of Computer Science Cengage Learning

Goals and topics. Verkkomedian perusteet Fundamentals of Network Media T Circuit switching networks. Topics. Packet-switching networks

The TCP/IP Architecture. Jean Yves Le Boudec 2017

1: Review Of Semester Provide an overview of encapsulation.

Computer Networks Prof. Ashok K. Agrawala

Network Communication

The TCP/IP Architecture. Jean Yves Le Boudec 2017

CSE 333 Lecture C++ final details, networks

Transcription:

15-213 The course that gives CMU its Zip! Internetworking Nov 20, 2001 Topics internets The Global IP Internet Programmer s view of the Internet

A client-server transaction Every network application is based on the client-server model: a server process and one or more client processes server manages some resource. server provides service by manipulating resource for clients. client process 4. client handles response 1. client sends request 3. server sends response server process 2. server handles request resource Note: clients and servers are processes running on hosts (can be the same or different hosts). 2

Hardware organization of a network host CPU chip register file ALU system bus memory bus MI I/O bridge main memory Expansion slots I/O bus USB controller graphics adapter disk controller network adapter mousekeyboard monitor disk network 3

Computer networks A network is a hierarchical system of boxes and wires organized by geographical proximity LAN (local area network) spans a building or campus. Ethernet is most prominent example. WAN (wide-area network) spans country or world. typically high-speed point-to-point phone lines. An internetwork (internet) is an interconnected set of networks. The IP Internet is the most famous example of an internetwork. Let s see how we would build an internetwork from the ground up. 4

Lowest level: Ethernet segment Ethernet segment consists of a collection of hosts connected by wires (twisted pairs) to a hub. Spans room or floor in a building. host host host 100 Mb/s hub 100 Mb/s ports Operation Each Ethernet adapter has a unique 48-bit address. Hosts send bits to any other host in chunks called frames. Hub slavishly copies each bit from each port to every other port. every host sees every bit. 5

Next level: Bridged Ethernet segment Spans building or campus. Bridges cleverly learn which hosts are reachable from which ports and then selectively copy frames from port to port. A host host host host host hub B X bridge 100 Mb/s 100 Mb/s hub 1 Gb/s host host host hub host 100 Mb/s bridge 100 Mb/s hub Y host host host C 6

Conceptual view of LANs For simplicity, hubs, bridges, and wires are often shown as a collection of hosts attached to a single wire: host host... host 7

Next level: internets Multiple incompatible LANs can be physically connected by specialized computers called routers. The connected networks are called an internet. host host... host host host... host LAN 1 router router router WAN WAN LAN 2 LAN 1 and LAN 2 might be completely different, totally incompatible LANs (e.g., Ethernet and ATM) 8

The notion of an internet protocol How is it possible to send bits across incompatible LANs and WANs? Solution: protocol software running on each host and router smooths out the differences between the different networks. Implements an internet protocol (i.e., set of rules) that governs how hosts and routers should cooperate when they transfer data from network to network. TCP/IP is the protocol for the global IP Internet. 9

What does an internet protocol do? Naming scheme The internet protocol defines a uniform format for host addresses. Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it. Delivery mechanism The internet protocol defines a standard transfer unit (packet) Packet consists of header and payload header: contains info such as packet size, source and destination addresses. payload: contains data bits sent from source host. 10

Transferring data over an internet Host A client Host B server (1) data (8) data internet packet protocol software protocol software (2) data PH FH1 (7) data PH FH2 LAN1 frame LAN1 adapter Router LAN2 adapter (3) data PH LAN1 FH1 LAN1 adapter LAN2 adapter LAN2 frame (6) data PH FH2 LAN2 (4) data PH FH1 data PH FH2 (5) protocol software 11

Other issues We are glossing over a number of important questions: What if different networks have different maximum frame sizes? (segmentation) How do routers know where to forward frames? How are routers informed when the network topology changes? What if packets get lost? These questions form the heart of the area of computer systems known as networking. 12

Global IP Internet Most famous example of an internet. Based on the TCP/IP protocol family. IP (Internet protocol) :» provides basic naming scheme and unreliable delivery capability of packets (datagrams) from host-to-host. UDP (Unreliable Datagram Protocol)» uses IP to provide unreliable datagram delivery from processto-process. TCP (Transmission Control Protocol)» uses IP to provide reliable byte streams (like files) from process-to-process. Accessed via a mix of Unix file I/O and functions from the Berkeley sockets interface. 13

Hardware and software organization of an Internet application Internet client host Internet server host client user code server sockets interface (system calls) hardware interface (interrupts) TCP/IP network adapter kernel code hardware TCP/IP network adapter Global IP Internet 14

Basic Internet components An Internet backbone is a collection of routers (nationwide or worldwide) connected by highspeed point-to-point networks. A Network Access Point (NAP) is a router that connects multiple backbones (sometimes referred to as peers). Regional networks are smaller backbones that cover smaller geographical areas (e.g., cities or states) A point of presence (POP) is a machine that is connected to the Internet. Internet Service Providers (ISPs) provide dialup or direct access to POPs. 15

The Internet circa 1993 In 1993, the Internet consisted of one backbone (NSFNET) that connected 13 sites via 45 Mbs T3 links. Merit (Univ of Mich), NCSA (Illinois), Cornell Theory Center, Pittsburgh Supercomputing Center, San Diego Supercomputing Center, John von Neumann Center (Princeton), BARRNet (Palo Alto), MidNet (Lincoln, NE), WestNet (Salt Lake City), NorthwestNet (Seattle), SESQUINET (Rice), SURANET (Georgia Tech). Connecting to the Internet involved connecting one of your routers to a router at a backbone site, or to a regional network that was already connected to the backbone. 16

The Internet backbone (circa 1993) 17

Current NAP-based Internet architecture In the early 90 s commercial outfits were building their own high-speed backbones, connecting to NSFNET, and selling access to their POPs to companies, ISPs, and individuals. In 1995, NSF decommissioned NSFNET, and fostered creation of a collection of NAPs to connect the commercial backbones. Currently in the US there are about 50 commercial backbones connected by ~12 NAPs (peering points). Similar architecture worldwide connects national networks to the Internet. 18

Internet connection hierarchy NAP NAP NAP Backbone Backbone Backbone Backbone colocation sites POP POP POP POP POP POP POP T3 Regional net ISP Big Business POP POP T1 ISP (for individuals) POP POP POP POP T1 Small Business dialup Pgh employee POP dialup DC employee 19

Network access points (NAPs) Note: Peers in this context are commercial backbones..droh 20 Source: Boardwatch.com

MCI/WorldCom/UUNET Global Backbone 21 Source: Boardwatch.com

Programmer s view of the Internet Hosts are mapped to a set of 32-bit IP addresses. 128.2.203.179 The set of IP addresses is mapped to a set of identifiers called Internet domain names. 128.2.203.179 is mapped to www.cs.cmu.edu A process on one host communicates with a process on another host over a connection. 22

1. IP Addresses 32-bit IP addresses are stored in an IP address struct IP addresses are always stored in memory in network byte order (big-endian byte order) /* Internet address structure */ struct in_addr { unsigned int s_addr; /* network byte order (big-endian) */ }; Handy network byte-order functions: htonl: convert long int from host to network byte order. htons: convert short int from host to network byte order. ntohl: convert long int from network to host byte order. ntohs: convert short int from network to host byte order. 23

Dotted decimal notation By convention, each by in a 32-bit IP address is represented by its decimal value and separated by a period IP address 0x8002C2F2 = 128.2.194.242 Functions for converting between binary IP addresses and dotted decimal strings: inet_aton: converts a dotted decimal string to an IP address in network byte order. inet_ntoa: converts an IP address in network by order to its corresponding dotted decimal string. n denotes network representation. a denotes application representation. 24

2. Internet Domain Names unnamed root mil edu gov com first-level domain names mit cmu berkeley amazon second-level domain names cs ece www 208.216.181.15 third-level domain names cmcl pdl kittyhawk 128.2.194.242 imperial 128.2.189.40 25

Domain Naming System (DNS) The Internet maintains a mapping between IP addresses and domain names in a distributed database called DNS. Conceptually, we can think of the DNS database as being millions of host entry structures: /* DNS host entry structure */ struct hostent { }; char *h_name; /* official domain name of host */ char **h_aliases; /* null-terminated array of domain names */ int h_addrtype; /* host address type (AF_INET) */ int h_length; /* length of an address, in bytes */ char **h_addr_list; /* null-terminated array of in_addr structs*/ Functions for retrieving host entries from DNS: gethostbyname: query key is a DNS domain name gethostbyaddr: query key is a an IP address 26

Properties of DNS host entries Each host entry is an equivalence class of domain names and IP addresses. Each host has a locally defined domain name localhost which always maps to the loopback address 127.0.0.1 Different kinds of mappings are possible: Simple case: 1-1 mapping between domain name and IP address: kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242 Multiple domain names mapped to the same IP address: eecs.mit.edu and cs.mit.edu both map to 18.62.1.6 Multiple domain names mapped to multiple IP addresses: aol.com and www.aol.com map to three different IP addresses Some valid domain name don t map to any IP address: for example: cmcl.cs.cmu.edu 27

hostname: a program that queries DNS int main(int argc, char **argv) { /* argv[1] is a domain name char **pp; * or dotted decimal IP addr */ struct in_addr addr; struct hostent *hostp; if (inet_aton(argv[1], &addr)!= 0) hostp = Gethostbyaddr((const char *)&addr, sizeof(addr), AF_INET); else hostp = Gethostbyname(argv[1]); printf("official hostname: %s\n", hostp->h_name); for (pp = hostp->h_aliases; *pp!= NULL; pp++) printf("alias: %s\n", *pp); } for (pp = hostp->h_addr_list; *pp!= NULL; pp++) { addr.s_addr = *((unsigned int *)*pp); printf("address: %s\n", inet_ntoa(addr)); } 28

3. Internet connections Clients and servers communicate by sending streams of bytes of connections: point-to-point, full-duplex, and reliable. A socket is an endpoint of a connection Socket address is an IPaddress:port pair A port is a 16-bit integer that identifies a process: ephemeral port: assigned automatically on client when client makes a connection request well-known port: associated with some service provided by a server (e.g., port 80 is associated with Web servers) A connection is uniquely identified by the socket addresses of its endpoints (socket pair) (cliaddr:cliport, servaddr:servport) 29

Putting it all together: Anatomy of an Internet connection client socket address 128.2.194.242:51213 server socket address 208.216.181.15:80 client connection socket pair (128.2.194.242 :51213, 208.216.181.15:80) server (port 80) client host address 128.2.194.242 server host address 208.216.181.15 30

Next time How to use the sockets interface to program the Internet. 31