Advanced model of steel joints loaded by internal forces from 3D frame structures

Similar documents
Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla

Available online at ScienceDirect. Procedia Engineering 160 (2016 )

SEMI-RIGID JOINTS TO TUBULAR COLUMNS AND THEIR USE IN SEMI-CONTINUOUS FRAME DESIGN

studying of the prying action effect in steel connection

EVALUATION OF THE COMPLETE MOMENT-ROTATION CURVE of bolted beam-to-column connections using mechanical models

1.2 Connection configurations:

Modelling Flat Spring Performance Using FEA

Strength of Overlapping Multi-Planar KK Joints in CHS Sections

Guidelines for proper use of Plate elements

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections

Optimum design of Geodesic dome s jointing system

PRE-DESIGN OF SEMI-RIGID JOINTS IN STEEL FRAMES

Experimental Behaviour of I Beam SHS Column Steel Joints with Hollo-bolts

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks

Difficulties in FE-modelling of an I- beam subjected to torsion, shear and bending

Scientific Manual FEM-Design 17.0

OPTIMIZATION OF ENERGY DISSIPATION PROPERTY OF ECCENTRICALLY BRACED STEEL FRAMES

Simplified modelling of steel frame connections under cyclic loading

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Finite Element Model for Axial Stiffness of Metal-Plate-Connected Tension Splice Wood Truss Joint

Case Study - Vierendeel Frame Part of Chapter 12 from: MacLeod I A (2005) Modern Structural Analysis, ICE Publishing

Manual Steel Connections

A new Aluminium Structural Analysis and Design Methodology

Embedded Reinforcements

Simulation of a Steel Wire Straightening Taking into Account Nonlinear Hardening of Material

D DAVID PUBLISHING. Stability Analysis of Tubular Steel Shores. 1. Introduction

Chapter 3 Analysis of Original Steel Post

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Design of Arm & L-bracket and It s Optimization By Using Taguchi Method

Introduction. Section 3: Structural Analysis Concepts - Review

Orbital forming of SKF's hub bearing units

Advanced Professional Training

Experimental Investigation of Moment-Rotation Curves of End-Plate Connection using Sinusoidal Beam

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

THREE DIMENSIONAL ACES MODELS FOR BRIDGES

Steel connections design According to EC3. User s Manual

Modeling Foundations in RS

IDEA StatiCa Steel. Release notes DRAFT Version 9.0

General 3D joint. 1 New project

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY

(Based on a paper presented at the 8th International Modal Analysis Conference, Kissimmee, EL 1990.)

SAFI Sample Projects. Design of a Steel Structure. SAFI Quality Software Inc. 3393, chemin Sainte-Foy Ste-Foy, Quebec, G1X 1S7 Canada

Tutorial 1: Welded Frame - Problem Description

Engineering Solid Mechanics

Configuration Optimization of Anchoring Devices of Frame-Supported Membrane Structures for Maximum Clamping Force

CE2351-STRUCTURAL ANALYSIS II

Lesson 6: Assembly Structural Analysis

Stiffness Analysis of the Tracker Support Bracket and Its Bolt Connections

MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING

COMPUTER AIDED ENGINEERING. Part-1

WP1 NUMERICAL BENCHMARK INVESTIGATION

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754

DESIGN AND ANALYSIS OF MEMBRANE STRUCTURES IN FEM-BASED SOFTWARE MASTER THESIS

FOUNDATION IN OVERCONSOLIDATED CLAY

ORIGAMI - Folded Plate Structures, Engineering

Connection Study Environment

Modeling and Simulation for Aircraft Structural Repair Using Modern FEA Tools

DEVELOPMENT OF A SIMPLIFIED MODEL FOR JOINTS IN STEEL STRUCTURES

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure

ATENA Program Documentation Part 4-2. Tutorial for Program ATENA 3D. Written by: Jan Červenka, Zdenka Procházková, Tereza Sajdlová

Behaviour of cold bent glass plates during the shaping process

Program DSTV. Typified Connections in Steel Building Construction acc. to EC 3 and DIN (2. Edition) Program Description

Topic Training Load generators

Finite Element Buckling Analysis Of Stiffened Plates

CHAPTER 1. Introduction

STRUCTURAL MEMBRANES 2013

Address for Correspondence

What makes Bolt Self-loosening Predictable?

IJMH - International Journal of Management and Humanities ISSN:

CSiBridge 2015 (Version ) Release Notes

STRENGTH ANALYSIS OF PIN CONNECTIONS USING COMPUTER AIDED SYSTEMS

Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet

Simulation of AJWSP10033_FOLDED _ST_FR

Application of Predictive Engineering Tool (ABAQUS) to Determine Optimize Rubber Door Harness Grommet Design

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1

Using Computer Aided Engineering Processes in Packaging Design Development

SETTLEMENT OF A CIRCULAR FOOTING ON SAND

The part to be analyzed is the bracket from the tutorial of Chapter 3.

Global to Local Model Interface for Deepwater Top Tension Risers

The Open Construction and Building Technology Journal

E and. L q. AE q L AE L. q L

midas Civil Advanced Webinar Date: February 9th, 2012 Topic: General Use of midas Civil Presenter: Abhishek Das Bridging Your Innovations to Realities

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Moment-rotation Behavior of Shallow Foundations with Fixed Vertical Load Using PLAXIS 3D

Collapse Analyses on Spirally Welded Tapered Tubes using EC3 Generated Imperfections

Tutorial. External Application Checks using Excel

Non-Linear Analysis of Base Plates in Automated Storage Systems

Development of Backhoe Machine By 3-D Modelling using CAD Software and Verify the Structural Design By using Finite Element Method

Paper # Application of MSC.Nastran for Airframe Structure Certification Sven Schmeier

MODELING AND ANALYSIS OF LATTICE TOWERS WITH MORE ACCURATE MODELS

Altair HTC09 Ludwigsburg 2nd-4th November 2009

This document gives a detailed summary of the new features and improvements of FEM- Design version 16.

Engineering Analysis


[3] Rigid Body Analysis

Static and dynamic simulations for automotive interiors components using ABAQUS

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved.

3. Check by Eurocode 3 a Steel Truss

Through Process Modelling of Self-Piercing Riveting

SDC Verifier is a powerful post-processor extension for Simcenter 3D which automates the full FEA workflow.

Transcription:

Advanced model of steel joints loaded by internal forces from 3D frame structures Lubomír Šabatka, IDEA RS s.r.o František Wald, FSv ČVUT Praha Jaromír Kabeláč, Hypatia Solutions s.r.o Drahoslav Kolaja, IDEA RS s.r.o. Abstract Steel frame structures are commonly analyzed three dimensionally by 1D elements. Connection of elements to joints is assumed to be perfectly rigid, nominally pinned or semi-rigid. The new CBFEM method allows to properly model the connection. The bending/deformation stiffness, resistance and deformation capacity of connections of individual members is evaluated. CBFEM model is loaded with appropriate internal forces obtained by global analysis. The article explains loading of a detailed 3D model of a joint. It also addresses situation where actual structural design of the joint does not match theoretical expectations of the global analysis. CBFEM new level of analysis steel joints and connections FEM is a general method commonly used for structural analysis. Application of FEM for research models of joints is studied from eighties, e.g. (Virdi, 1999). The elastic-plastic analysis is required. In fact, the results of FEM analysis are useless for joint design without validation of models to experiments. For design of joints was hence developed the model taking the finite element analyses for distribution of internal forces in joint and the components to analyse connectors itself, Component based finite element method (CBFEM). The material is modelled on design level as bilinear. In CBFEM model, both webs and flanges of connected member are modelled using plates for which there is known and verified solution available. The fasteners bolts and welds are the most difficult part of the analysis model. Modelling of such elements in general FEM programs is difficult because these programs do no offer required properties. Thus special FEM components had to be developed to model the welds and bolts behaviour in a joint. Joints of members are modelled as massless points when analysing steel frame or girder structure. Equilibrium equations are assembled in joints and after solving the whole structure internal forces on ends of beams are determined. In fact, the joint is loaded by those forces. The resultant of forces from all members in the joint is zero the whole joint is in equilibrium. The real shape of joint is not known in the structural model. The engineer only defines, if the joint is assumed to be rigid or hinged. To design the joint properly, it is necessary to create a verified model of a joint which respects the real state. End segments of members are modelled using plate/wall elements.

Figure 1 Theoretical (massless) joint and the real shape of the joint without modified member ends. For better precision of CBFEM model, the end forces on 1D members are applied as loads on segment ends. Six components of internal forces from the theoretical node are transferred to the outer end of segment the values of forces are kept but the moments are modified by the actions of forces on corresponding arms. Inner ends of segments are not connected. The connection must be modelled. So called manufacturing operations are used in CBFEM method to model the connection. Manufacturing operations are above else: cuts, offsets, holes, stiffeners, ribs, end plates and splices, angles, gusset plates and other. Fastening elements are added to them welds and bolts. Steel plates by shell model All parts of 1D members and all additional plates are modelled as plate/walls. These elements are made of steel (metal in general) and the behaviour of this material is significantly nonlinear. Nonlinearity (plasticity) must be respected in the calculation. The real stress-strain diagram of steel is replaced by the ideal plastic material for design purposes in building practice see the figure. The advantage of ideal plastic material is that only yield strength and modulus of elasticity must be known to describe the material curve. The granted ductility of construction steel is 15 %. The real usable value of limit plastic strain is 5% for ordinary design (1993-1-5 appendix C paragraph C.8 note 1). The stress in steel cannot exceed the yield strength when using the ideal elastic-plastic stress-strain diagram. Thus it is worthless to perform the stress check. The relative plastic strain is sufficient as the check value. Welds Figure 2 - Real tension curve and the ideal elastic-plastic diagram of the material Steel plates are modelled as individual items. Their interconnection is provided by welds and bolts.

CBFEM method creates the model according to the real behaviour. The analysis plate/walls are not interconnected and no intersections are generated between them, unlike when modelling structures and buildings. Mesh of finite elements is generated on each individual plate independently from mesh of other plates. Welds are modelled as special massless force interpolation constrains which ensure the connection between the edge of one plate and the surface or edge of the other plate. Bolts Bolted connection consists of two or more clasped plates and one or more bolts. Plates are placed loosely on each other. A contact element is inserted between plates in the analysis model, which acts only in compression. No forces are carried in tension. Contact is valid only if plates are parallel. The analysis model of bolts is the same as described for anchor bolts. The contact between bolt head/washer and plate is modelled using the interpolation constraint. Holes for bolts are generated in plates. Equilibrium in node Figure 3 - Tensile diagram of bolts Each node of 3D FEM model must be in equilibrium. The equilibrium requirement is correct but it is not necessary to design simple joints. One member of joint is always bearing and the others are connected. If only the connection of connected members is checked, it is not necessary to keep the equilibrium. Thus there are two modes of loads input available see fig 4. Figure 4 Simplified and complex model of supports in CBFEM model of the joint

Loading of joint model End forces of the frame analysis model are transferred to outer ends of member segments. Eccentricities of members caused by the joint design are respected during the transfer. The analysis model created by CBFEM method corresponds to the real joint very precisely. On the other hand, analysis of internal forces is performed on a very idealised 3D FEM 1D model where individual beams are modelled using centrelines and the joints are modelled using immaterial nodes. a) Real shape of joint b) Theoretical shape in 3D FEM model Figure 5 - Joint of vertical column and horizontal beam Internal forces are analysed using 1D members in 3D model. Following picture shows an example of courses of internal forces. a) Bending moment b) Shear force Figure 6 - Course of internal forces on horizontal beam. M and V are the end forces on the joint. The effects caused by member on the joint are important to design the joint with its connections. The effects are illustrated in the Fig. 7. a) 1D member model b ) CBFEM model dark blue color Figure 7 Load effects of member on the joint. CBFEM model is drawn in dark blue colour.

Moment M Ed and force V Ed act in theoretical joint. The point of theoretical joint does not exist in CBFEM model thus the load cannot be applied here. The model is loaded by actions M and V which are transferred to the end of segment in distance r M Ed,c = M Ed V Ed. r V Ed,c = V Ed In CBFEM model, the end section of segment is loaded by moment M Ed,c and force V Ed,c. When designing the joint, its real position relative to the theoretical point of joint should be determined and respected. Internal forces in the position of the real joint are often different to internal forces in the theoretical point of the joint. Thanks to precise CBFEM model the design is performed on reduced forces see moment M Ed,r in Fig. 8. Figure 8 - Course of bending moment in CBFEM model. The arrow points to the real position of the joint. When loading the joint, it must be respected that the solution of the real joint must correspond to the theoretical model used for calculation of internal forces. This is fulfilled for rigid joints but the situation may be completely different for hinges. a) 1D members model b) CBFEM model Figure 9 - Position of the hinge in theoretical 3D FEM model and in the real structure. Figure 9 illustrates that the position of a hinge in the theoretical 1D members model differs from the real position in the structure. The theoretical model does not correspond to the reality. When applying the calculated internal forces, significant bending moment is applied into the shifted joint and the designed joint is either overloaded or cannot be designed. The solution is simple both models must correspond. Either the hinge in 1D member must be defined in the proper position or

the courses of internal forces must be shifted to get the zero moment in the real position of the hinge. Figure 10 - Shifted course of bending moment on the beam. Zero moment is at the position of the hinge. Joint modelling in 3D global analyses The global behaviour of steel framed structures is influenced by the behaviour of the joints. Hence, accurate modelling of the beam-to-column joint is essential. To assure the quality of global modelling, Chapter 5 of EN1993-1-8 introduces classification of joints based on their relative stiffness compared to the connecting element, e.g. beam or column for column bases. The classification of stiffness provides accurate prediction of element s and joint s resistance. By comparing its initial rotational stiffness S j,ini with the classification boundaries, see Fig. 5.4., a joint may be classified as rigid, nominally pinned or semi-rigid according to its rotational stiffness. A joint may be also classified on the basis of experimental evidence, experience of previous satisfactory performance in similar cases or by calculations based on test evidence. Joints may be modelled as nominally pinned, rigid or semi-rigid joint. In case of semi-rigid joints, Chapter 5.3 in EN1993-1-8 offers a complex and inaccurate transformation of the stiffness of the column web panel in shear into the connection rotational stiffness s. M a M b M a a T b M b a) Physical model of double sided joints with two connections b) Model of joint with the column web panel in shear and two springs representing the joints c) A complex and inaccurate simplification Figure 11 - Model of the semi rigid connections in global analyses

CBFEM is a tool for daily practice CBFEM method is a synergy of standard component method and advance FE analysis. It provides efficient, fast and accurate tool for structural engineers and fabricators. Steel joints and connections which had to be simplified and estimated can now be calculated properly. Figure 12 Examples of complex joints analysed by CBFEM References Virdi KS et al, 1999, Numerical simulation of semi-rigid connections by the finite element method, Report of Working Group 6 Numerical, Simulation COST C1, Brussels Luxembourg. Bayo E, Gracia J, Gil B and Goni R. 2012. An efficient cruciform element to model semirigid composite connections for frame analysis. Journal of Constructional Steel Research 72: 97 104. Cabrero JM and Bayo E. 2007. The semi-rigid behaviour of three-dimensional steel beam-to-column stel joints subjected to proportional loading. Part II: Theoretical model and validation. Journal of Constructional Steel Research 63: 1254 1267. N 1994-1-1. Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standardisation. CEN. 2004. Brussels: 118. EN 1993-1-8. Eurocode 3: Design of steel structures, Part 1-8: Design of joints. European Committee for Standardisation. Brussels: CEN. 2005. 133. Charney FA and Marshal J. 2006. A comparison of the Krawinkler and Scissors models for including beam-column joint deformations in the analysis of moment-resisting steel frames. AISC Engineering Journal 43(1): 31-48. Heinisuo M, Laine V, Lehtimäki E. 2009. Enlargement of the component method into 3D, Proceeding of Eleventh Nordic Steel Construction Conference, NSCC2009. Jaspart JP, Pietrapertosa C, Weynand K, Busse E, Klinkhammer R, Development of a full consistent design approach for bolted and welded joints in buildings frames and trusses between steel members made of hollow and/or open sections, CIDECT Report 5BP-4/05, November 2005. Loureiro A, Lopez M and Bayo E. 2016. Shear behaviour of stiffened double rectangular column panels: characterization and cruciform element. Journal of Constructional Steel Research 117: 126 138. Simões da Silva L. 2008. Towards a consistent design approach for steel joints under generalized loading. Journal of Constructional Steel Research 64: 1059 1075.